請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98154完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李瑞庭 | zh_TW |
| dc.contributor.advisor | Anthony J.T. Lee | en |
| dc.contributor.author | 陳青妤 | zh_TW |
| dc.contributor.author | Ching-Yu Chen | en |
| dc.date.accessioned | 2025-07-30T16:08:17Z | - |
| dc.date.available | 2025-07-31 | - |
| dc.date.copyright | 2025-07-30 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-17 | - |
| dc.identifier.citation | Anderson L, Orme P, Di Michele R, Close GL, Milsom J, Morgans R, Drust B, Morton JP (2016) Quantification of seasonal-long physical load in soccer players with different starting status from the English Premier League: Implications for maintaining squad physical fitness. International Journal of Sports Physiology and Performance 11(8):1038–1046. https://doi.org/10.1123/ijspp.2015-0672.
Arandjelovic R, Gronat P, Torii A, Pajdla T, Sivic J (2016) NetVLAD: CNN architecture for weakly supervised place recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 5297–5307. https://doi.org/10.1109/CVPR.2016.572. Beal R, Changder N, Norman T, Ramchurn S (2020) Learning the value of teamwork to form efficient teams. Proceedings of the AAAI Conference on Artificial Intelligence. 7063–7070. https://doi.org/10.1609/aaai.v34i05.6192. Bransen L, Van Haaren J (2020) Player chemistry: Striving for a perfectly balanced soccer team. arxiv:2003.01712. https://doi.org/10.48550/arXiv.2003.01712. Brody S, Alon U, Yahav E (2022) How attentive are graph attention networks? arxiv:2105.14491. https://doi.org/10.48550/arXiv.2105.14491. Brooks J, Kerr M, Guttag J (2016) Developing a data-driven player ranking in soccer using predictive model weights. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 49–55. https://doi.org/10.1145/2939672.2939695. Cao A, Lan J, Xie X, Chen H, Zhang X, Zhang H, Wu Y (2023) Team-Builder: Toward more effective lineup selection in soccer. IEEE Transactions on Visualization and Computer Graphics 29(12):5178–5193. https://doi.org/10.1109/TVCG.2022.3207147. Cartas A, Ballester C, Haro G (2022) A graph-based method for soccer action spotting using unsupervised player classification. Proceedings of the 5th International ACM Workshop on Multimedia Content Analysis in Sports. 93–102. https://doi.org/10.1145/3552437.3555691. Chen Y, Liu Z, Li J, McAuley J, Xiong C (2022) Intent contrastive learning for sequential recommendation. Proceedings of the ACM Web Conference. 2172–2182. https://doi.org/10.1145/3485447.3512090. Chouhan A, Prabhune A, Raj A, Chandra D, Subramanya S, Asangi M, Thottempudi SG (2021) Shotifier: A binary shot conversion classifier pipeline for football forwards. Proceedings of the IEEE International Conference on Big Data and Smart Computing. 156–163. https://doi.org/10.1109/BigComp51126.2021.00038. Decroos T, Bransen L, Van Haaren J, Davis J (2019) Actions speak louder than goals: Valuing player actions in soccer. Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 1851–1861. https://doi.org/10.1145/3292500.3330758. Decroos T, Van Haaren J, Davis J (2018) Automatic discovery of tactics in spatio-temporal soccer match data. Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 223–232. https://doi.org/10.1145/3219819.3219832. Donnat C, Zitnik M, Hallac D, Leskovec J (2018) Learning structural node embeddings via diffusion wavelets. Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 1320–1329. https://doi.org/10.1145/3219819.3220025. Fauzi MSM, Imran K, Mohamed Z (2023) Social network analysis and data visualization of football performance preceded to the goal scored. Proceedings of International Conference on Innovation and Technology in Sports. 57–74. https://doi.org/10.1007/978-981-99-0297-2_6. Grover A, Leskovec J (2016) node2vec: Scalable feature learning for networks. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 855–864. https://doi.org/10.1145/2939672.2939754. Hamilton W, Ying Z, Leskovec J (2017) Inductive representation learning on large graphs. Advances in Neural Information Processing Systems 30. Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Computation 9(8):1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735. Jing M, Zhu Y, Zang T, Wang K (2024) Contrastive self-supervised learning in recommender systems: A survey. ACM Transactions on Information Systems 42(2):1–39. https://doi.org/10.1145/3627158. Khosla P, Teterwak P, Wang C, Sarna A, Tian Y, Isola P, Maschinot A, Liu C, Krishnan D (2020) Supervised contrastive learning. Advances in Neural Information Processing Systems 33:18661–18673. Kuhn HW (1955) The Hungarian method for the assignment problem. Naval Research Logistics Quarterly 2(1–2):83–97. https://doi.org/10.1002/nav.3800020109. Li M, Duan Y, Tao X, Chen C (2024) OARNet: Object-attribute-relation network for predicting soccer events. IEEE Transactions on Multimedia 26:9216–9227. https://doi.org/10.1109/TMM.2024.3387724. van der Maaten L, Hinton G (2008) Visualizing data using t-SNE. Journal of Machine Learning Research 9(86):2579–2605. Nouraie M, Eslahchi C, Baca A (2023) Intelligent team formation and player selection: A data-driven approach for football coaches. Applied Intelligence 53(24):30250–30265. https://doi.org/10.1007/s10489-023-05150-x. Oord A van den, Li Y, Vinyals O (2019) Representation learning with contrastive predictive coding. arxiv:1807.03748. https://doi.org/10.48550/arXiv.1807.03748. Pappalardo L, Cintia P, Rossi A, Massucco E, Ferragina P, Pedreschi D, Giannotti F (2019) A public data set of spatio-temporal match events in soccer competitions. Scientific Data 6(1):236. https://doi.org/10.1038/s41597-019-0247-7. Pochet Y, Wolsey LA (2006) Production Planning by Mixed Integer Programming. Springer-Verlag, New York, USA. https://doi.org/10.1007/0-387-33477-7. Qin X, Yuan H, Zhao P, Fang J, Zhuang F, Liu G, Liu Y, Sheng V (2023) Meta-optimized contrastive learning for sequential recommendation. Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval. 89–98. https://doi.org/10.1145/3539618.3591727. Rahimian P, Kim H, Schmid M, Toka L (2023) Pass receiver and outcome prediction in soccer using temporal graph networks. Proceedings of the International Workshop on Machine Learning and Data Mining for Sports Analytics. 52–63. https://doi.org/10.1007/978-3-031-53833-9_5. Robberechts P, Van Haaren J, Davis J (2021) A Bayesian approach to in-game win probability in soccer. Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining. 3512–3521. https://doi.org/10.1145/3447548.3467194. Rossi E, Chamberlain B, Frasca F, Eynard D, Monti F, Bronstein M (2020) Temporal graph networks for deep learning on dynamic graphs. arxiv:2006.10637. https://doi.org/10.48550/arXiv.2006.10637. Ruiz H, Power P, Wei X, Lucey P (2017) “The Leicester city fairytale?”: Utilizing new soccer analytics tools to compare performance in the 15/16 & 16/17 EPL seasons. Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 1991–2000. https://doi.org/10.1145/3097983.3098121. Shuai J, Zhang K, Wu L, Sun P, Hong R, Wang M, Li Y (2022) A review-aware graph contrastive learning framework for recommendation. Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. 1283–1293. https://doi.org/10.1145/3477495.3531927. Van Roy M, Robberechts P, Decroos T, Davis J (2020) Valuing on-the-ball actions in soccer: A critical comparison of xT and VAEP. Proceedings of the AAAI-20 Workshop on Artifical Intelligence in Team Sports. 1–8. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Ł, Polosukhin I (2017) Attention is all you need. Advances in Neural Information Processing Systems 30. Veličković P, Cucurull G, Casanova A, Romero A, Liò P, Bengio Y (2018) Graph attention networks. arxiv:1710.10903. https://doi.org/10.48550/arXiv.1710.10903. Wang H, Xu Y, Yang C, Shi C, Li X, Guo N, Liu Z (2023) Knowledge-adaptive contrastive learning for recommendation. Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining. 535–543. https://doi.org/10.1145/3539597.3570483. Wang Q, Zhu H, Hu W, Shen Z, Yao Y (2015) Discerning tactical patterns for professional soccer teams: An enhanced topic model with applications. Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2197–2206. https://doi.org/10.1145/2783258.2788577. Wang Y, Sun Y, Liu Z, Sarma SE, Bronstein MM, Solomon JM (2019) Dynamic graph CNN for learning on point clouds. ACM Transactions on Graphics 38(5):1–12. https://doi.org/10.1145/3326362. Wang Z, Veličković P, Hennes D, Tomašev N, Prince L, Kaisers M, Bachrach Y, et al. (2024) TacticAI: An AI assistant for football tactics. Nature Communications 15(1):1906. https://doi.org/10.1038/s41467-024-45965-x. Wei Y, Wang X, Li Q, Nie L, Li Y, Li X, Chua TS (2021) Contrastive learning for cold-start recommendation. Proceedings of the 29th ACM International Conference on Multimedia. 5382–5390. https://doi.org/10.1145/3474085.3475665. Xie X, Sun F, Liu Z, Wu S, Gao J, Zhang J, Ding B, Cui B (2022) Contrastive learning for sequential recommendation. Proceedings of the IEEE 38th International Conference on Data Engineering. 1259–1273. https://doi.org/10.1109/ICDE53745.2022.00099. Yang J, Ge H, Cui Y (2025) An AI framework for counterattack detection and decision-making evaluation in football. Journal of Big Data 12(1):91. https://doi.org/10.1186/s40537-025-01128-3. Yang Y, Huang Chao, Xia L, Huang Chunzhen, Luo D, Lin K (2023) Debiased contrastive learning for sequential recommendation. Proceedings of the ACM Web Conference 2023. 1063–1073. https://doi.org/10.1145/3543507.3583361. Yılmaz Öİ, Öğüdücü ŞG (2022) Learning football player features using graph embeddings for player recommendation system. Proceedings of the 37th ACM/SIGAPP Symposium on Applied Computing. 577–584. https://doi.org/10.1145/3477314.3507257. Yu Y, Si X, Hu C, Zhang J (2019) A review of recurrent neural networks: LSTM cells and network architectures. Neural Computation 31(7):1235–1270. https://doi.org/10.1162/neco_a_01199. Zhang D, Geng Y, Gong W, Qi Z, Chen Z, Tang X, Shan Y, Dong Y, Tang J (2024) RecDCL: Dual contrastive learning for recommendation. Proceedings of the ACM Web Conference. 3655–3666. https://doi.org/10.1145/3589334.3645533. Zhao H, Chen H, Yu S, Chen B (2021) Multi-objective optimization for football team member selection. IEEE Access 9:90475–90487. https://doi.org/10.1109/ACCESS.2021.3091185. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98154 | - |
| dc.description.abstract | 對足球隊而言,決定比賽的先發陣容是一項關鍵但複雜的任務。在本研究中,我們提出了一個基於對比學習與注意力機制的足球先發陣容推薦模型(CASTRec),以協助球隊建構合適的先發陣容。首先,我們使用四個模組提取四個類別的特徵,分別是球員近期的先發狀態、球員與敵隊球員的互動、球員和同隊隊友的互動、團隊的整體表現。具體來說,我們利用圖表示球員間的互動及球隊間的對戰關係,再藉由圖注意力機制更新圖中每個節點的特徵;同時,我們也使用長短期記憶架構處理球員和球隊在近期比賽中的表現。然後,我們利用多頭注意力機制學習球員特徵向量間的互相影響力。接著,透過對比學習將擁有相同先發狀態的球員特徵拉近,並將擁有不同先發狀態的球員特徵推遠,以強化球員的特徵。最後,我們使用多層感知器推薦先發陣容。實驗結果顯示,我們的推薦模型優於比較方法,而且易於延伸至其他的應用。我們的模型可以幫助教練們建構最佳的先發陣容,亦可預測對手的先發陣容,協助教練們擬定與敵隊交手時的戰術與策略。 | zh_TW |
| dc.description.abstract | Determining the optimal starting lineup for an upcoming game is a crucial and complex task for a soccer team. In this study, we propose a novel Contrastive-and-Attention-based STarting lineup Recommendation model, called CASTRec, for selecting soccer starting lineups. The proposed model contains seven modules. We first extract the features regarding players’ historical status, inter-team and intra-team interactions among players, and overall team performance in the first four modules. Specifically, we represent inter-team player interactions, intra-team player interactions and team matchups by graphs and utilize the graph attention mechanism to update the node representations. Also, we incorporate the long short-term memory to summarize the performance of players and teams across recent games. Next, we apply the multi-head attention mechanism to learn the inter-relationships among the players. Subsequently, we employ the contrastive learning to enhance the representations learned by pulling closer the representations of the players with the same starting status and pushing farther apart those of the players with different starting status. Last, we use the multilayer perceptron (MLP) to recommend the starting lineup. The experimental results show that our model outperforms the compared models and can be easily extended to other applications such as outcome, goal, shot and pass predictions. Our model can help coaches build an optimal starting lineup for an upcoming game and predict the starting lineups of opposing teams, which in turn helps coaches implement effective tactical strategies. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-30T16:08:17Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-07-30T16:08:17Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 謝辭 i
論文摘要 ii THESIS ABSTRACT iii Table of Contents iv List of Tables v List of Figures vi Chapter 1 Introduction 1 Chapter 2 Related Work 4 2.1 Starting Lineup Recommendation 4 2.2 Player Interactions 5 2.3 Contrastive Learning 6 Chapter 3 The Proposed Framework 8 3.1 Recency Frequency Module 9 3.2 Opponent Interaction Module 10 3.3 Player Performance Module 11 3.4 Team Performance Module 12 3.5 Attention Module 13 3.6 Contrastive Learning Module 13 3.7 Recommendation Module 14 Chapter 4 Experimental Results 15 4.1 Datasets 15 4.2 Baselines and Evaluation Metrics 17 4.3 Model Performance 18 4.4 Ablation Study 21 4.5 Extended Applications 22 4.6 Attention Mechanism Visualization 25 4.7 Effects of Contrastive Learning 29 Chapter 5 Conclusions and Future Work 31 References 34 | - |
| dc.language.iso | en | - |
| dc.subject | 圖注意力機制 | zh_TW |
| dc.subject | 先發陣容推薦 | zh_TW |
| dc.subject | 對比學習 | zh_TW |
| dc.subject | 多頭注意力機制 | zh_TW |
| dc.subject | 長短期記憶 | zh_TW |
| dc.subject | long short-term memory | en |
| dc.subject | multi-head attention mechanism | en |
| dc.subject | contrastive learning | en |
| dc.subject | graph attention mechanism | en |
| dc.subject | starting lineup recommendation | en |
| dc.title | 基於對比學習與注意力機制之足球先發陣容推薦模型 | zh_TW |
| dc.title | A Contrastive-and-Attention-Based Model for Recommending Soccer Starting Lineup | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 吳怡瑾;戴敏育 | zh_TW |
| dc.contributor.oralexamcommittee | I-CHIN Nancy Wu;Min-Yuh Day | en |
| dc.subject.keyword | 先發陣容推薦,圖注意力機制,長短期記憶,多頭注意力機制,對比學習, | zh_TW |
| dc.subject.keyword | starting lineup recommendation,graph attention mechanism,long short-term memory,multi-head attention mechanism,contrastive learning, | en |
| dc.relation.page | 38 | - |
| dc.identifier.doi | 10.6342/NTU202501676 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-07-20 | - |
| dc.contributor.author-college | 管理學院 | - |
| dc.contributor.author-dept | 資訊管理學系 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 資訊管理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 1.4 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
