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摘要 

 

本論文以半解析的方式探討一個球形複合粒子(構造為一個流體不可滲透的硬

質核心固體，外圍包覆著一層流體可滲透的多孔物質)在黏性流體中，平行於一個

或兩個平板邊界，所進行的穩態低雷諾數耦合移動與轉動。多孔層內外之流體速度

分別由 Brinkman 方程式及 Stokes 方程式主導。研究中，分別利用球坐標與直角坐

標下的基本解建立通解。首先代入平板的邊界條件並透過傅立葉轉換法解析求解，

接著代入多孔層內外球面的邊界條件並使用邊界取點法數值計算，獲得流體施加

於粒子之拖曳力與力矩。數值計算顯示，在廣泛的物理參數範圍內，所得的阻力與

力矩均具有良好的收斂性。為驗證數據合理性，針對不可滲透硬質固體球平行於單

一或兩平板的結果，與既有文獻中的對應結果進行比對，吻合良好。流體施加於複

合粒子的拖曳力與力矩隨著粒子半徑與流體於多孔層穿透長度之比值、固體核半

徑與粒子半徑之比值、粒子半徑與較近平板間距之比值增加而單調遞增。結果亦發

現，平板對粒子移動的影響明顯大於對其轉動的影響。比較平行於平板與垂直於平

板的運動時，平面邊界在粒子平行運動時對粒子產生的流體拖曳力較小，但所施加

的力矩則較大。此外，複合球在平行於平板運動時，移動與轉動的耦合作用表現出

複雜的行為，其變化並不隨系統參數的改變而單調變化。 

 

關鍵詞：複合粒子、多孔球、拖曳力與力矩、蠕動流、平板邊界效應 
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Abstract 

 

A semi-analytical investigation is conducted to examine the coupled translational 

and rotational motions of a composite spherical particle (consisting of an impermeable 

hard core surrounded by a permeable porous shell) immersed in a viscous fluid parallel 

to one or two planar boundaries under the steady condition of a low Reynolds number. 

The fluid flow is described using the Stokes equations outside the porous shell and the 

Brinkman equation within it. A general solution is formulated by employing fundamental 

solutions in both spherical and Cartesian coordinate systems. The boundary conditions on 

the planar walls are implemented using the Fourier transform method, while those on the 

inner and outer boundaries of the porous shell are applied via a collocation technique. 

Numerical calculations yield hydrodynamic force and torque results with good 

convergence across a broad range of physical parameters. For validation, the results 

corresponding to an impermeable hard sphere parallel to one or two planar walls are 

shown to be in close agreement with established solutions from the literature. The 

hydrodynamic drag force and torque experienced by the composite particle increase 

steadily with larger values of the ratio of the particle radius to the porous shell’s 

permeation length, the ratio of the core radius to the total particle radius, and the 
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separations between the particle and the walls. It has been observed that the influence of 

the walls on translational motion is significantly stronger than that on rotational motion. 

When comparing motions parallel versus normal to the walls, the planar boundaries 

impose weaker hydrodynamic forces but stronger torques during parallel motions. The 

coupling between the translation and rotation of the composite sphere parallel to the walls 

exhibits complex behavior that does not vary monotonically with changes in system 

parameters. 

 

Keywords: composite particle; porous sphere; drag force and torque; creeping flow; 

boundary effect in slit 
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Chapter 1 

Introduction 

 

The motion of small particles in viscous fluids, including their translation and 

rotation at low Reynolds numbers, continues to attract significant attention from 

researchers in various scientific, technological, and engineering domains. These 

fundamental processes provide a deep understanding of many practical systems, such as 

sedimentation, centrifugation, coagulation, filtration, aerosol technologies, suspension 

rheology, microfluidics, electrophoresis, and other phoretic movements. Stokes was the 

first to analyze the creeping motions of a hard, impermeable sphere in an unbounded 

Newtonian fluid [1,2], and these works were later expanded to cover the translation and 

rotation of a composite sphere [3,4]. 

A composite sphere, with a radius b , consists of a hard sphere core of radius a , 

which is surrounded by a permeable porous layer of thickness b a− . Typical examples 

of composite particles include biological cells with rough surface structures, ranging from 

micrometer-sized cilia to nanometer-sized protein molecules [5], as well as polystyrene 

latex particles with a porous surface extending into the surrounding fluid [6]. Colloidal 

suspension particles can be sterically stabilized against aggregation by purposely 

adsorbing polymers and forming porous surface layers [7].   
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When a composite particle of radius b , with a hard core of radius a , translates 

with velocity U   and rotates with angular velocity Ω   in an unbounded fluid of 

viscosity  , the hydrodynamic force and torque acting on the particle are [3,4]  

1 2 2

0 6π { cosh 3 ( sinh ) [( cosh )W a a a V a a aV b a W        −= − − + + −F  

(1) 
3 2 2 2

1 23 sinh ] [ cosh 3 ( sinh )] }a b a G W a a aV a G     + + + −  

2 2 1

1 2{( sinh cosh )[( 3 ) 3( 1) 6 ]}a b a W b G a G a      − − + + − − U , 

3 1 2
0 2 2

2 1

3( )3
8π [1 ]

( )

G aG
b

b b G aG




  

+
= − + −

+
T Ω , (2) 

where  

1 cosh( )G b a = − ,    2 sinh( )G b a = − ,                                  (3) 

sinh coshV b b b  = − ,    
3 3 3 32 3W b a a  = + + ,                        (4) 

and 1−  is the square root of the fluid permeability or flow penetration length within the 

porous surface layer of the particle. The drag force and torque exerted on the particle are 

proportional to the translational and angular velocities, respectively. Note that the 

translation and rotation are uncoupled in the case of an unconfined composite sphere; i.e., 

0F   and 0T   are independent of Ω   and U  , respectively. In the limiting cases where 

a b=  and 0a = , Equations (1) and (2) reduce to the Stokes results ( 0 6π b= −F U  and 

3

0 8π b= −T Ω  ) for a hard sphere and equivalent results for a completely porous 

(permeable) sphere [4,8], respectively, of radius b . In the limits 0b =  and b → , 

these equations simplify to the Stokes results for a hard sphere with radii a  and b , 



doi:10.6342/NTU202502370

3 

 

respectively. Note that 2( )b −  is known as the Darcy number. 

In real-world scenarios, particles are not isolated, and the surrounding fluid is 

constrained by solid boundaries [9-11]. Therefore, it is crucial to determine whether the 

proximity of a boundary significantly influences the motion of the particles. Past research 

has extensively analyzed the low-Reynolds-number translation and rotation of a hard 

sphere near various types of boundaries [12-21]. Additionally, studies have also 

investigated the slow translation and rotation of a composite sphere inside a concentric 

[4,22,23] or non-concentric [24-26] spherical cavity, within a circular cylinder [27], and 

perpendicular to one or two planar walls [28,29]. These studies demonstrate that boundary 

effects on the motion of both hard and composite particles can be significant and 

intriguing.  

In practical applications, we often encounter translations and rotations of a 

composite sphere near one or two planar walls but not perpendicular to the walls. The aim 

of this thesis is to derive a semi-analytical solution for the slow translation and rotation 

of a composite sphere parallel to one or two planar walls. These parallel motions present 

more complex challenges because they break the azimuthal symmetry, causing the 

translation and rotation to become coupled. By combining analytical and numerical 

techniques, the Stokes and Brinkman equations governing the external and internal fluid 

flows, respectively, with respect to the porous layer are solved using a boundary 
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collocation approach. The wall-corrected drag force and torque exerted by the fluid on 

the composite particle are then determined, with the solutions showing good convergence. 

Since the problem of slow translation and rotation of a composite sphere in arbitrary 

directions near one or two large planar walls is linear, the solutions can be obtained by 

superimposing the solutions to two subproblems: motions normal to the planar walls, 

which have been previously studied [28,29], and motions parallel to the planar walls, 

which are addressed in this thesis. 

  



doi:10.6342/NTU202502370

5 

 

Chapter 2 

Analysis 

 

As shown in Figure 1, we consider the steady motion of a viscous fluid caused by a 

composite particle of radius b  , consisting of a hard sphere core of radius a   and a 

porous surface layer of thickness b a− , translating with velocity xUeU =  and rotating 

with angular velocity yΩ=Ω e  parallel to two large stationary planar walls (both normal 

to ze ) at distances c  and d  from the center of the composite sphere. Here, ),,( zyx , 

),,( z  , and ),,( r   represent the Cartesian, cylindrical, and spherical coordinate 

systems, respectively, originating from the particle center, xe  , ye  , and ze   are the 

principal unit vectors in the Cartesian coordinates, and re , e , and e  are the principal 

unit vectors in the spherical coordinates. We set d c  throughout the article without 

loss of generality. The fluid is at rest away from the composite sphere and on the nonslip 

planar walls. Our aim is to determine the modification of Equations (1) and (2) for the 

translational and rotational motions of a composite sphere due to the presence of the 

planar walls. 
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Figure 1. Schematic illustration of the translation and rotation of a composite sphere 

parallel to two plane walls at an arbitrary position between them. 
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2.1. Governing equations and boundary conditions 

For the creeping flow of an incompressible Newtonian fluid, the fluid velocity, v , 

and pressure, p , outside the composite sphere are governed by the Stokes equations, as 

follows: 

0v =− p2 ,   0= v           ( r b ),                           (5) 

where    is the fluid viscosity. Within the porous surface layer, the Brinkman and 

continuity equations, 

2 2ˆ ˆ ˆ( )p  − − − −  =v v U Ω r 0 ,   ˆ 0 =v    ( a r b  ),                 (6) 

are used to govern the fluid velocity, v̂ , and pressure, p̂ , where the effective viscosity 

of the fluid is assumed to equal the viscosity of the bulk fluid [3,28,30], 2   is the 

reciprocal of permeability, and rr=r e  is the position vector. 

The boundary conditions for the external and internal fluid flows are 

:r a=           ˆ
ra= + v U Ω e , (7) 

r b= : ˆ=v v , (8a) 

ˆ ˆ( ) ( )r rp p − =  −e τ I e τ I , (8b) 

z c= , d− : 0v = , (9) 

→ : 0v = , (10) 

where τ   and τ̂   are viscous stress tensors for the external and internal flows, 

respectively, and I  is the unit tensor. It can be shown that the boundary condition in 
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Equation (8b), which represents the continuity of the total stress on the outer surface of 

the porous layer, is equivalent to 

r b= :          ˆp p= ,   
ˆv v

r r

  
=

 
,   

ˆv v

r r

  
=

 
,                               (11) 

where ˆ( , )v v 
 and ˆ( , )v v 

 are   and   components of the relevant fluid velocities, 

respectively. 
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2.2. Solution for the fluid velocity and pressure 

A general solution of the external fluid velocity that satisfies Equations (5), (9), and 

(10) is 

zzyyxx vvv e  eev ++=  ,                                                         (12) 

where 

)]()()([

1

nnnnnnn

n

nnx CCBBAAv  +++++=


=

,                          (13a) 

)]()()([

1

nnnnnnn

n

nny CCBBAAv  +++++=


=

 ,                          (13b) 

1

[ ( ) ( ) ( )]z n n n n n n n n n

n

v A A B B C C  


=

     = + + + + +  ,                           (13c) 

the primed nA  , nB  , nC  , n  , n  , and n   are functions of position defined by 

Equations (2.6) and (C1) of Ganatos et al. [13], and nA  , nB  , and nC   are unknown 

constants. The corresponding solution for the fluid pressure can be obtained by 

integrating Equation (5a) with the following result: 

1

[ ]n n n n n n

n

p A A B B C C  


 

=

= + +  ,                                                (14) 

where nA
, nB

, and nC 
 are functions of position, which are lengthy and defined by 

Equations (A10)–(A12) in Appendix A. All numerical integrations used to evaluate the 

primed nA  , nB  , nC  , n  , n  , and n   functions are performed using the Gauss–

Laguerre quadrature method. 
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The general solution of the internal fluid velocity satisfying Equation (6) can be 

obtained as 

ˆ ˆ ˆ ˆ
r rv v v   = + +v e e e  ,                                                           (15)    

where 

cos = , nI  and nK  are the modified Bessel function of the first and second kinds of 

order n, respectively, 
1

nP  is the associated Legendre function of order n and degree one, 

and 1
ˆ

nC  , 2
ˆ

nC  , 3
ˆ

nC  , 4
ˆ

nC  , 1
ˆ

nD  , and 2
ˆ

nD   are unknown constants. Similar to the 

derivation of the external fluid pressure, the integration of Equation (6a) yields the 

internal fluid pressure as follows: 

2 1 1

1 2

1

ˆ ˆˆ cos [( 1) ] ( )n n

n n n

n

p n C r nC r P  


− −

=

= − + − .                                  (17) 

1 1 2 3/2

1 2 3 1/2 4 1/2

1

ˆ ˆ ˆ ˆˆ [ ( 1) ( ){ + [ ( ) ( )]}n n

r n n n n n n n

n

v n n P C r C r r C I r C K r  


− − − −

+ +

=

= + + +  

2 1/2(1 ) ]cosU  + − , 

(16a) 

1 2 3/2 1/2

1 2 3 1/2 1/2

1

ˆ ˆ ˆˆ [ {[ ( 1) { ( ) ( )}n n

n n n n n

n

v C n r nC r C nr I r r I r   


− − − − −

+ −

=

= − + + + −  

1
3/2 1/2 2 1/2

4 1/2 1/2

d ( )ˆ { ( ) ( )}](1 )
d

n
n n n

P
C nr K r r K r


   



− −

+ −+ + −  

1/2 2 1/2 1

1 1/2 2 1/2
ˆ ˆ[ ( ) ( )](1 ) ( )} ]cosn n n n nr D I r D K r P U Ωr     − −

+ ++ + − + + , 

(16b) 

1 2 3/2 1/2

1 2 3 1/2 1/2

1

ˆ ˆ ˆˆ [ {[ ( 1) { ( ) ( )}n n

n n n n n

n

v C n r nC r C nr I r r I r   


− − − − −

+ −

=

= − + + + −  

3/2 1/2 2 1/2 1

4 1/2 1/2
ˆ { ( ) ( )}](1 ) ( )n n n nC nr K r r K r P    − − −

+ −+ + −  

1
1/2 2 1/2

1 1/2 2 1/2

d ( )ˆ ˆ[ ( ) ( )](1 ) } ]sin
d

n
n n n n

P
r D I r D K r U Ωr


    



−

+ ++ + − − − , 

(16c) 
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The boundary conditions that still need to be satisfied are the conditions of the inner 

and outer surfaces of the porous layer of the composite sphere. By substituting Equations 

(12)–(17) into Equations (7) and (8), we obtain simultaneous linear algebraic Equations 

(A1)–(A9), which are lengthy, in Appendix A. The unknown constants nA , nB , nC , 

1
ˆ

nC , 
2

ˆ
nC , 

3
ˆ

nC , 
4

ˆ
nC , 

1
ˆ

nD , and 
2

ˆ
nD  will be determined using these lengthy equations. 

A careful inspection of Equations (A1)–(A9) shows that the solution to the resulting 

unknown constant matrix is independent of the coordinate,  , of the boundary points on 

spheres ar =  and r b= . If the infinite series in Equations (13), (14), (16), and (17) are 

truncated after N terms and then the truncated form of Equations (A1)–(A9) are satisfied 

at N discrete points on the half-circular generating arc of each spherical surface (from 

0=  to π = ), the resulting system of 9N simultaneous linear algebraic equations can 

be solved numerically to yield the 9N unknown constants, nA , nB , nC , 1
ˆ

nC , 2
ˆ

nC , 3
ˆ

nC , 

4
ˆ

nC , 1
ˆ

nD , and 
2

ˆ
nD , that appear in the truncated form of Equations (13), (14), (16), and 

(17). The accuracy of the fluid velocity and pressure solutions obtained using this 

boundary collocation method can reach the required level as long as the N value is large 

enough. 
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2.3. Hydrodynamic force and torque on the composite particle 

The drag force, xF=F e , and torque, yT=T e , exerted on the composite sphere by 

the fluid can be determined using [13] 

in which only the unknown constants, 1A   and 1C  , are needed. When / 0b d =  , the 

planar walls are away from the composite sphere, and Equation (18a,b) for F  and T  

become Equations (1) and (2) for 0F  and 0T  of an isolated particle, respectively. 

The force, F , and torque, T , can also be related to the migration velocity, U , and 

angular velocity, Ω , of the confined particle using 

0
t r( )

F
F FU F bΩ

U
= + , (19a) 

0
t r( )

T
T TU T bΩ

bΩ
= + , (19b) 

where tF , rF , tT , and rT  are the dimensionless resistance coefficients. According to 

the cross-effect theory of the force and torque on a spherical particle near boundaries, the 

coupling coefficients, rF  and tT , are related using [12] 

0
t r2

0

/

/

F U
T F

T b Ω
= .                                                      (20) 

Therefore, only the solutions of the three coefficients, tF  , rT  , and rF  , need to be 

presented. 

 

18πF A= − , (18a) 

18πT C= − , (18b) 
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Chapter 3 

Results and Discussion 

 

The boundary collocation solutions of the force, torque, and coupling coefficients, 

tF , rT , and rF , respectively, in Equation (19) for the slow translation and rotation of a 

composite sphere parallel to two planar walls (convergent to the significant figures as 

given) for various values of the particle–wall spacing parameter, /b d , relative particle 

position parameter, / ( )d d c+  , core-to-particle radius ratio, ba /  , and ratio of the 

particle radius to the porous layer permeation length, b , are presented in Tables 1–3 for 

the special case of a porous sphere ( 0a =  ) and in Table 4 for the general case of a 

composite sphere. The geometric meanings of the aforementioned four parameters are 

depicted in Figure A1. Within the limit of b →   (the porous surface layer is 

impermeable), our numerical results are in good agreement with the corresponding 

collocation solutions obtained previously [14] for the translation and rotation of a hard 

sphere of radius, b , parallel to two planar walls. The wall effects on the translation and 

rotation of the composite particle can be significant. Note that the value of / ( )d d c+  

that is equal to 0 and 1/2 represents the cases of a particle translating and rotating parallel 
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to a single planar wall and to two equally distant planar walls, respectively. Consistent 

with Equations (1) and (2), r t 0F T= =  (no coupling between translation and rotation of 

the composite sphere) and t r 1F T= =   at / 0b d =   (i.e., for an unconfined composite 

sphere) for any values of b  and ba / . Both tF  and rT  are greater than unity as long 

as /b d  is finite (greater than zero) due to the hydrodynamic hindrance to the particle 

motions produced by the planar walls. Interestingly, the coupling coefficient, rF , can be 

positive or negative depending on the values of the dimensionless parameters, /b d  , 

/ ( )d d c+ , /a b , and b , as shown in Tables 3 and 4. This feature also appears in the 

translation and rotation of a hard sphere parallel to two planar walls [14]. Evidently, 

r t 0F T= =   for the symmetric case of / ( ) 1/ 2d d c+ =   (two equally distant planar 

walls). 
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Table 1. Force coefficient, tF  , for the translation of a porous sphere parallel to two 

planar walls at various values of / ( )d d c+ , /b d , and b . 

/ ( )d d c+  /b d  tF  

1b =  10b =  100b =  300b =  b →  

0 

0.1 1.0100  1.0525  1.0588  1.0593  1.0595  

0.2 1.0200  1.1103  1.1244  1.1254  1.1259  

0.3 1.0302  1.1740  1.1979  1.1995  1.2003  

0.4 1.0403  1.2448  1.2810  1.2835  1.2847  

0.5 1.0503  1.3243  1.3773  1.3810  1.3828  

0.6 1.0602  1.4154  1.4926  1.4980  1.5006  

0.7 1.0700  1.5225  1.6380  1.6463  1.6503  

0.8 1.0797  1.6531  1.8381  1.8522  1.8591  

0.9 1.0893  1.8219  2.1672  2.1995  2.2152  

0.99 1.0980  2.0377  2.9709  3.2285  3.3975  

0.999 1.0988  2.0656  3.2048  3.6843  4.1929  

0.25 

0.1 1.0116  1.0614  1.0689  1.0694  1.0697  

0.2 1.0233  1.1302  1.1471  1.1483  1.1489  

0.3 1.0352  1.2071  1.2361  1.2381  1.2391  

0.4 1.0470  1.2936  1.3382  1.3412  1.3427  

0.5 1.0588  1.3916  1.4568  1.4613  1.4635  

0.6 1.0704  1.5039  1.5983  1.6048  1.6080  

0.7 1.0818  1.6351  1.7738  1.7836  1.7884  

0.8 1.0931  1.7927  2.0082  2.0243  2.0322  

0.9 1.1042  1.9912  2.3759  2.4109  2.4279  

0.99 1.1142  2.2359  3.2183  3.4792  3.6724  

0.999 1.1152  2.2668  3.4570  3.9392  4.4494  

0.5 

0.1 1.0179  1.0975  1.1099  1.1107  1.1111  

0.2 1.0362  1.2134  1.2432  1.2452  1.2462  

0.3 1.0545  1.3504  1.4041  1.4078  1.4096  

0.4 1.0727  1.5114  1.5980  1.6039  1.6068  

0.5 1.0904  1.7002  1.8324  1.8413  1.8458  

0.6 1.1074  1.9222  2.1194  2.1329  2.1395  

0.7 1.1236  2.1854  2.4818  2.5024  2.5124  

0.8 1.1387  2.5033  2.9690  3.0029  3.0194  

0.9 1.1530  2.9019  3.7294  3.8019  3.8369  

0.99 1.1652  3.3877  5.4403  5.9675  6.2597  

0.999 1.1664  3.4488  5.9201  6.8900  7.6253  
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Table 2. Torque coefficient, rT , for the rotation of a porous sphere parallel to two planar 

walls at various values of / ( )d d c+ , /b d , and b . 

/ ( )d d c+  /b d  
rT  

1b =  10b =  100b =  300b =  b →  

0 

0.1 1.0000  1.0002  1.0003  1.0003  1.0003  

0.2 1.0002  1.0018  1.0024  1.0025  1.0025  

0.3 1.0005  1.0062  1.0083  1.0085  1.0086  

0.4 1.0012  1.0149  1.0200  1.0205  1.0207  

0.5 1.0024  1.0299  1.0405  1.0413  1.0418  

0.6 1.0041  1.0536  1.0737  1.0754  1.0763  

0.7 1.0066  1.0899  1.1274  1.1307  1.1324  

0.8 1.0099  1.1457  1.2182  1.2249  1.2283  

0.9 1.0142  1.2352  1.3980  1.4161  1.4253  

0.99 1.0190  1.3768  1.9369  2.1072  2.2233  

0.999 1.0195  1.3974  2.1150  2.4519  2.8341  

0.25 

0.1 1.0000  1.0002  1.0003  1.0003  1.0003  

0.2 1.0002  1.0019  1.0025  1.0026  1.0026  

0.3 1.0005  1.0065  1.0086  1.0088  1.0089  

0.4 1.0013  1.0155  1.0208  1.0213  1.0215  

0.5 1.0025  1.0310  1.0420  1.0429  1.0433  

0.6 1.0043  1.0555  1.0763  1.0781  1.0789  

0.7 1.0068  1.0929  1.1314  1.1348  1.1365  

0.8 1.0103  1.1502  1.2241  1.2309  1.2344  

0.9 1.0147  1.2415  1.4062  1.4244  1.4337  

0.99 1.0197  1.3850  1.9476  2.1182  2.2463  

0.999 1.0203  1.4057  2.1262  2.4631  2.8455  

0.5 

0.1 1.0000  1.0004  1.0005  1.0005  1.0005  

0.2 1.0003  1.0031  1.0042  1.0043  1.0043  

0.3 1.0009  1.0107  1.0143  1.0146  1.0147  

0.4 1.0021  1.0258  1.0347  1.0354  1.0358  

0.5 1.0041  1.0519  1.0707  1.0722  1.0730  

0.6 1.0071  1.0940  1.1304  1.1335  1.1351  

0.7 1.0113  1.1598  1.2289  1.2350  1.2381  

0.8 1.0170  1.2629  1.3996  1.4123  1.4188  

0.9 1.0243  1.4318  1.7463  1.7815  1.7994  

0.99 1.0327  1.7046  2.8108  3.1503  3.3477  

0.999 1.0336  1.7446  3.1658  3.8382  4.3955  
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Table 3. Coupling coefficient, 
2

0 0( / ) / ( / )r tF T T b F U=  , for the translation and rotation 

of a porous sphere parallel to two planar walls at various values of / ( )d d c+ , /b d , and 

b . 

/ ( )d d c+  /b d  
rF  

1b =  10b =  100b =  300b =  b →  

0 

0.1 −4.7 × 10−7 −7.4 × 10−6 −1.1 × 10−5 −1.2 × 10−5 −1.2 × 10−5 

0.2 −7.5 × 10−6 −1.2 × 10−4 −1.8 × 10−4 −1.8 × 10−4 −1.8 × 10−4 

0.3 −3.8 × 10−5 −5.7 × 10−4 −8.6 × 10−4 −8.9 × 10−4 −9.0 × 10−4 

0.4 −1.2 × 10−4 −0.0018  −0.0026  −0.0027  −0.0028  

0.5 −3.0 × 10−4 −0.0044  −0.0064  −0.0066  −0.0067  

0.6 −6.3 × 10−4 −0.0094  −0.0134  −0.0138  −0.0141  

0.7 −0.0012  −0.0186  −0.0261  −0.0270  −0.0275  

0.8 −0.0020  −0.0359  −0.0499  −0.0517  −0.0527  

0.9 −0.0033  −0.0722  −0.1027  −0.1067  −0.1095  

0.99 −0.0049  −0.1526  −0.3486  −0.3640  −0.3852  

0.999 −0.0051  −0.1665  −0.4881  −0.6124  −0.8240  

0.25 

0.1 2.0 × 10−5 2.5 × 10−4 3.3 × 10−4 3.4 × 10−4 3.4 × 10−4 

0.2 7.6 × 10−5 9.9 × 10−4 0.0013  0.0013  0.0013  

0.3 1.5 × 10−4 0.0020  0.0027  0.0027  0.0028  

0.4 2.2 × 10−4 0.0031  0.0040  0.0041  0.0041  

0.5 2.3 × 10−4 0.0036  0.0045  0.0045  0.0046  

0.6 1.4 × 10−4 0.0026  0.0029  0.0028  0.0028  

0.7 −1.2 × 10−4 −0.0018  −0.0031  −0.0035  −0.0037  

0.8 −6.6 × 10−4 −0.0134  −0.0190  −0.0201  −0.0209  

0.9 −0.0016  −0.0431  −0.0627  −0.0658  −0.0681  

0.99 −0.0028  −0.1169  −0.2994  −0.3136  −0.3121  

0.999 −0.0030  −0.1301  −0.4384  −0.5610  −0.7720  
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Table 4. Resistance coefficients for the translation and rotation of a composite sphere 

where 𝜆𝑏 = 1 parallel to two planar walls, with different values of 𝑑/(𝑑 + 𝑐), 𝑏/𝑑, and 

a/𝑏. 

𝑑/(𝑑 + 𝑐) 𝑏/𝑑 
a/b = 0.8 a/b = 0.95 

𝐹𝑡 𝑇𝑟 𝐹𝑟 𝐹𝑡 𝑇𝑟 𝐹𝑟 

0 

0.1 1.0472  1.0002  −4.0 × 10−6 1.0564  1.0003  −9.3 × 10−6 

0.2 1.0987  1.0013  −6.3 × 10−5 1.1189  1.0022  −1.4 × 10−4 

0.3 1.1551  1.0044  −3.1 × 10−4 1.1885  1.0073  −7.0 × 10−4 

0.4 1.2170  1.0105  −9.5 × 10−4 1.2669  1.0176  −0.0022  

0.5 1.2857  1.0209  −0.0023  1.3567  1.0355  −0.0052  

0.6 1.3632  1.0371  −0.0046  1.4627  1.0642  −0.0108  

0.7 1.4523  1.0612  −0.0087  1.5932  1.1095  −0.0208  

0.8 1.5581  1.0966  −0.0152  1.7655  1.1831  −0.0385  

0.9 1.6893  1.1493  −0.0257  2.0243  1.3154  −0.0734  

0.99 1.8435  1.2215  −0.0413  2.4836  1.5924  −0.1525  

0.999 1.8617  1.2307  −0.0434  2.5641  1.6447  −0.1681  

0.25 

0.1 1.0552  1.0002  1.8 × 10−4 1.0660  1.0003  2.9 × 10−4 

0.2 1.1163  1.0013  7.1 × 10−4 1.1405  1.0022  0.0012  

0.3 1.1841  1.0046  0.0015  1.2248  1.0076  0.0024  

0.4 1.2595  1.0109  0.0025  1.3208  1.0183  0.0037  

0.5 1.3439  1.0217  0.0033  1.4314  1.0368  0.0044  

0.6 1.4394  1.0384  0.0037  1.5616  1.0665  0.0035  

0.7 1.5490  1.0633  0.0030  1.7200  1.1131  −6.4 × 10−4 

0.8 1.6778  1.0998  0.0006  1.9241  1.1883  −0.0115  

0.9 1.8346  1.1538  −0.0053  2.2186  1.3227  −0.0383  

0.99 2.0144  1.2274  −0.0161  2.7136  1.6019  −0.1093  

0.999 2.0353  1.2367  −0.0177  2.7979  1.6545  −0.1239  
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3.1. Resistance coefficients for a porous particle 

The resistance coefficients, tF , rT , and rF , for the translation and rotation of a 

porous sphere ( 0a =  ) parallel to one or two planar walls are plotted against the 

parameters b , /b d , and / ( )d d c+  over the entire range in Figures 2–4, respectively. 

Similar to the circumstances of the translation and rotation of a porous sphere normal to 

one or two planar walls [28,29], for fixed values of the parameters / ( )d d c+  and b , 

Figures 3 and 4 and Tables 1 and 2 show that the normalized hydrodynamic drag force 

and torque that act on the porous particle that translates and rotates parallel to one or two 

planar walls (or tF   and rT  , respectively) are monotonic increasing functions of the 

particle–wall spacing parameter, /b d , from zero to unity (note that tF  and rT  are still 

finite even if the particle touches the planar walls). For the given values of /b d  and 

b , the drag force and torque increase with an increase in / ( )d d c+  from zero (the 

case of a particle translating and rotating parallel to a single planar wall) to 1/2, as shown 

in Figures 2 and 4. That is, the approach of a second planar wall will enhance the 

hydrodynamic force and torque exerted on the particle near the first wall. For a fixed 

value of 2 / ( )b c d+   (ratio of particle diameter to wall distance), tF   and rT   are 

minimal (the particle experiences minimum drag force and torque) when the particle is 

halfway between the two walls [ / ( ) 1/ 2d d c+ =  ] and increases monotonically as the 

particle approaches either wall, as shown by the dashed lines in Figure 4. 
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(a) 

  

(b) (c) 

Figure 2. Resistance coefficients for the motions of a porous sphere ( 0a = ) parallel to 

two planar walls versus the shielding parameter, b  , with / 0.9b d =   and various 

values of / ( )d d c+ : (a) tF ; (b) rT ; (c) rF . 
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(a) 

  

(b) (c) 

Figure 3. Resistance coefficients for the motions of a porous sphere ( 0a = ) parallel to 

two planar walls versus the spacing parameter, /b d , with / ( ) 0.25d d c+ =  and various 

value of b : (a) tF ; (b) rT ; (c) rF . 
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(a) 

  

(b) (c) 

Figure 4. Resistance coefficients for the motions of a porous sphere ( 0a = ) parallel to 

two planar walls versus the relative particle position parameter, / ( )d d c+ , with 10b =  

and various values of /b d  and 2 / ( )b d c+ : (a) tF ; (b) rT ; (c) rF . 
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As demonstrated in Figures 2 and 3, the force and torque coefficients, tF  and rT , 

for the translation and rotation of a porous sphere increase monotonically with an 

increasing ratio of particle radius to permeation length, b , from unity at 0b =  (with 

0 0F F= =   and 0 0T T= =  ) for given values of /b d   and / ( )d d c+  . On the other 

hand, as revealed in Figures 3 and 4 and Table 3, the coupling coefficient, rF , is not 

necessarily a monotonic function of the parameters /b d , / ( )d d c+ , and b  [there 

may be extrema at moderate values of /b d  , / ( )d d c+  , and b  ], fixing the other 

parameters. When b   is smaller than unity, the variations of all the resistance 

coefficients, tF  , rT  , and rF  , with /b d   and / ( )d d c+   are weak. In general, these 

resistance coefficients for a porous sphere with 100b   is sufficiently close to those of 

a hard sphere (with b → ). A comparison of Figures 2–4 and Tables 1 and 2 shows 

that the boundary effects of the planar walls on the translation of the particle are much 

more conspicuous than those on the rotation. 
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3.2 Resistance coefficients for a composite particle 

The force, torque, and coupling coefficients, tF , rT , and rF , for the translation and 

rotation of a general composite spherical particle parallel to one or two planar walls are 

plotted in Figures 5–7 for various values of the core-to-particle radius ratio, ba /  , 

particle–wall spacing parameter, /b d , relative particle position parameter, / ( )d d c+ , 

and ratio of particle radius to porous layer permeation length, b . Similarly, tF  and rT  

increase monotonically with increases in /b d  , b  , and / ( )d d c+  , fixing the other 

parameters. For a fixed value of 2 / ( )b c d+  , tF   and rT   are minimal at 

/ ( ) 1/ 2d d c+ =   and increase monotonically with a decrease in / ( )d d c+  . The 

coupling coefficient, rF  , is not necessarily a monotonic function of /b d  , b  , and 

/ ( )d d c+ , keeping other parameters unchanged. The boundary effects of the planar walls 

on the translation of the composite particle are much more noticeable than the effects on 

the rotation. 
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(a) 

  

(b) (c) 

Figure 5. Resistance coefficients for the motions of a composite sphere parallel to two 

planar walls versus the core-to-particle radius ratio, /a b , with / 0.9b d =  and various 

values of b  : (a) tF  ; (b) rT  ; (c) rF  . The solid and dashed curves denote cases of 

/ ( ) 0.25d d c+ =  and / ( ) 0d d c+ = , respectively. 
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(a) 

 
 

(b) (c) 

Figure 6. Resistance coefficients for the motions of a composite sphere parallel to two 

planar walls versus the spacing parameter, /b d , with / ( ) 0d d c+ =  and various values 

of /a b : (a) tF ; (b) rT ; (c) rF . The solid and dashed curves denote cases of 1b =  and 

5b = , respectively. 
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(a) 

  

(b) (c) 

Figure 7. Resistance coefficients for the motions of a composite sphere parallel to two 

planar walls versus the relative position parameter, / ( )d d c+  , with 10b =  , 

/ 0.9a b = , and various values of /b d  and 2 / ( )b d c+ : (a) tF ; (b) rT ; (c) rF . 
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For specified values of /b d  , b  , and / ( )d d c+  , Table 4 and Figures 5–7 

demonstrate that the force and torque coefficients, tF  and rT , of a composite sphere that 

translates and rotates parallel to one or two planar walls monotonically increase with an 

increase in the radius ratio, /a b  (a decrease in the relative thickness of the porous layer), 

where the limits / 1a b =   and / 0a b =   denote a hard sphere and an entirely porous 

sphere, respectively. All hydrodynamic force and torque results for a general composite 

sphere fall between the lower and upper limits of / 0a b =  and / 1a b = , respectively. 

On the other hand, the coupling coefficient, rF , is not necessarily a monotonic function 

of /a b  for fixed values of /b d , b , and / ( )d d c+ . When the porous layer of the 

composite particle has small to moderate permeability (say, 10b  ), as shown in Figure 

5, the values of all the resistance coefficients, tF , rT , and rF , of the composite particle 

with / 0.8a b   can be well approximated using the values of a fully porous particle with 

the same /b d , b , and / ( )d d c+ . Namely, the hard core of the composite sphere can 

hardly feel the relative fluid motion and only exerts negligible hydrodynamic resistance. 

However, this approximation does not apply to highly permeable porous layers. 

Since the governing equations of the general problem for a composite sphere 

translating and rotating in arbitrary directions near one or two planar walls are linear, its 

solution can be determined by the superposition of the solutions to its two subproblems: 

motions parallel to the planar walls, which are examined in this thesis, and motions 
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normal to the planar walls. The collocation solutions for the translation and rotation of a 

composite sphere normal to the planar walls were previously obtained [28,29], and it was 

found that the wall-corrected normalized drag force and torque acting on the particle also 

increase with increases in /b d , b , / ( )d d c+ , and /a b . Interestingly, comparisons 

between those results and our solutions indicate that the planar walls exert much more 

force but less torque on the particle when its translational and rotational motions occur 

normal to them than when its motions occur parallel to them. Therefore, the directions of 

translation and rotation of a composite sphere near one or two planar walls are different 

from those of the imposed force and torque, respectively, except when the directions are 

parallel or normal to the walls. The concepts discussed above are summarized in the 

schematic diagram shown in Figure 8. 
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Figure 8. Summary of the key concepts for the translation and rotation a composite sphere 

in arbitrary directions and at an arbitrary position between two planar walls. 

In Tables 1–4 and Figures 2–7, we present detailed results pertaining to the resistance 

problem, which involves evaluating the hydrodynamic force, F  , and torque, T  , 

experienced by a composite sphere undergoing prescribed translational and angular 

velocities, U   and Ω  , respectively, parallel to one or two planar walls under steady 

conditions. In contrast, the mobility problem entails determining the resulting particle 

velocities, U  and Ω , when known external force, F , and torque, T , are applied to 

the composite sphere. For the specific case of the slow translation and rotation of the 
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composite sphere considered in this thesis, the analytical formulations provided in 

Equation (19) are equally applicable to the corresponding mobility problem. In particular, 

for configurations involving free rotational motion parallel to one or two planar walls 

driven solely by an external force, F , the resulting translational and angular velocities 

of the composite sphere can be directly obtained via Equation (19), with the following 

result: 

1t
t r

0 r

( )
/

TF
U F F

F U T

−= − , (21a) 

t

r

TU
Ω

b T
= − , (21b) 

where the resistance coefficients are presented in the aforementioned tables and figures, 

and the term 0 /F U   that appears on the right-hand side of Equation (21a) can be 

evaluated using Equation (1). 
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Chapter 4 

Conclusions 

 

The low-Reynolds number-coupled translational and rotational motions of a 

composite spherical particle (hard core with porous surface layer) in a viscous fluid 

parallel to one or two planar walls are investigated semi-analytically using a method of 

boundary collocation. When the core-to-particle radius ratio, /a b  , ratio of particle 

radius to porous layer permeation length, b , particle–wall spacing parameter, /b d , 

and relative particle position parameter, / ( )d d c+  , take arbitrary values, convergent 

numerical results of the hydrodynamic force and torque acting on the particle are obtained. 

The normalized drag force and torque increase monotonically with increases in /a b , 

/b d , b , and / ( )d d c+ , keeping other parameters unchanged. For a fixed value of the 

ratio of particle diameter to wall-to-wall distance, 2 / ( )b c d+ , these force and torque are 

minimal at / ( ) 1/ 2d d c+ =   (as the particle is midway between the two walls) and 

increase steadily with a decrease in / ( )d d c+   (shorter distance to either wall). The 

coupling between the translation and rotation of the composite sphere parallel to the walls 

exhibits complex behavior that does not vary monotonically with changes in system 

parameters. The influence of the walls on translational motion is significantly stronger 
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than on rotational motion. When comparing particle motions parallel versus normal to the 

walls, the planar boundaries impose weaker hydrodynamic forces but stronger torques 

during parallel motions. 
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List of Symbols 

 

 a  the radius of hard core, m  

, ,n n nA B C  unknown constants in Eq. (13) and Eq. (14), 1 1nm s+ − , 3 1nm s+ − ,  

   2 1nm s+ −  

, ,n n nA B C    functions of position defined by Eq. (2.6) of Ganatos et al. [13], 

   nm− , 2nm− − , 1nm− −  

, ,n n nA B C    functions of position defined by Eq. (2.6) of Ganatos et al. [13], 

   nm− , 2nm− − , 1nm− −  

, ,n n nA B C    functions of position defined by Eq. (2.6) of Ganatos et al. [13], 

   nm− , 2nm− − , 1nm− −  

, ,n n nA B C    functions of position defined by Eqs. (A10)–(A12) in  

   Appendix A, 1nm− − , 3nm− − , 2nm− −  

* * *, ,n n nA B C  functions of position defined by Eq. (11) of Chen and Keh [14], 

   nm− , 2nm− − , 1nm− −  

** ** **, ,n n nA B C  functions of position defined by Eq. (11) of Chen and Keh [14], 

   nm− , 2nm− − , 1nm− −  

*** *** ***, ,n n nA B C  functions of position defined by Eq. (11) of Chen and Keh [14], 

   nm− , 2nm− − , 1nm− −  
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 b  the radius of the composite spherical particle, m  

, , , ( )n m j lB z  a function defined by Eq. (C5) of Ganatos et al. [13]. 

1 2 3 4
ˆ ˆ ˆ ˆ, , ,n n n nC C C C  unknown constants in Eq. (16) and Eq. (17), 2 1nm s− + − , 3 1nm s+ − , 

  5/2 1m s− , 5/2 1m s−  

 ,c d   the distances of the planar walls from the particle center, m  

1 2
ˆ ˆ,n nD D  unknown constants in Eq. (16), 3/2 1m s− , 3/2 1m s−  

, ,x y ze e e  the principal unit vectors in the Cartesian coordinates, -, -, - 

, ,r  e e e  the principal unit vectors in the spherical coordinates, -, -, - 

, FF   the force exerted by the fluid on the composite particle in the 

   presence of planar walls, N   

0, F0F             the force exerted by the fluid on the composite particle in an  

  unbounded fluid, N  

tF  the force coefficient defined by Eq. (19a), - 

,r tF T  the coupling coefficients defined by Eq. (19), - 

1 2,G G  constants defined by Eq. (3), -  

I  the unit tensor, - 

nI  the modified Bessel function of the first kind of order n, - 

 1J  the Bessel function of the first kind of order one, - 

nK  the modified Bessel function of the second kind of order n, - 



doi:10.6342/NTU202502370

36 

 

p  the fluid pressure outside the composite sphere, 
2N m−  

p̂  the fluid pressure within the porous surface layer, 
2N m−  

 
1

nP   the associated Legendre function of the first kind of order n and 

 degree 1, - 

 , ,r    spherical coordinates, m , -, - 

r  the position vector ( rr= e ), m 

 ,TT  the torque exerted by the fluid on the composite particle in the  

  presence of planar walls, N m  

 0,T0T   the torque exerted by the fluid on the composite particle in an

 unbounded fluid, N m  

rT   the torque coefficient defined by Eq. (19b), - 

,UU             the translational velocity of the composite particle, 1m s−  

v   the fluid velocity distribution outside the composite sphere, 1m s−  

v̂   the fluid velocity distribution within the porous surface layer,  

   1m s−  

, ,x y zv v v  x , y  and z  components of the external fluid velocity, 1m s−  

, ,rv v v   r ,   and   components of the external fluid velocity, 1m s−  

ˆ ˆ ˆ, ,rv v v   r ,   and   components of the internal fluid velocity, 1m s−  

V   a constant defined by Eq. (4), - 
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W   a constant defined by Eq. (4), - 

, ,x y z  Cartesian coordinates, m, m, m 

 Greek letters 

    cos= , - 

   the viscosity of the fluid, 
1 1kg m s− −    

 1−   the penetration length (square root of permeability) of fluid flow

 within the porous surface layer of the composite particle, m  

 , , z   circular cylindrical coordinates, m , -, m  

τ   the viscous stress tensor for the external flow, 
2N m−  

τ̂   the viscous stress tensor for the internal flow, 
2N m−  

,ΩΩ  the angular velocity of the composite particle, 1s−  

, ,n n n      functions of position defined by Eq. (C1) of Ganatos et al. [13], 

   nm− , 2nm− − , 1nm− −  

, ,n n n      functions of position defined by Eq. (C1) of Ganatos et al. [13], 

   nm− , 2nm− − , 1nm− −  

, ,n n n      functions of position defined by Eq. (C1) of Ganatos et al. [13], 

   nm− , 2nm− − , 1nm− −  
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Appendix A 

 

A.1. Some lengthy equations in Chapter 2 

By substituting Equations (12)–(17) into Equations (7) and (8), we obtain 

1 1 2 3/2

1 2 3 1/2 4 1/2

1

ˆ ˆ ˆ ˆ( 1) ( ){ [ ( ) ( )]} 0n n

n n n n n n n

n

n n P C a C a a C I a C K a  


− − − −

+ +

=

+ + + + = , (A1) 

1 2 3/2 1/2

1 2 3 1/2 1/2

1

ˆ ˆ ˆ{[ ( 1) { ( ) ( )}n n

n n n n n

n

C n a nC a C na I a a I a  


− − − − −

+ −

=

− + + + −  

1
3/2 1/2 2 1/2

4 1/2 1/2

d ( )ˆ { ( ) ( )}](1 )
d

n
n n n

P
C na K a a K a


   



− −

+ −+ + −  

1/2 2 1/2 1

1 1/2 2 1/2
ˆ ˆ[ ( ) ( )](1 ) ( )} 0n n n n na D I a D K a P   − −

+ ++ + − = , 

(A2) 

1 2 3/2 1/2

1 2 3 1/2 1/2

1

ˆ ˆ ˆ{[ ( 1) { ( ) ( )}n n

n n n n n

n

C n a nC a C na I a a I a  


− − − − −

+ −

=

− + + + −  

3/2 1/2 2 1/2 1

4 1/2 1/2
ˆ { ( ) ( )}](1 ) ( )n n n nC na K a a K a P    − − −

+ −+ + −  

1
1/2 2 1/2

1 1/2 2 1/2

d ( )ˆ ˆ[ ( ) ( )](1 ) } 0
d

n
n n n n

P
a D I a D K a


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

−

+ ++ + − = , 

(A3) 

2 1 1

1 2

1

ˆ ˆ{[ ] [( 1) ] ( )cos } 0n n

n n n n n n r b n n n

n

A A B B C C n C b nC b P  


− −  

=



=

 + + + + − = , (A4) 

* * * 1 2

1 2

1

ˆ ˆ{[ ] sec ( 1)[ n n

n n n n n n r b n n

n

A A B B C C n n C b C b


− − −

=

=

+ + − + +  

3/2 1 2 1/2

3 1/2 4 1/2
ˆ ˆ{ ( ) ( )}] ( )} (1 ) 0n n n n nb C I b C K b P U   −

+ ++ + − − = , 

(A5) 

** ** ** 1 2 1/2

1 2 3 1/2

1

ˆ ˆ ˆ{[ ] sec [ ( 1) { ( )n n

n n n n n n r b n n n n

n

A A B B C C C n b nC b C b I b  


− − − −

= −

=

+ + + + − +  

1
3/2 1/2 3/2 2 1/2

1/2 4 1/2 1/2

d ( )ˆ( )} { ( ) ( )}](1 )
d

n
n n n n

P
nb I b C b K b nb K b


    



− − −

+ − +− − + −  

1/2 2 1/2 1

1 1/2 2 1/2
ˆ ˆ[ ( ) ( )](1 ) ( )} 0n n n n nb D I b D K b P U Ωb    − −

+ +− + − − − = , 

(A6) 
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*** *** *** 1 2 1/2

1 2 3 1/2

1

ˆ ˆ ˆ{[ ] csc [ ( 1) { ( )n n

n n n n n n r b n n n n

n

A A B B C C C n b nC b C b I b  


− − − −

= −

=

+ + + + − +  

3/2 1/2 3/2 2 1/2 1

1/2 4 1/2 1/2
ˆ( )} { ( ) ( )}](1 ) ( )n n n n nnb I b C b K b nb K b P     − − − −

+ − +− − + −  

1
1/2 2 1/2

1 1/2 2 1/2

d ( )ˆ ˆ[ ( ) ( )](1 ) } 0
d

n
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

−
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** ** ** 2 3

1 2
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
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(A9) 

where the starred nA , nB , and nC  are functions of position defined by Equation (11) 

of Chen and Keh [14]. 

The tetra-primed nA , nB , and nC  in Equation (14) are functions of position that 

are defined by 

1 1 1
1 12 2

0

( )
( , , ) 2 (2 1) ( )cos cos [2 ( , ) ( )

( sinh )

n

n n n

J
A r n n r P X Y d


       

  



− − = − − −
−  

1 1 2 2 2 22 ( , ) ( ) ( , ) ( ) ( , ) ( )]dn n nX Y c X Y d X Y c       − + − − , 

(A10) 
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1
1 1,1,1,2 1 1,1,1,22 2
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( , , ) cos [2 ( , ) ( ) 2 ( , ) ( )
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n n n
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
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 
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n n n
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C r X B d X B c


        

  





= − − −
−  

2 2
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(A12) 

where ( )z d = + , ( )z c = − , ( )c d = + , 

1( , ) cosh cosh sinhX      = + , (A13) 

2 ( , ) sinh sinh sinhX      = − , (A14) 

1 1,1,1,2 ,1,1,2( ) ( 1)( 2) ( ) (2 1) ( )n n nY z n n B z n n zB z−= + − − − , (A15) 

2 2 2

2 1,0,0,1 1,2,2,1( ) ( 1)( 2) ( ) ( 2) ( )n n nY z n n n B z n z B z − −= + − + −  

    
2 2

,1,1,2 ,1,2,12 (2 1)[ ( ) ( )]n nn n B z z B z− − − , 

(A16) 

2

3 ,0,0,1 ,2,2,1( ) ( 1) ( ) ( )n n nY z n n B z z B z= + − , (A17) 

2

4 1,0,0,1 1,2,2,1( ) ( 1) ( ) ( )n n nY z n n B z z B z+ += + + , (A18) 

1J  is the Bessel function of the first kind of order one, and the function , , , ( )n m j lB z  is 

defined by Equation (C5) of Ganatos et al. [13]. 
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A.2. Schematic representation of the defined parameters 

To further clarify the meaning of the four dimensionless parameters ( b  , /b d  , 

/ ( )d d c+ , and /a b ) mentioned in Chapter 3, a supplementary diagram is provided in 

Figure A1. The diagram also illustrates the upper and lower limits of these parameters 

along with their corresponding geometric interpretations.   

 

 

Figure A1. Geometric interpretation of the four parameters ( b , /b d , / ( )d d c+ , and 

/a b ). 

 


