Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98298
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor葛煥彰zh_TW
dc.contributor.advisorHuan-Jang Kehen
dc.contributor.author周郁富zh_TW
dc.contributor.authorYu-Fu Chouen
dc.date.accessioned2025-08-01T16:07:32Z-
dc.date.available2025-08-02-
dc.date.copyright2025-08-01-
dc.date.issued2025-
dc.date.submitted2025-07-25-
dc.identifier.citation1. Stokes, G.G. On the theories of the internal friction of fluids in motion and of the equilibrium and motion of elastic solids. Trans. Camb. Phil. Soc. 1845, 8, 287–319.
2. Stokes, G.G. On the effect of the internal friction of fluids on the motion of pendulums. Trans. Cambridge Phil. Soc. 1851, 9, 8–106.
3. Masliyah, J.H.; Neale, G.; Malysa, K.; van de Ven, T.G.M. Creeping flow over a composite sphere: Solid core with porous shell. Chem. Eng. Sci. 1987, 42, 245–253.
4. Keh, H.J.; Chou, J. Creeping motion of a composite sphere in a concentric spherical cavity. Chem. Eng. Sci. 2004, 59, 407–415.
5. Wunderlich, R.W. The effects of surface structure on the electrophoretic mobilities of large particles. J. Colloid Interface Sci. 1982, 88, 385–397.
6. Anderson, J.L.; Solomentsev, Y. Hydrodynamic effects of surface layer on colloidal particles. Chem. Eng. Comm. 1996, 148–150, 291–314.
7. Napper, D.H. Polymeric Stabilization of Colloidal Dispersions; Academic Press: London, UK, 1983.
8. Neale, G.; Epstein, N.; Nader, W. Creeping flow relative to permeable spheres. Chem. Eng. Sci. 1973, 28, 1865–1874.
9. Happel, J.; Brenner, H. Low Reynolds Number Hydrodynamics; Nijhoff: Dordrecht, The Netherlands, 1983.
10. Anderson, J.L. Colloid transport by interfacial forces. Ann. Rev. Fluid Mech. 1989, 21, 61–99.
11. Romanò, F.; des Boscs, P.-E.; Kuhlmann, H.C. Forces and torques on a sphere moving near a dihedral corner in creeping flow. Eur. J. Mech. B Fluids 2020, 84, 110–121.
12. Goldman, A.J.; Cox, R.G.; Brenner, H. Slow viscous motion of a sphere parallel to a plane wall-I. Motion through a quiescent fluid. Chem. Eng. Sci. 1967, 22, 637–651.
13. Ganatos, P.; Pfeffer, R.; Weinbaum, S. A strong interaction theory for the creeping motion of a sphere between plane parallel boundaries. Part 2. Parallel motion. J. Fluid Mech. 1980, 99, 755–783.
14. Chen, P.Y.; Keh, H.J. Slow motion of a slip spherical particle parallel to one or two plane walls. J. Chin. Inst. Chem. Engrs. 2003, 34, 123–133.
15. Sherief, H.H.; Faltas, M.S.; Ashmawy, E.A.; Nashwan, M.G. Slow motion of a slip spherical particle along the axis of a circular cylindrical pore in a micropolar fluid. J. Mol. Liq. 2014, 200, 273–282.
16. Papavassiliou, D.; Alexander, G.P. Exact solutions for hydrodynamic interactions of two squirming spheres. J. Fluid Mech. 2017, 813, 618–646.
17. Chou, C.Y.; Keh, H.J. Slow rotation of a spherical particle in an eccentric spherical cavity with slip surfaces. Eur. J. Mech. B Fluids 2021, 86, 150–156.
18. Lee, M.C.; Keh, H.J. Slow axisymmetric rotation of a sphere in a circular tube with slip surfaces. Fluid Dyn. Res. 2021, 53, 065502.
19. Nashwan, M.G.; Ragab, K.E.; Faltas, M.S. Axisymmetric slow motion of a non-deformable spherical droplet or slip particle toward an orifice in a plane wall. Phys. Fluids 2022, 34, 083106.
20. Liao, J.C.; Keh, H.J. Slow rotation of a sphere about its diameter normal to two planes with slip surfaces. Fluid Dyn. Res. 2022, 54, 035502.
21. Madasu, K.P. Boundary effects of slow flow past a fluid coated sphere. Phys. Fluids 2025, 37, 031908.
22. Srinivasacharya, D.; Krishna Prasad, M. Steady rotation of a composite sphere in a concentric spherical cavity. Acta Mech. Sin. 2012, 28, 653–658.
23. Prakash, J.; Raja Sekhar, G.P. Slow motion of a porous spherical particle with a rigid core in a spherical fluid cavity. Meccanica 2017, 52, 91–105.
24. Chou, C.Y.; Keh, H.J. Low-Reynolds-number rotation of a soft particle inside an eccentric cavity. Eur. J. Mech. B Fluids 2022, 91, 194–201.
25. Chen, Y.C.; Keh, H.J. Slow translation of a composite sphere in an eccentric spherical cavity. Fluids 2024, 9, 154.
26. Chen, Y.C.; Keh, H.J. Slow translation and rotation of a composite sphere within a nonconcentric spherical cavity normal to their common diameter. Fluid Dyn. Res. 2025, 54, 035502.
27. Jhuang, L.J.; Keh, H.J. Slow axisymmetric rotation of a soft sphere in a circular cylinder. Eur. J. Mech. B Fluids 2022, 95, 205–211.
28. Chen, S.B.; Ye, X. Boundary effect on slow motion of a composite sphere perpendicular to two parallel impermeable plates. Chem. Eng. Sci. 2000, 55, 2441–2453.
29. Chang, C.L.; Keh, H.J. Slow rotation of a soft colloidal sphere normal to two plane walls. Colloids Interfaces 2023, 7, 18.
30. Koplik, J.; Levine, H.; Zee, A. Viscosity renormalization in the Brinkman equation. Phys. Fluids 1983, 26, 2864–2870.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98298-
dc.description.abstract本論文以半解析的方式探討一個球形複合粒子(構造為一個流體不可滲透的硬質核心固體,外圍包覆著一層流體可滲透的多孔物質)在黏性流體中,平行於一個或兩個平板邊界,所進行的穩態低雷諾數耦合移動與轉動。多孔層內外之流體速度分別由Brinkman方程式及Stokes方程式主導。研究中,分別利用球坐標與直角坐標下的基本解建立通解。首先代入平板的邊界條件並透過傅立葉轉換法解析求解,接著代入多孔層內外球面的邊界條件並使用邊界取點法數值計算,獲得流體施加於粒子之拖曳力與力矩。數值計算顯示,在廣泛的物理參數範圍內,所得的阻力與力矩均具有良好的收斂性。為驗證數據合理性,針對不可滲透硬質固體球平行於單一或兩平板的結果,與既有文獻中的對應結果進行比對,吻合良好。流體施加於複合粒子的拖曳力與力矩隨著粒子半徑與流體於多孔層穿透長度之比值、固體核半徑與粒子半徑之比值、粒子半徑與較近平板間距之比值增加而單調遞增。結果亦發現,平板對粒子移動的影響明顯大於對其轉動的影響。比較平行於平板與垂直於平板的運動時,平面邊界在粒子平行運動時對粒子產生的流體拖曳力較小,但所施加的力矩則較大。此外,複合球在平行於平板運動時,移動與轉動的耦合作用表現出複雜的行為,其變化並不隨系統參數的改變而單調變化。zh_TW
dc.description.abstractA semi-analytical investigation is conducted to examine the coupled translational and rotational motions of a composite spherical particle (consisting of an impermeable hard core surrounded by a permeable porous shell) immersed in a viscous fluid parallel to one or two planar boundaries under the steady condition of a low Reynolds number. The fluid flow is described using the Stokes equations outside the porous shell and the Brinkman equation within it. A general solution is formulated by employing fundamental solutions in both spherical and Cartesian coordinate systems. The boundary conditions on the planar walls are implemented using the Fourier transform method, while those on the inner and outer boundaries of the porous shell are applied via a collocation technique. Numerical calculations yield hydrodynamic force and torque results with good convergence across a broad range of physical parameters. For validation, the results corresponding to an impermeable hard sphere parallel to one or two planar walls are shown to be in close agreement with established solutions from the literature. The hydrodynamic drag force and torque experienced by the composite particle increase steadily with larger values of the ratio of the particle radius to the porous shell’s permeation length, the ratio of the core radius to the total particle radius, and the separations between the particle and the walls. It has been observed that the influence of the walls on translational motion is significantly stronger than that on rotational motion. When comparing motions parallel versus normal to the walls, the planar boundaries impose weaker hydrodynamic forces but stronger torques during parallel motions. The coupling between the translation and rotation of the composite sphere parallel to the walls exhibits complex behavior that does not vary monotonically with changes in system parameters.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-01T16:07:32Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-01T16:07:32Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents謝辭 i
摘要 ii
Abstract iii
Table of Contents v
List of Figures vii
List of Tables ix
Chapter 1 Introduction 1
Chapter 2 Analysis 5
2.1. Governing equations and boundary conditions 7
2.2. Solution for the fluid velocity and pressure 9
2.3. Hydrodynamic force and torque on the composite particle 12
Chapter 3 Results and Discussion 13
3.1. Resistance coefficients for a porous particle 19
3.2 Resistance coefficients for a composite particle 24
Chapter 4 Conclusions 32
List of Symbols 34
References 38
Appendix A 42
A.1. Some lengthy equations in Chapter 2 42
A.2. Schematic representation of the defined parameters 45
-
dc.language.isoen-
dc.subject多孔球zh_TW
dc.subject複合粒子zh_TW
dc.subject平板邊界效應zh_TW
dc.subject蠕動流zh_TW
dc.subject拖曳力與力矩zh_TW
dc.subjectdrag force and torqueen
dc.subjectcreeping flowen
dc.subjectporous sphereen
dc.subjectboundary effect in sliten
dc.subjectcomposite particleen
dc.title球形複合粒子平行單一或兩平板之緩慢移動與轉動zh_TW
dc.titleSlow Translation and Rotation of a Composite Sphere Parallel to One or Two Planar Wallsen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee謝子賢;詹正雄zh_TW
dc.contributor.oralexamcommitteeTzu-Hsien Hsieh;Jeng-Shiung Janen
dc.subject.keyword複合粒子,多孔球,拖曳力與力矩,蠕動流,平板邊界效應,zh_TW
dc.subject.keywordcomposite particle,porous sphere,drag force and torque,creeping flow,boundary effect in slit,en
dc.relation.page45-
dc.identifier.doi10.6342/NTU202502370-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-07-28-
dc.contributor.author-college工學院-
dc.contributor.author-dept化學工程學系-
dc.date.embargo-lift2025-08-02-
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf2.01 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved