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Abstract

A semi-analytical investigation is conducted to examine the coupled translational
and rotational motions of a composite spherical particle (consisting of an impermeable
hard core surrounded by a permeable porous shell) immersed in a viscous fluid parallel
to one or two planar boundaries under the steady condition of a low Reynolds number.
The fluid flow is described using the Stokes equations outside the porous shell and the
Brinkman equation within it. A general solution is formulated by employing fundamental
solutions in both spherical and Cartesian coordinate systems. The boundary conditions on
the planar walls are implemented using the Fourier transform method, while those on the
inner and outer boundaries of the porous shell are applied via a collocation technique.
Numerical calculations yield hydrodynamic force and torque results with good
convergence across a broad range of physical parameters. For validation, the results
corresponding to an impermeable hard sphere parallel to one or two planar walls are
shown to be in close agreement with established solutions from the literature. The
hydrodynamic drag force and torque experienced by the composite particle increase
steadily with larger values of the ratio of the particle radius to the porous shell’s
permeation length, the ratio of the core radius to the total particle radius, and the
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separations between the particle and the walls. It has been observed that the influence of
the walls on translational motion is significantly stronger than that on rotational motion.
When comparing motions parallel versus normal to the walls, the planar boundaries
impose weaker hydrodynamic forces but stronger torques during parallel motions. The
coupling between the translation and rotation of the composite sphere parallel to the walls
exhibits complex behavior that does not vary monotonically with changes in system

parameters.

Keywords: composite particle; porous sphere; drag force and torque; creeping flow;

boundary effect in slit
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Chapter 1

Introduction

The motion of small particles in viscous fluids, including their translation and
rotation at low Reynolds numbers, continues to attract significant attention from
researchers in various scientific, technological, and engineering domains. These
fundamental processes provide a deep understanding of many practical systems, such as
sedimentation, centrifugation, coagulation, filtration, aerosol technologies, suspension
rheology, microfluidics, electrophoresis, and other phoretic movements. Stokes was the
first to analyze the creeping motions of a hard, impermeable sphere in an unbounded
Newtonian fluid [1,2], and these works were later expanded to cover the translation and
rotation of a composite sphere [3,4].

A composite sphere, with a radius b, consists of a hard sphere core of radius a,
which is surrounded by a permeable porous layer of thickness b—a. Typical examples
of composite particles include biological cells with rough surface structures, ranging from
micrometer-sized cilia to nanometer-sized protein molecules [5], as well as polystyrene
latex particles with a porous surface extending into the surrounding fluid [6]. Colloidal
suspension particles can be sterically stabilized against aggregation by purposely

adsorbing polymers and forming porous surface layers [7].

1
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When a composite particle of radius b, with a hard core of radius a, translates
with velocity U and rotates with angular velocity € in an unbounded fluid of

viscosity 77, the hydrodynamic force and torque acting on the particle are [3,4]

F, = -6nnA {W Aacosh la—31°a*(V + Aasinh 1a) +[(1aV — Abcosh 1a)W
+31%a’bsinh 2a]G, +[W cosh A1a +34%a’(AaV —sinh 1a)]G,} (1)
x{(Aasinh Ab—cosh Aa)[(W +31b)G, +3(1%a’ -1)G, —64a]} ‘U,

3 3(G,+1aG,)
A% Ab(G, +aG))

T, =-8nnb’[1+ 12, ()

where
G, =cosh(Ab—4a), G, =sinh(1b-1a), 3)
V =bsinhAb—cosh ib, W =22%%+1%a®*+31a, 4)

and A7 is the square root of the fluid permeability or flow penetration length within the
porous surface layer of the particle. The drag force and torque exerted on the particle are
proportional to the translational and angular velocities, respectively. Note that the
translation and rotation are uncoupled in the case of an unconfined composite sphere; i.e.,
F, and T, are independent of Q and U, respectively. In the limiting cases where
a=b and a=0, Equations (1) and (2) reduce to the Stokes results (F, =—6n7bU and
T, =-8nnb’Q ) for a hard sphere and equivalent results for a completely porous
(permeable) sphere [4,8], respectively, of radius b . In the limits Ab=0 and Ab— oo,

these equations simplify to the Stokes results for a hard sphere with radii a and b,

2
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respectively. Note that (Ab)™ is known as the Darcy number.

In real-world scenarios, particles are not isolated, and the surrounding fluid is
constrained by solid boundaries [9-11]. Therefore, it is crucial to determine whether the
proximity of a boundary significantly influences the motion of the particles. Past research
has extensively analyzed the low-Reynolds-number translation and rotation of a hard
sphere near various types of boundaries [12-21]. Additionally, studies have also
investigated the slow translation and rotation of a composite sphere inside a concentric
[4,22,23] or non-concentric [24-26] spherical cavity, within a circular cylinder [27], and
perpendicular to one or two planar walls [28,29]. These studies demonstrate that boundary
effects on the motion of both hard and composite particles can be significant and
intriguing.

In practical applications, we often encounter translations and rotations of a
composite sphere near one or two planar walls but not perpendicular to the walls. The aim
of this thesis is to derive a semi-analytical solution for the slow translation and rotation
of a composite sphere parallel to one or two planar walls. These parallel motions present
more complex challenges because they break the azimuthal symmetry, causing the
translation and rotation to become coupled. By combining analytical and numerical
techniques, the Stokes and Brinkman equations governing the external and internal fluid

flows, respectively, with respect to the porous layer are solved using a boundary

3
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collocation approach. The wall-corrected drag force and torque exerted by the fluid on

the composite particle are then determined, with the solutions showing good convergence.

Since the problem of slow translation and rotation of a composite sphere in arbitrary

directions near one or two large planar walls is linear, the solutions can be obtained by

superimposing the solutions to two subproblems: motions normal to the planar walls,

which have been previously studied [28,29], and motions parallel to the planar walls,

which are addressed in this thesis.
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Chapter 2

Analysis

As shown in Figure 1, we consider the steady motion of a viscous fluid caused by a
composite particle of radius b, consisting of a hard sphere core of radius a and a
porous surface layer of thickness b—a, translating with velocity U =Ue, and rotating
with angular velocity Q= Qe parallel to two large stationary planar walls (both normal
to e,)atdistances ¢ and d from the center of the composite sphere. Here, (X,Y,2),
(0,4,2), and (r,0,¢) represent the Cartesian, cylindrical, and spherical coordinate

systems, respectively, originating from the particle center, €y, e ,, and €, are the

yo
principal unit vectors in the Cartesian coordinates, and €, €,,and e, are the principal
unit vectors in the spherical coordinates. We set d <c throughout the article without
loss of generality. The fluid is at rest away from the composite sphere and on the nonslip
planar walls. Our aim is to determine the modification of Equations (1) and (2) for the

translational and rotational motions of a composite sphere due to the presence of the

planar walls.
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Figure 1. Schematic illustration of the translation and rotation of a composite sphere

parallel to two plane walls at an arbitrary position between them.
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2.1. Governing equations and boundary conditions

For the creeping flow of an incompressible Newtonian fluid, the fluid velocity, V,

and pressure, P, outside the composite sphere are governed by the Stokes equations, as
follows:
nVev-Vp=0, V.v=0 (r>b), (5)
where 77 is the fluid viscosity. Within the porous surface layer, the Brinkman and
continuity equations,
VN -Vp-nA*(V-U-Qxr)=0, V.-0=0 (as<r<b), (6)
are used to govern the fluid velocity, ¥, and pressure, f, where the effective viscosity
of the fluid is assumed to equal the viscosity of the bulk fluid [3,28,30], A% is the
reciprocal of permeability, and r =re€, is the position vector.

The boundary conditions for the external and internal fluid flows are

r=a: U=U+aQxe,, (7
r=b: v=9, (82)
e -(t—pl)=e -(z-PI), (8b)
Z=cC,—d: v=0, (©)
p—>0: v=0, (10)

where T and T are viscous stress tensors for the external and internal flows,

respectively, and | is the unit tensor. It can be shown that the boundary condition in

doi:10.6342/NTU202502370



Equation (8b), which represents the continuity of the total stress on the outer surface of

the porous layer, is equivalent to

avgzaoel %_a@, (1)

r=b: =p, =2
P=P or or or or

where (v,,V,) and (v,,V,) are @ and ¢ components of the relevant fluid velocities,

respectively.
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2.2. Solution for the fluid velocity and pressure

A general solution of the external fluid velocity that satisfies Equations (5), (9), and

(10) is
V=Vyey +Vyey +V,€,, (12)
where
o0
Vi = Y [Aq (AL +af) +Bn(Bh + Bh) +Cn (Ch +7h)], (13a)
n=1
o0
Vy = > [An (A7 +af) +Bn (Bf + B) +Cn (CH + 7], (13b)
n=1
v, = Z[Aw( "+a)+B,(B+ ") +C. (C"+yM], (13c)
=1

the primed A,, By, C,, @, B, and yp are functions of position defined by
Equations (2.6) and (C1) of Ganatos et al. [13], and A,, B, and Cj are unknown
constants. The corresponding solution for the fluid pressure can be obtained by

integrating Equation (5a) with the following result:

p=n>[AA +BB +CC,/ 1, (14)
n=1

e

where A", B, and C. are functions of position, which are lengthy and defined by
Equations (A10)—(A12) in Appendix A. All numerical integrations used to evaluate the
primed A,, B, C,, a,, fn, and ), functions are performed using the Gauss—

Laguerre quadrature method.

doi:10.6342/NTU202502370



The general solution of the internal fluid velocity satisfying Equation (6) can be

obtained as

V=Ve +Ve,+Ve,, (15)
where
U, =D n(n+D)P (uCor™ +Cor P+ [Cy, 1y, (AN) +C K Ly, (DT}
n=1 (16a)
+U (- 1°)"*]cos ¢,
U, =D {[-C,(n+Dr"* +nC,,r "2 + Co fnr 21, ., (Ar) = Ar Y1, (Ar)}
n=1
1
G ANFOK Ly (A1) 4 AP V2K (A FA— )2 W (16b)
y7;
+r—1/2[61n I n+1/2 (ﬂ’r) + [SZn Kn+1/2 (ir)](l_ luz)_llz I:)nl (:u)}+U /,l + ‘Qr] COS¢'
U, =D {-C, (n+)r"™ +nC, r "2+ C, {nr 21, (A1) = Ar 21, (Ar)}
=1
+é4n{nr73/2 Kn+JJ2 (ﬂ“r) + ﬁ“rillz Kn—1/2 (ﬁ“r)}] (1_ qu)*l/Z I:>nl (‘U) (16c)

o oy oy dPl -
B, (A0 + By Ky, (DI 1) #}—u _orulsing,

u=cos@, |, and K, are the modified Bessel function of the first and second kinds of

order n, respectively, P, is the associated Legendre function of order 7 and degree one,

A A

A

and C, , ézn , égn , é4n , Dy, , and D,, are unknown constants. Similar to the

derivation of the external fluid pressure, the integration of Equation (6a) yields the

internal fluid pressure as follows:

p=-n27cosg [(N+1)C,r" —nC,,r "'IP! (1) . (17)
n=1

10
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The boundary conditions that still need to be satisfied are the conditions of the inner
and outer surfaces of the porous layer of the composite sphere. By substituting Equations

(12)—(17) into Equations (7) and (8), we obtain simultaneous linear algebraic Equations

(A1)—(A9), which are lengthy, in Appendix A. The unknown constants A,, B,, C,,

A

C ém , éSH , é4n , D,,and [SZH will be determined using these lengthy equations.

In >
A careful inspection of Equations (A1)—(A9) shows that the solution to the resulting

unknown constant matrix is independent of the coordinate, ¢, of the boundary points on
spheres '=a and r =b. If the infinite series in Equations (13), (14), (16), and (17) are
truncated after N terms and then the truncated form of Equations (A1)—(A9) are satisfied
at N discrete points on the half-circular generating arc of each spherical surface (from

0=0 to 6=m), the resulting system of 9N simultaneous linear algebraic equations can

A

be solved numerically to yield the 9N unknown constants, A,, B, Cp, C éZn , C,,

1n

A A

D, ,and D

c > that appear in the truncated form of Equations (13), (14), (16), and

4n > 2n>

(17). The accuracy of the fluid velocity and pressure solutions obtained using this
boundary collocation method can reach the required level as long as the N value is large

enough.

11
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2.3. Hydrodynamic force and torque on the composite particle

The drag force, F=Fe,,and torque, T=Te, , exerted on the composite sphere by

the fluid can be determined using [13]

F=-8nnA, (18a)
T =-8nyC, (18b)

in which only the unknown constants, A and C,, are needed. When b/d =0, the
planar walls are away from the composite sphere, and Equation (18a,b) for F and T
become Equations (1) and (2) for F; and T, of an isolated particle, respectively.

The force, F ,andtorque, T, can also be related to the migration velocity, U , and

angular velocity, €, of the confined particle using

F
F= UO(FtU +FbQ), (192)
T =10 (TU +ThQ) (19b)
- bQ t r ’

where F,, F., T,, and T, are the dimensionless resistance coefficients. According to
the cross-effect theory of the force and torque on a spherical particle near boundaries, the

coupling coefficients, F, and T, are related using [12]

F/U
T =_20 E. 20
! ToleQ ' 20)

Therefore, only the solutions of the three coefficients, F,, T, and F,, need to be

presented.

12
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Chapter 3

Results and Discussion

The boundary collocation solutions of the force, torque, and coupling coefficients,
F., T.,and F,, respectively, in Equation (19) for the slow translation and rotation of a
composite sphere parallel to two planar walls (convergent to the significant figures as
given) for various values of the particle-wall spacing parameter, b/d , relative particle
position parameter, d/(d+cC), core-to-particle radius ratio, a/b, and ratio of the
particle radius to the porous layer permeation length, Ab, are presented in Tables 1-3 for
the special case of a porous sphere (2=0) and in Table 4 for the general case of a
composite sphere. The geometric meanings of the aforementioned four parameters are
depicted in Figure Al. Within the limit of Ab—>o (the porous surface layer is
impermeable), our numerical results are in good agreement with the corresponding
collocation solutions obtained previously [14] for the translation and rotation of a hard
sphere of radius, b, parallel to two planar walls. The wall effects on the translation and
rotation of the composite particle can be significant. Note that the value of d/(d +c)

that is equal to 0 and 1/2 represents the cases of a particle translating and rotating parallel

13
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to a single planar wall and to two equally distant planar walls, respectively. Consistent
with Equations (1) and (2), F, =T, =0 (no coupling between translation and rotation of
the composite sphere) and F, =T, =1 at b/d =0 (i.e., for an unconfined composite
sphere) for any values of Ab and a/b.Both F, and T, are greater than unity as long
as b/d is finite (greater than zero) due to the hydrodynamic hindrance to the particle
motions produced by the planar walls. Interestingly, the coupling coefficient, F,, can be
positive or negative depending on the values of the dimensionless parameters, b/d,
d/(d+c), a/b,and Ab, as shown in Tables 3 and 4. This feature also appears in the
translation and rotation of a hard sphere parallel to two planar walls [14]. Evidently,
F. =T,=0 for the symmetric case of d/(d+c)=1/2 (two equally distant planar

walls).

14
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Table 1. Force coefficient, F,, for the translation of a porous sphere parallel to two

planar walls at various values of d/(d+c), b/d,and Ab.

d/(d+c) b/d i

Jb=1 Jb=10  Ab=100 =300  Ab— oo

0.1 1.0100 1.0525 1.0588 1.0593 1.0595

0.2 1.0200 1.1103 1.1244 1.1254 1.1259

0.3 1.0302 1.1740 1.1979 1.1995 1.2003

0.4 1.0403 1.2448 1.2810 1.2835 1.2847

0.5 1.0503 1.3243 1.3773 1.3810 1.3828

0 0.6 1.0602 1.4154 1.4926 1.4980 1.5006
0.7 1.0700 1.5225 1.6380 1.6463 1.6503

0.8 1.0797 1.6531 1.8381 1.8522 1.8591

0.9 1.0893 1.8219 2.1672 2.1995 2.2152

0.99 1.0980 2.0377 2.9709 3.2285 3.3975
0.999 1.0988 2.0656 3.2048 3.6843 4.1929
0.1 1.0116 1.0614 1.0689 1.0694 1.0697
0.2 1.0233 1.1302 1.1471 1.1483 1.1489
0.3 1.0352 1.2071 1.2361 1.2381 1.2391
0.4 1.0470 1.2936 1.3382 1.3412 1.3427
0.5 1.0588 1.3916 1.4568 1.4613 1.4635
0.25 0.6 1.0704 1.5039 1.5983 1.6048 1.6080
0.7 1.0818 1.6351 1.7738 1.7836 1.7884
0.8 1.0931 1.7927 2.0082 2.0243 2.0322
0.9 1.1042 1.9912 2.3759 2.4109 2.4279
0.99 1.1142 2.2359 3.2183 3.4792 3.6724
0.999 1.1152 2.2668 3.4570 3.9392 4.4494
0.1 1.0179 1.0975 1.1099 1.1107 1.1111
0.2 1.0362 1.2134 1.2432 1.2452 1.2462
0.3 1.0545 1.3504 1.4041 1.4078 1.4096
0.4 1.0727 1.5114 1.5980 1.6039 1.6068
0.5 1.0904 1.7002 1.8324 1.8413 1.8458
0.5 0.6 1.1074 1.9222 2.1194 2.1329 2.1395
0.7 1.1236 2.1854 2.4818 2.5024 2.5124
0.8 1.1387 2.5033 2.9690 3.0029 3.0194
0.9 1.1530 2.9019 3.7294 3.8019 3.8369
0.99 1.1652 3.3877 5.4403 5.9675 6.2597
0.999 1.1664 3.4488 5.9201 6.8900 7.6253

15
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Table 2. Torque coefficient, T,, for the rotation of a porous sphere parallel to two planar

walls at various values of d/(d+c), b/d,and Ab.

d/@d+c) bid I

Ab=1 Ab=10 Ab =100 Ab =300 Ab >

0.1 1.0000 1.0002 1.0003 1.0003 1.0003

0.2 1.0002 1.0018 1.0024 1.0025 1.0025

0.3 1.0005 1.0062 1.0083 1.0085 1.0086

0.4 1.0012 1.0149 1.0200 1.0205 1.0207

0.5 1.0024 1.0299 1.0405 1.0413 1.0418

0 0.6 1.0041 1.0536 1.0737 1.0754 1.0763
0.7 1.0066 1.0899 1.1274 1.1307 1.1324

0.8 1.0099 1.1457 1.2182 1.2249 1.2283

0.9 1.0142 1.2352 1.3980 14161 1.4253

0.99 1.0190 1.3768 1.9369 2.1072 2.2233
0.999 1.0195 1.3974 2.1150 2.4519 2.8341
0.1 1.0000 1.0002 1.0003 1.0003 1.0003
0.2 1.0002 1.0019 1.0025 1.0026 1.0026
0.3 1.0005 1.0065 1.0086 1.0088 1.0089
0.4 1.0013 1.0155 1.0208 1.0213 1.0215

0.5 1.0025 1.0310 1.0420 1.0429 1.0433
0.25 0.6 1.0043 1.0555 1.0763 1.0781 1.0789
0.7 1.0068 1.0929 1.1314 1.1348 1.1365
0.8 1.0103 1.1502 1.2241 1.2309 1.2344
0.9 1.0147 1.2415 1.4062 1.4244 1.4337

0.99 1.0197 1.3850 1.9476 2.1182 2.2463
0.999 1.0203 1.4057 2.1262 2.4631 2.8455
0.1 1.0000 1.0004 1.0005 1.0005 1.0005
0.2 1.0003 1.0031 1.0042 1.0043 1.0043
0.3 1.0009 1.0107 1.0143 1.0146 1.0147
0.4 1.0021 1.0258 1.0347 1.0354 1.0358
0.5 1.0041 1.0519 1.0707 1.0722 1.0730
0.5 0.6 1.0071 1.0940 1.1304 1.1335 1.1351
0.7 1.0113 1.1598 1.2289 1.2350 1.2381
0.8 1.0170 1.2629 1.3996 1.4123 1.4188
0.9 1.0243 1.4318 1.7463 1.7815 1.7994
0.99 1.0327 1.7046 2.8108 3.1503 3.3477
0.999 1.0336 1.7446 3.1658 3.8382 4.3955
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Table 3. Coupling coefficient, F. =T,(T,/b’Q)/(F,/U), for the translation and rotation

of a porous sphere parallel to two planar walls at various values of d/(d+c), b/d,and

Ab.
=
d/(d+c) b/d ’
Ab=1 Ab=10 Ab =100 Ab =300 Ab —
01 -47x107 -74x10° -1.1x10° -12x10° -1.2x10°
02 -75x10° -12x10* -18x10* -1.8x10* -1.8x10*
03 -38x10° -57x10* -8.6x10* -89x10* -9.0x10*
04 -12x10* -0.0018 -0.0026 -0.0027 -0.0028
0.5 -3.0x10* -0.0044 -0.0064 -0.0066 -0.0067
0 06 -63x10* -0.0094 -0.0134 -0.0138 -0.0141
0.7 -0.0012 -0.0186 -0.0261 -0.0270 -0.0275
0.8 -0.0020 -0.0359 -0.0499 -0.0517 -0.0527
0.9 -0.0033 -0.0722 -0.1027 -0.1067 -0.1095
0.99 -0.0049 -0.1526 -0.3486 -0.3640 -0.3852
0999  -0.0051 -0.1665 -0.4881 -0.6124 -0.8240
0.1 20x10° 25x10* 33x10* 34x10* 34x10*
0.2 76x10°  9.9x10* 0.0013 0.0013 0.0013
0.3 1.5 x10* 0.0020 0.0027 0.0027 0.0028
0.4 22 x10* 0.0031 0.0040 0.0041 0.0041
0.5 2.3 x10* 0.0036 0.0045 0.0045 0.0046
0.25 0.6 1.4x10* 0.0026 0.0029 0.0028 0.0028
0.7 -12x10* -0.0018 -0.0031 -0.0035 -0.0037
08 -6.6x10* -0.0134 -0.0190 -0.0201 -0.0209
0.9 -0.0016 -0.0431 -0.0627 -0.0658 -0.0681
0.99 -0.0028 -0.1169 -0.2994 -0.3136 -0.3121
0.999  -0.0030 -0.1301 -0.4384 -0.5610 -0.7720
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Table 4. Resistance coefficients for the translation and rotation of a composite sphere

where Ab = 1 parallel to two planar walls, with different values of d/(d + ¢), b/d, and

a/b.

a/b=0.8 a/b = 0.95
d/(d+c) b/d F, / T, E F, / T, F

0.1 1.0472 1.0002 -4.0x10° 1.0564 1.0003 -9.3x10°
0.2 1.0987 1.0013 -6.3x10"°> 1.1189 1.0022 -1.4x10*
0.3 1.1551 1.0044 -3.1x10* 1.1885 1.0073 -7.0x10*

0.4 1.2170 1.0105 -95x10* 1.2669 1.0176  -0.0022

0.5 1.2857 1.0209 -0.0023  1.3567 1.0355  -0.0052

0 0.6 1.3632 1.0371  -0.0046  1.4627 1.0642  -0.0108

0.7 1.4523 1.0612 -0.0087  1.5932 1.1095  -0.0208

0.8 1.5581 1.0966 -0.0152  1.7655 1.1831  -0.0385

0.9 1.6893 1.1493  -0.0257  2.0243 1.3154 -0.0734

0.99 1.8435 1.2215 -0.0413  2.4836 1.5924  -0.1525

0.999 1.8617 1.2307 -0.0434 2.5641 1.6447 -0.1681
0.1 1.0552 1.0002 1.8x10* 1.0660 1.0003 2.9x10*

0.2 1.1163 1.0013 7.1 x10* 1.1405 1.0022 0.0012

0.3 1.1841 1.0046 0.0015 1.2248 1.0076 0.0024

0.4 1.2595 1.0109 0.0025 1.3208 1.0183 0.0037

0.5 1.3439 1.0217 0.0033 1.4314 1.0368 0.0044

0.25 0.6 1.4394 1.0384 0.0037 1.5616 1.0665 0.0035
0.7 1.5490 1.0633 0.0030 1.7200 1.1131 -6.4x10*

0.8 1.6778 1.0998 0.0006 1.9241 1.1883  -0.0115

0.9 1.8346 1.1538  -0.0053  2.2186 1.3227  -0.0383

0.99 2.0144 1.2274 -0.0161 2.7136 1.6019  -0.1093

0.999 2.0353 1.2367 -0.0177  2.7979 1.6545 -0.1239
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3.1. Resistance coefficients for a porous particle

The resistance coefficients, F,, T,, and F,, for the translation and rotation of a
porous sphere (@=0) parallel to one or two planar walls are plotted against the
parameters Ab, b/d,and d/(d+c) overthe entire range in Figures 2—4, respectively.
Similar to the circumstances of the translation and rotation of a porous sphere normal to
one or two planar walls [28,29], for fixed values of the parameters d/(d+c) and Ab,
Figures 3 and 4 and Tables 1 and 2 show that the normalized hydrodynamic drag force
and torque that act on the porous particle that translates and rotates parallel to one or two
planar walls (or F, and T, , respectively) are monotonic increasing functions of the
particle-wall spacing parameter, b/d , from zero to unity (note that F, and T, arestill
finite even if the particle touches the planar walls). For the given values of b/d and
Ab, the drag force and torque increase with an increase in d/(d+c) from zero (the
case of a particle translating and rotating parallel to a single planar wall) to 1/2, as shown
in Figures 2 and 4. That is, the approach of a second planar wall will enhance the
hydrodynamic force and torque exerted on the particle near the first wall. For a fixed
value of 2b/(c+d) (ratio of particle diameter to wall distance), F, and T are
minimal (the particle experiences minimum drag force and torque) when the particle is
halfway between the two walls [d/(d +¢)=1/2] and increases monotonically as the

particle approaches either wall, as shown by the dashed lines in Figure 4.

19

doi:10.6342/NTU202502370



10" 10° 10" 10? 10°
Ab
(@
1.8 : . . T T
0.5
0.00
d/(d+e)=05
16 -0.02}
0.3
_ 4
ria 004t 0
0.3

-0.06 |
1.2

-0.08 |

d/(d+c)=0
1o -0.10
107 10° 10" 102 10° 107" 10° 10 10? 10°
Ab
(b) (c)

Figure 2. Resistance coefficients for the motions of a porous sphere (8 =0) parallel to

two planar walls versus the shielding parameter, Ab, with b/d=0.9 and various

values of d/(d+c):(a) F;(b) T,;(c) F,.
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Figure 3. Resistance coefficients for the motions of a porous sphere (8 =0) parallel to
two planar walls versus the spacing parameter, b/d , with d/(d +c)=0.25 and various

value of Ab:(a) F;(b) T.;(c) F,.
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Figure 4. Resistance coefficients for the motions of a porous sphere (a=0) parallel to

two planar walls versus the relative particle position parameter, d/(d +c),with Ab=10

and various values of b/d and 2b/(d +c): (a) F,;(b) T.;(c) F,.
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As demonstrated in Figures 2 and 3, the force and torque coefficients, F, and T,
for the translation and rotation of a porous sphere increase monotonically with an
increasing ratio of particle radius to permeation length, Ab, from unityat Ab =0 (with
Fo=F=0 and T,=T =0) for given values of b/d and d/(d+c). On the other
hand, as revealed in Figures 3 and 4 and Table 3, the coupling coefficient, F,, is not
necessarily a monotonic function of the parameters b/d, d/(d+c), and Ab [there
may be extrema at moderate values of b/d, d/(d+c), and Ab], fixing the other
parameters. When Ab is smaller than unity, the variations of all the resistance
coefficients, F,, T,, and F,, with b/d and d/(d+c) are weak. In general, these
resistance coefficients for a porous sphere with Ab>100 is sufficiently close to those of
a hard sphere (with Ab— ). A comparison of Figures 24 and Tables 1 and 2 shows
that the boundary effects of the planar walls on the translation of the particle are much

more conspicuous than those on the rotation.
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3.2 Resistance coefficients for a composite particle

The force, torque, and coupling coefficients, F,, T ,and F,, forthe translation and
rotation of a general composite spherical particle parallel to one or two planar walls are
plotted in Figures 5-7 for various values of the core-to-particle radius ratio, a/b,
particle-wall spacing parameter, b/d, relative particle position parameter, d/(d+c),
and ratio of particle radius to porous layer permeation length, Ab.Similarly, F, and T,
increase monotonically with increases in b/d, Ab, and d/(d+c), fixing the other
parameters. For a fixed value of 2b/(c+d), F and T, are minimal at
d/(d+c)=1/2 and increase monotonically with a decrease in d/(d+c) . The
coupling coefficient, F,, is not necessarily a monotonic function of b/d, Ab, and
d/(d +c), keeping other parameters unchanged. The boundary effects of the planar walls
on the translation of the composite particle are much more noticeable than the effects on

the rotation.
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Figure 5. Resistance coefficients for the motions of a composite sphere parallel to two
planar walls versus the core-to-particle radius ratio, a/b, with b/d =0.9 and various
values of Ab: (a) F,; (b) T,; (¢) F.. The solid and dashed curves denote cases of

d/(d+c)=0.25 and d/(d+c)=0, respectively.
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Figure 6. Resistance coefficients for the motions of a composite sphere parallel to two
planar walls versus the spacing parameter, b/d , with d/(d+c)=0 and various values

of alb:(a) F;(b) T.;(c) F,.Thesolidand dashed curves denote cases of Ab=1 and

Ab =5, respectively.

26

doi:10.6342/NTU202502370



40

35

' 1
1
. : 1
\ . -0.10 !
12+ 08§ \ > ] 4‘
T <
N ‘\‘ h\

~ '
- = !
A

0.5 S - <
1.0 e o s _
bid=02 170.999 26/ (d+c)=02
1 L 1 1 -0.15 1 L 1 |
0.0 0.1 02 0.3 0.4 05 0.0 0.1 02 03 04 05
d/(d+c) d/(d+c)
(b) (c)

Figure 7. Resistance coefficients for the motions of a composite sphere parallel to two
planar walls versus the relative position parameter, d/(d+c) , with Ab=10,

a/b=0.9, and various values of b/d and 2b/(d+c): (a) F,;(b) T,;(c) F,.
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For specified values of b/d, Ab, and d/(d+c), Table 4 and Figures 5-7

demonstrate that the force and torque coefficients, F, and T, of a composite sphere that

translates and rotates parallel to one or two planar walls monotonically increase with an

increase in the radius ratio, a/b (a decrease in the relative thickness of the porous layer),

where the limits a/b=1 and a/b=0 denote a hard sphere and an entirely porous

sphere, respectively. All hydrodynamic force and torque results for a general composite

sphere fall between the lower and upper limits of a/b=0 and a/b=1, respectively.

On the other hand, the coupling coefficient, F,, is not necessarily a monotonic function

of a/b for fixed values of b/d, Ab, and d/(d+c). When the porous layer of the

composite particle has small to moderate permeability (say, Ab>10), as shown in Figure

5, the values of all the resistance coefficients, F,, T,,and F,, of the composite particle

with a/b<0.8 canbe well approximated using the values of a fully porous particle with

the same b/d, Ab,and d/(d+c). Namely, the hard core of the composite sphere can

hardly feel the relative fluid motion and only exerts negligible hydrodynamic resistance.

However, this approximation does not apply to highly permeable porous layers.

Since the governing equations of the general problem for a composite sphere

translating and rotating in arbitrary directions near one or two planar walls are linear, its

solution can be determined by the superposition of the solutions to its two subproblems:

motions parallel to the planar walls, which are examined in this thesis, and motions
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normal to the planar walls. The collocation solutions for the translation and rotation of a

composite sphere normal to the planar walls were previously obtained [28,29], and it was

found that the wall-corrected normalized drag force and torque acting on the particle also

increase with increases in b/d, Ab, d/(d+c), and a/b. Interestingly, comparisons

between those results and our solutions indicate that the planar walls exert much more

force but less torque on the particle when its translational and rotational motions occur

normal to them than when its motions occur parallel to them. Therefore, the directions of

translation and rotation of a composite sphere near one or two planar walls are different

from those of the imposed force and torque, respectively, except when the directions are

parallel or normal to the walls. The concepts discussed above are summarized in the

schematic diagram shown in Figure 8.
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Figure 8. Summary of the key concepts for the translation and rotation a composite sphere

in arbitrary directions and at an arbitrary position between two planar walls.

In Tables 14 and Figures 2—7, we present detailed results pertaining to the resistance

problem, which involves evaluating the hydrodynamic force,

F, and torque, T,

experienced by a composite sphere undergoing prescribed translational and angular

velocities, U and Q, respectively, parallel to one or two planar walls under steady

conditions. In contrast, the mobility problem entails determining the resulting particle

velocities, U and Q, when known external force, F, and torque, T, are applied to

the composite sphere. For the specific case of the slow translation and rotation of the
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composite sphere considered in this thesis, the analytical formulations provided in

Equation (19) are equally applicable to the corresponding mobility problem. In particular,

for configurations involving free rotational motion parallel to one or two planar walls

driven solely by an external force, F, the resulting translational and angular velocities

of the composite sphere can be directly obtained via Equation (19), with the following

result:
F T
=-— (FR-F )7,
F,/U R rTr) (21a)
UT.
Q=-—-,
b T (21b)

where the resistance coefficients are presented in the aforementioned tables and figures,

and the term F;/U that appears on the right-hand side of Equation (21a) can be

evaluated using Equation (1).
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Chapter 4

Conclusions

The low-Reynolds number-coupled translational and rotational motions of a
composite spherical particle (hard core with porous surface layer) in a viscous fluid
parallel to one or two planar walls are investigated semi-analytically using a method of
boundary collocation. When the core-to-particle radius ratio, a/b, ratio of particle
radius to porous layer permeation length, AD, particle-wall spacing parameter, b/d ,
and relative particle position parameter, d/(d +c), take arbitrary values, convergent
numerical results of the hydrodynamic force and torque acting on the particle are obtained.
The normalized drag force and torque increase monotonically with increases in a/b,
b/d, Ab,and d/(d+c), keeping other parameters unchanged. For a fixed value of the
ratio of particle diameter to wall-to-wall distance, 2b/(c+d), these force and torque are
minimal at d/(d+c)=1/2 (as the particle is midway between the two walls) and
increase steadily with a decrease in d/(d +c) (shorter distance to either wall). The
coupling between the translation and rotation of the composite sphere parallel to the walls
exhibits complex behavior that does not vary monotonically with changes in system

parameters. The influence of the walls on translational motion is significantly stronger
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than on rotational motion. When comparing particle motions parallel versus normal to the

walls, the planar boundaries impose weaker hydrodynamic forces but stronger torques

during parallel motions.

33

doi:10.6342/NTU202502370



AW’BI']’CH

A.B,.C,

A;I, Br!]!’ CrV]!

A:II Bm C "
n

y M

e e 2z
A’I ’Bn ’Cn

AﬂBn’Cn

*k *k

An ’Bn ’Cn

dohk L hkk e Ak

List of Symbols

the radius of hard core, m

unknown constants in Eq. (13) and Eq. (14), m™™*.s™, m™3.s?,

functions of position defined by Egs. (A10)~(A12) in

Appendix A, m™*, m™"3, m"?

functions of position defined by Eq. (11) of Chen and Keh [14],
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In?' =2n
X1¥yr¥z

€,.€,.8,

F.F

F

0'" 0

F.T,

re

G,G,

the radius of the composite spherical particle, m

a function defined by Eq. (C5) of Ganatos et al. [13].

unknown constants in Eq. (16) and Eq. (17), m™?.s™", m

1 n+3 -1

S,

the distances of the planar walls from the particle center, m

unknown constants in Eq. (16), m*?-s

-1

b

m

the principal unit vectors in the Cartesian coordinates, -, -, -

the principal unit vectors in the spherical coordinates, -, -, -

the force exerted by the fluid on the composite particle in the

presence of planar walls, N

the force exerted by the fluid on the composite particle in an

unbounded fluid, N

the force coefficient defined by Eq. (19a), -

the coupling coefficients defined by Eq. (19), -

constants defined by Eq. (3), -

the unit tensor, -

the modified Bessel function of the first kind of order n, -

the Bessel function of the first kind of order one, -

the modified Bessel function of the second kind of order n, -
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r,o,¢

T,T

T,, T,

uu

<]

the fluid pressure outside the composite sphere, N: m™

the fluid pressure within the porous surface layer, N- m™

the associated Legendre function of the first kind of order n and
degree 1, -

spherical coordinates, m, -, -

the position vector (=€, ), m

the torque exerted by the fluid on the composite particle in the
presence of planar walls, N-m

the torque exerted by the fluid on the composite particle in an
unbounded fluid, N-m

the torque coefficient defined by Eq. (19b), -

the translational velocity of the composite particle, m-s™

the fluid velocity distribution outside the composite sphere, m st
the fluid velocity distribution within the porous surface layer,
m-s™

X, y and z components of the external fluid velocity, m-s™

r, & and ¢ components of the external fluid velocity, m-s™

r, @ and ¢ components of the internal fluid velocity, m-s™

a constant defined by Eq. (4), -
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a constant defined by Eq. (4), -

Cartesian coordinates, m, m, m

=C0s4, -
the viscosity of the fluid, kg-m™.s™
the penetration length (square root of permeability) of fluid flow

within the porous surface layer of the composite particle, m

circular cylindrical coordinates, m,-, m

the viscous stress tensor for the external flow, N- m™

the viscous stress tensor for the internal flow, N- m™

the angular velocity of the composite particle, s

functions of position defined by Eq. (C1) of Ganatos et al. [13],
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Appendix A

A.1. Some lengthy equations in Chapter 2
By substituting Equations (12)—(17) into Equations (7) and (8), we obtain

> n(n+DP(uACa" +Cya " +a 2 [Cy, .y (A8) +C, K,y (A)F=0, (A1)

n=1

> {[-C,(n+Da" +nC,a"? +Cofna 1, (10) - 2221, ,, (20)}

n=1

1
+C,p{na K,y (10) + 22K, ), (22)}I (1~ 4°)" —dF:;(’“‘ ) (A2)
Y7

+a?[Dy 1,1, (48) + D, K, 11, (A8)](L— 12) * PH(1)} =0,

Y {[-C,,(n+Da"* +nC,a "t +C, fna*?ly, (22) - A1, (1)}

n=1
+C,o{na 2K, ,, (A2) + 222K, ), (A} - 2) 2 P () (A3)
1
a2 (D, 1, ,(4a) + Dy K,y (A2)] L 12)"? %}to,
Y7
S{IAA +B,B. +C,C. ], + A[(n+1C,,b" —nC, b *IP (1) cos g} =0, (A4)
=1

S{[AA +B,B; +C,Crl., secg—n(n+1)[C,b"* +C, b
n=1

(A5)
b HC 2 (A0) +C Ky, (D)HIP ()} -U (- 17)* =0,
S {IAA +B,B; +C,C; ], se0g+[C, (n+Db" =nC, b "7 +.C, b1, (i)
n=1
1
051, (200} G V2K, 4 (A0) 105K, (A0NHI- ) T ) (A8)

du
~b[Dy 1.4, (AD) + D, Ky, (D)= 27) V2R (1)} -U i~ 20 =0,
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SUIAA"+B,B" +C,C ],y escg+[Cy (n+Db™ —nCyb™2 +C, {21, (Ab)
=1
—nb ™21, (A0)}-C, {Ab™*K__,(Ab)+nb*?K__,(Ab)}](1— £*) 2 P}(u) (A7)

1
_b_l/z[ljln In+1/2 (ﬂb) + IjZn Kn+1/2 (ﬂ’b)](l_ ﬂ2)1/2 w}—i_u + “Qb/u = O 4
y2]

Z{(%[A] A" +B,B" +C,C"]),., seca+[(n+1)(n-Db"*C,, +n(n+2)b™"*C,,
n=1

([N = 2%, (0) b, (ZB)IC,, +1A1 = 2D°)K1(20)

1 (A8)
0K DG A~ T2 [, (30) + 201 (AENID,
u
HNK 1, (D) = 20K, (A0)]D,, )1 - 1) R (1)} - 2 =0,
S IAA" +B,B+C,C.7D . csog+[m+D(N-DB™*C, +n(n+ 26 C,
_b75/2 ([(1_ n2 - ﬂ'zbz) I n+l/2 (ﬂb) +4bl n+3/2 (ﬂ“b)]ésn + [(1_ n2 - ﬂ’zbz) Kn+1/2 (ﬂb)
(A9)

0K, 5, ()]G, (L~ 1) 2P (1) ~b 2 ([, (2b) + b1, 5, (20)]D,

1
+[NK._,,, (Ab) = AbK .., (A0)]D,, )(L— 12)" wh Qu=0,
7]

where the starred A,, B,, and C, are functions of position defined by Equation (11)
of Chen and Keh [14].
The tetra-primed A,, B,, and C, in Equation (14) are functions of position that

are defined by

A (109) =2n(2n - Rl )0 cosg I X (oY)
o k(7" - (A10)

=2xX,(17,0)Y,, (€) + X, (0, m)Y,,(=d) = X, (i, 0)Y,,,(C)]d K,
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B (r, 1,9) =—cos¢T—( f‘;‘{;ﬁz KX)o = 26,0, OB 1110
K\T — T
0 (A11)

—&* X, (0, 7)Yy, (=d) + £ X, (17, 0)Y,,, ()],

_oeqf () N
C, (ru¢)= COS¢E[ K‘(Tz —sinh? 7 [2xX, (o, 77)Bn,1,1,2( d) 21(')(1(77,0)8”11‘1'2(0) (A12)

—*X,(0,17)Yy5 (=d) +5° X, (1, 0)Y,5(©)]dx,

where o=x(z+d), n=x(z-c), r=x(c+d),

X,(6,v)=rcosho +coshvsinhz, (A13)
X,(0,v)=rsinhd —sinhvsinhz, (Al14)
Yu(2)=(n+D)(n-2)B, ,,,,(z2)—n(2n-1)zB,,,(2), (A15)

Y.(2)=n(n+1)(n- 2)x’ By 1001(2)+(N— 2)’(222an1,2,2,1(2)

(AL6)
—2n(2n-1)[B,,,,(2) -«"2’B,,,.(2)],

Ys(2)=n(n+1) Bn,O,O,l(Z) - ZZBn,Z,Z,l(Z) , (A17)

Y. (2)=n("n+D)B . 00.(2) + ZZBn+1,2,2,1(Z) / (A18)

J, is the Bessel function of the first kind of order one, and the function B, ;,(2) is

defined by Equation (C5) of Ganatos et al. [13].
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A.2. Schematic representation of the defined parameters
To further clarify the meaning of the four dimensionless parameters (Ab, b/d,
d/(d+c),and a/b)mentioned in Chapter 3, a supplementary diagram is provided in

Figure Al. The diagram also illustrates the upper and lower limits of these parameters

along with their corresponding geometric interpretations.

a/b core-to-particle radius ratio b/d The spacing parameter
o0
- » @ . »0o*» @
o0
a/b- 0 a/b=1 b/d -0 b/d -1
(porous) (solid) (unconfined) (touch the wall)
d/ (d+c) relative position parameter Ab  shielding parameter
o0
e B o B 0 . » »
1
d/(d+c) > 0 4/(d+e) - 3 b - 0 Ab = oo
(single planar wall) (along the midplane) (1Y Permeable) (solid)

Figure A1. Geometric interpretation of the four parameters (Ab, b/d, d/(d +c),and

alb).
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