Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 資訊管理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98154
標題: 基於對比學習與注意力機制之足球先發陣容推薦模型
A Contrastive-and-Attention-Based Model for Recommending Soccer Starting Lineup
作者: 陳青妤
Ching-Yu Chen
指導教授: 李瑞庭
Anthony J.T. Lee
關鍵字: 先發陣容推薦,圖注意力機制,長短期記憶,多頭注意力機制,對比學習,
starting lineup recommendation,graph attention mechanism,long short-term memory,multi-head attention mechanism,contrastive learning,
出版年 : 2025
學位: 碩士
摘要: 對足球隊而言,決定比賽的先發陣容是一項關鍵但複雜的任務。在本研究中,我們提出了一個基於對比學習與注意力機制的足球先發陣容推薦模型(CASTRec),以協助球隊建構合適的先發陣容。首先,我們使用四個模組提取四個類別的特徵,分別是球員近期的先發狀態、球員與敵隊球員的互動、球員和同隊隊友的互動、團隊的整體表現。具體來說,我們利用圖表示球員間的互動及球隊間的對戰關係,再藉由圖注意力機制更新圖中每個節點的特徵;同時,我們也使用長短期記憶架構處理球員和球隊在近期比賽中的表現。然後,我們利用多頭注意力機制學習球員特徵向量間的互相影響力。接著,透過對比學習將擁有相同先發狀態的球員特徵拉近,並將擁有不同先發狀態的球員特徵推遠,以強化球員的特徵。最後,我們使用多層感知器推薦先發陣容。實驗結果顯示,我們的推薦模型優於比較方法,而且易於延伸至其他的應用。我們的模型可以幫助教練們建構最佳的先發陣容,亦可預測對手的先發陣容,協助教練們擬定與敵隊交手時的戰術與策略。
Determining the optimal starting lineup for an upcoming game is a crucial and complex task for a soccer team. In this study, we propose a novel Contrastive-and-Attention-based STarting lineup Recommendation model, called CASTRec, for selecting soccer starting lineups. The proposed model contains seven modules. We first extract the features regarding players’ historical status, inter-team and intra-team interactions among players, and overall team performance in the first four modules. Specifically, we represent inter-team player interactions, intra-team player interactions and team matchups by graphs and utilize the graph attention mechanism to update the node representations. Also, we incorporate the long short-term memory to summarize the performance of players and teams across recent games. Next, we apply the multi-head attention mechanism to learn the inter-relationships among the players. Subsequently, we employ the contrastive learning to enhance the representations learned by pulling closer the representations of the players with the same starting status and pushing farther apart those of the players with different starting status. Last, we use the multilayer perceptron (MLP) to recommend the starting lineup. The experimental results show that our model outperforms the compared models and can be easily extended to other applications such as outcome, goal, shot and pass predictions. Our model can help coaches build an optimal starting lineup for an upcoming game and predict the starting lineups of opposing teams, which in turn helps coaches implement effective tactical strategies.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98154
DOI: 10.6342/NTU202501676
全文授權: 未授權
電子全文公開日期: N/A
顯示於系所單位:資訊管理學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
1.4 MBAdobe PDF
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved