Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 資訊管理學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98193
Title: 基於堆疊式集成學習之自適應檢索增強生成方法
An Adaptive Retrieval-Augmented Generation Method Based on Stacking Ensemble Learning
Authors: 陳亭佑
Ting-Yu Chen
Advisor: 陳建錦
Chien-Chin Chen
Keyword: 大型語言模型,檢索增強生成,自適應檢索,堆疊式集成學習,
Large Language Models,Retrieval-Augmented Generation,Adaptive Retrieval,Stacking Ensemble Learning,
Publication Year : 2025
Degree: 碩士
Abstract: 近年來,大型語言模型(LLMs)在自然語言處理任務中取得了顯著的進展,但受限於其固定的參數記憶,難以處理動態且不斷擴展的知識,導致在回答複雜查詢時容易產生事實錯誤或幻覺。檢索增強生成(RAG)通過整合外部知識來源以改善此問題,但傳統 RAG 無差別地對所有查詢進行檢索,造成對簡單查詢的低效處理與計算資源浪費。為此,本研究提出了一個自適應檢索增強生成(ARAG)方法,基於查詢複雜度動態決定是否進行外部知識檢索。該方法從查詢中提取語義特徵、命名實體識別特徵及頁面瀏覽量特徵,並採用堆疊式集成學習(Stacking Ensemble Learning)訓練一個分類器,以預測查詢是否需要進行外部檢索。實驗結果顯示,本方法在 RetrievalQA、TriviaQA 及 NQ-open 資料集上的分類準確率均優於現有基線方法,展示其有效性與穩健性。
In recent years, Large Language Models (LLMs) have achieved remarkable advances in natural language processing tasks, but their parametric knowledge limits their ability to handle dynamic and evolving knowledge, leading to factual errors or hallucinations when answering complex queries. Retrieval-Augmented Generation (RAG) integrates external knowledge sources to address this limitation, but conventional RAG uniformly performs retrieval regardless of query complexity, resulting in inefficiency for simple queries and unnecessary computational overhead. To address this, we propose an Adaptive Retrieval-Augmented Generation (ARAG) method that dynamically determines whether to perform external retrieval based on query complexity. The proposed method extracts semantic features, named entity recognition features, and page view features from the query, and employs a stacking ensemble learning approach to train a classifier that predicts whether retrieval is necessary. Experimental results show that our method achieves higher classification accuracy compared to baseline methods on the RetrievalQA, TriviaQA, and NQ-open datasets, demonstrating its effectiveness and robustness.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98193
DOI: 10.6342/NTU202502079
Fulltext Rights: 未授權
metadata.dc.date.embargo-lift: N/A
Appears in Collections:資訊管理學系

Files in This Item:
File SizeFormat 
ntu-113-2.pdf
  Restricted Access
2.27 MBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved