Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98143
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林偉傑zh_TW
dc.contributor.advisorWai-Kit Lamen
dc.contributor.author陳鈞麒zh_TW
dc.contributor.authorChun-Chi Chenen
dc.date.accessioned2025-07-30T16:05:44Z-
dc.date.available2025-07-31-
dc.date.copyright2025-07-30-
dc.date.issued2025-
dc.date.submitted2025-07-23-
dc.identifier.citationD. J. Aldous. The percolation process on a tree where infinite clusters are frozen. Math. Proc. Cambridge Philos. Soc., 128(3):465–477, 2000.
G. Grimmett. Percolation. Springer, Berlin, 1999.
H. Kesten. The critical probability of bond percolation on the square lattice equals 1/2. Comm. Math. Phys., 74(1):41–59, 1980.
H. Kesten. Scaling relations for 2d-percolation. Comm. Math. Phys., 109(1):109–156, 1987.
D. Kiss. Frozen percolation in two dimensions. Probab. Theory Related Fields, 163(3-4):713–768, 2015.
G. F. Lawler, O. Schramm, and W. Werner. One-arm exponent for critical 2D percolation. Electron. J. Probab., 7:no. 2, 13, 2002.
L. M. Makowiec. Frozen boundary percolation on the triangular lattic. Master’s thesis, Mathematical Institute, Utrecht University (supervised by J. van den Berg and W. Ruszel), 2021.
P. Nolin. Near-critical percolation in two dimensions. Electron. J. Probab., 13:no. 55, 1562–1623, 2008.
L. Russo. A note on percolation. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 43(1):39–48, 1978.
P. D. Seymour and D. J. A. Welsh. Percolation probabilities on the square lattice. Ann. Discrete Math., 3:227–245, 1978
S. Smirnov. Critical percolation in the plane: conformal invariance, Cardy’s formula, scaling limits. C. R. Acad. Sci. Paris Sér. I Math., 333(3):239–244, 2001.
S. Smirnov and W. Werner. Critical exponents for two-dimensional percolation. Math. Res. Lett., 8(5-6):729–744, 2001.
J. van den Berg, B. N. B. de Lima, and P. Nolin. A percolation process on the square lattice where large finite clusters are frozen. Random Structures Algorithms, 40(2):220–226, 2012.
J. van den Berg, D. Kiss, and P. Nolin. A percolation process on the binary tree where large finite clusters are frozen. Electron. Commun. Probab., 17:no. 2, 11, 2012.
J. van den Berg, D. Kiss, and P. Nolin. Two-dimensional volume-frozen percolation: deconcentration and prevalence of mesoscopic clusters. Ann. Sci. Éc. Norm. Supér. (4), 51(4):1017–1084, 2018.
J. van den Berg and P. Nolin. Two-dimensional volume-frozen percolation: exceptional scales. Ann. Appl. Probab., 27(1):91–108, 2017.
J. van den Berg and P. Nolin. Two-dimensional forest fires with boundary ignitions, 2024.
J. van den Berg and B. Tóth. A signal-recovery system: asymptotic properties, and construction of an infinite-volume process. Stochastic Process. Appl., 96(2):177–190, 2001.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98143-
dc.description.abstract我們研究了 Makowiec 在其碩士論文 [7] 中提出的邊界凍結滲流模型,該模型定義在三角格子的有限子圖 B(N) 上,其中 B(N) 表示以原點為中心、邊長為 2N的平行四邊形區域。在此模型中,所有格點初始為空,並隨著時間從 0 漸進到 1逐漸被佔據。當某個佔據簇首次觸及 B(N) 的邊界時,即視為凍結。利用 [17] 中發展的技術,我們證明了一個比 Makowiec 在其猜想 3.1 中提出的結果更強的結論:當模型考慮在區域 B(N) 中時,原點在時間 1 屬於凍結簇的機率隨著 N → ∞趨近於零。
我們進一步引入並分析一個變體模型,稱為穿越凍結滲流模型。在此模型中,若某個佔據簇包含一條橫向(左到右)或縱向(上到下)貫穿 B(N) 的路徑,則該簇立即凍結。透過與邊界凍結滲流相同的方法,我們同樣證明:在此模型中,原點在時間 1 屬於凍結簇的機率也會隨著 N → ∞ 而趨近於零。
zh_TW
dc.description.abstractWe study the boundary frozen percolation introduced by Makowiec in [7], which is defined on the finite subgraph B(N) of the triangular lattice. Here, B(N) denotes the parallelogram centered at the origin with side length 2N. In this model, all the sites are initially vacant and become occupied as time evolves from 0 to 1. An occupied cluster becomes frozen as soon as it touches the boundary of B(N). Using techniques developed in [17], we prove a result stronger than Conjecture 3.1 of [7]: the probability of the origin being frozen at time 1 goes to zero as N → ∞.
We further introduce and analyze a variant model, called crossing frozen percolation, where occupied clusters freeze as soon as containing either a horizontal or vertical crossing of B(N). Applying the same methods, we show that in this model as well, the probability of the origin being frozen at time 1 tends to zero as N → ∞.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-30T16:05:44Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-07-30T16:05:44Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsVerification Letter from the Oral Examination Committee i
摘要 iii
Abstract v
Contents vii
List of Figures ix
Chapter 1 Introduction 1
1.1 Introduction of frozen percolation 1
1.2 A Variant Model 7
Chapter 2 Tools from Near-Critical Percolation 9
2.1 Notations 9
2.2 Useful Tools in Percolation Theory 12
2.3 Arm Events 15
Chapter 3 Proofs of Main Results 19
3.1 Some Preliminaries 19
3.2 Proof of Theorem 1.1 33
3.3 Proof of Theorem 1.2 37
References 41
-
dc.language.isoen-
dc.subject近臨界滲流zh_TW
dc.subject凍結滲流模型zh_TW
dc.subject自組織臨界性zh_TW
dc.subjectnear-critical percolationen
dc.subjectself-organized criticalityen
dc.subjectfrozen percolationen
dc.title邊界凍結滲流模型及其變體之探討zh_TW
dc.titleBoundary Frozen Percolation and a Varianten
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳隆奇;李志煌zh_TW
dc.contributor.oralexamcommitteeLung-Chi Chen;Jhih-Huang Lien
dc.subject.keyword凍結滲流模型,近臨界滲流,自組織臨界性,zh_TW
dc.subject.keywordfrozen percolation,near-critical percolation,self-organized criticality,en
dc.relation.page43-
dc.identifier.doi10.6342/NTU202502255-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-07-25-
dc.contributor.author-college理學院-
dc.contributor.author-dept數學系-
dc.date.embargo-lift2025-07-31-
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf3.36 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved