Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98085| Title: | 光滑填充問題之探究 On the Smooth Filling-in Problem |
| Authors: | 林俊廷 Jun-Ting Lin |
| Advisor: | 林學庸 Hseuh-Yung Lin |
| Keyword: | 光滑填充,退變,解奇異點, Smooth Filling-in,Degeneration of Hypersurfaces,Resolution of Singularities, |
| Publication Year : | 2025 |
| Degree: | 碩士 |
| Abstract: | 我們研究射影退化中的「光滑填充」問題,即:當一個代數多樣體具有光滑的一般纖維時,是否能將其替換為具有相同一般纖維的光滑家族。在本文中,我們構造了一個三次三維體退變的反例——此退化的單值群有限,但無法被光滑的射影家族所填充。 We study the ”smooth filling‐in” problem for projective degenerations—when a one-parameter family with smooth general fibers can be replaced by a smooth family which has the same general fibers. In this article, we construct a counterexample—a degeneration of cubic threefolds with single A2 singularity—which has monodromy of finite order but cannot be filled with a smooth projective family. |
| URI: | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98085 |
| DOI: | 10.6342/NTU202502125 |
| Fulltext Rights: | 同意授權(全球公開) |
| metadata.dc.date.embargo-lift: | 2025-07-25 |
| Appears in Collections: | 數學系 |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-113-2.pdf | 606.96 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
