Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98026
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林哲宇zh_TW
dc.contributor.advisorChe-Yu Linen
dc.contributor.author陳詣峰zh_TW
dc.contributor.authorYi-Fong Chenen
dc.date.accessioned2025-07-23T16:30:23Z-
dc.date.available2025-07-24-
dc.date.copyright2025-07-23-
dc.date.issued2025-
dc.date.submitted2025-07-21-
dc.identifier.citation[1] Bagley, R. L., & Torvik, P. J. (1983). A theoretical basis for the application of fractional calculus to viscoelasticity. Journal of Rheology, 27(3), 201-210.
[2] H. Kolsky, Stress Waves in Solids, vol. 1098. New York: Courier Corporation, 1963.
[3] Moczo, P., & Kristek, J. (2005). On the rheological models used for time‐domain methods of seismic wave propagation. Geophysical Research Letters, 32(1).
[4] Kjartansson, E. (1979). Constant Q‐wave propagation and attenuation. Journal of Geophysical Research: Solid Earth, 84(B9), 4737-4748.
[5] Cooper, R. F. (2002). Seismic wave attenuation: Energy dissipation in viscoelastic crystalline solids. Reviews in Mineralogy and Geochemistry, 51(1), 253-290.
[6] Holm, S., & Sinkus, R. (2010). A unifying fractional wave equation for compressional and shear waves. The Journal of the Acoustical Society of America, 127(1), 542-548.
[7] Holm, S, & Näsholm, S. P. (2011). A causal and fractional all-frequency wave equation for lossy media. The Journal of the Acoustical Society of America, 130(4), 2195-2202.
[8] Wang, Y. (2016). Generalized viscoelastic wave equation. Geophysical Journal International, 204(2), 1216-1221.
[9] Xu, Q, & Wang, Y. (2023). Determination of the viscoelastic parameters for the generalized viscoelastic wave equation. Geophysical Journal International, 233(2), 875-884.
[10] Borgomano, J. V. M, Pimienta, L., Fortin, J., & Guéguen, Y. (2017). Dispersion and attenuation measurements of the elastic moduli of a dual‐porosity limestone. Journal of Geophysical Research: Solid Earth, 122(4), 2690-2711.
[11] Ni, J., Gu, H., & Wang, Y. (2022). Seismic wave equation formulated by generalized viscoelasticity in fluid-saturated porous media. Geophysics, 87(2), T111-T121.
[12] Futterman, W. I. (1962). Dispersive body waves. Journal of Geophysical Research, 67(13), 5279-5291.
[13] Carcione, J. M., Kosloff, D., & Kosloff, R. (1988). Wave propagation simulation in a linear viscoacoustic medium. Geophysical Journal International, 93(2), 393-401.
[14] J. M. Carcione, Wave Fields in Real Media: Wave Propagation in Anisotropic, Anelastic, Porous and Electromagnetic Media, vol. 38. Oxford: Elsevier, 2007. r.
[15] Näsholm, S. P., & Holm, S. (2013). On a fractional Zener elastic wave equation. Fractional Calculus and Applied Analysis, 16, 26-50.
[16] Wang, Y. (2019). A constant-Q model for general viscoelastic media. Geophysical Journal International, 219(3), 1562-1567.
[17] Morozov, I. B., Deng, W., & Cao, D. (2020). Mechanical analysis of viscoelastic models for Earth media. Geophysical Journal International, 220(3), 1762-1773.
[18] Mohammadian-Gezaz, S., & Karrabi, M. (2017). Study on the Stress Relaxation of Nano Clay-Rubber Nanocomposites Considering Standard Linear Solid Model. Journal of Rubber Research, 20(1), 20-32.
[19] Plaseied, A., & Fatemi, A. (2008). Deformation response and constitutive modeling of vinyl ester polymer including strain rate and temperature effects. Journal of Materials Science, 43, 1191-1199.
[20] Siami, M., Jahani, K., Esmaili, P., & Rezaee, M. (2020). Investigating the influence of initial ramp on the viscoelastic parameters for cardiac muscle representative material. In 28th Annual International Conference of Iranian Society of Mechanical Engineering.
[21] Robinovitch, S. N., Hayes, W. C., & McMahon, T. A. (1997). Predicting the impact response of a nonlinear single-degree-of-freedom shock-absorbing system from the measured step response. Journal of Biomechanical Engineering, 119, 221-227.
[22] Grant, C. A., McKendry, J. E., & Evans, S. D. (2012). Temperature dependent stiffness and visco-elastic behaviour of lipid coated microbubbles using atomic force microscopy. Soft Matter, 8(5), 1321-1326.
[23] Siami, M., Jahani, K., & Rezaee, M. (2021). Identifying the parameters of viscoelastic model for a gel-type material as representative of cardiac muscle in dynamic tests. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 235(10), 1205-1216.
[24] Dauvillier, B. S., Hübsch, P. F., Aarnts, M. P., & Feilzer, A. J. (2001). Modeling of viscoelastic behavior of dental chemically activated resin composites during curing. Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials, 58(1), 16-26.
[25] Castaño, J., Giraldo, M. A., Montoya, Y., Montagut, Y. J., Palacio, A. F., & Jiménez, L. D. (2023). Electropneumatic system for the simulation of the pulmonary viscoelastic effect in a mechanical ventilation scenario. Scientific Reports, 13(1), 21275.
[26] Pan, W., Petersen, E., Cai, N., Ma, G., Lee, J. R., Feng, Z., & Leong, K. W. (2006, January). Viscoelastic properties of human mesenchymal stem cells. In 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference (pp. 4854-4857). IEEE.
[27] Weickenmeier, J., Kurt, M., Ozkaya, E., Wintermark, M., Pauly, K. B., & Kuhl, E. (2018). Magnetic resonance elastography of the brain: a comparison between pigs and humans. Journal of the Mechanical Behavior of Biomedical Materials, 77, 702-710.
[28] Weickenmeier, J., Kurt, M., Ozkaya, E., de Rooij, R., Ovaert, T. C., Ehman, R. L., & Kuhl, E. (2018). Brain stiffens post mortem. Journal of the Mechanical Behavior of Biomedical Materials, 84, 88-98.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98026-
dc.description.abstract本研究針對黏彈性(viscoelasticity)材料中之波動現象進行理論推導與數值分析,發展一套以馬克士威形式之標準線性固體模型(Maxwell form of the standard linear solid model)為基礎之黏彈性波動方程式,並進一步引入分數階微積分以模擬材料之記憶效應與能量耗散特性。相較於傳統的整數階模型,分數階導數可更準確地描述材料在應力或應變歷史影響下的非局部反應行為,有效捕捉波在黏彈性介質中,因傳遞所產生之衰減(attenuation)與頻散(dispersion)等物理現象。
首先,回顧了黏彈性材料與波動理論之基礎,並建構含有兩組彈性模數與一黏滯係數的馬克士威標準線性固體架構。透過動量守恆定律與傅立葉轉換,本研究推導出黏彈性波動方程在頻率域下之形式,進而導出複數波數並分離其實部與虛部,透過聯立方程式得到相速度與衰減因子的解析解。此外,本研究也透過無因次化標準化處理,使得不同材料之模擬結果具可比性。
在數值模擬部分當中,本文分析了天然橡膠(NR)、生醫矽膠(GC-5)與活體豬腦等材料,觀察其在不同分數階指數β下波動行為的改變。結果顯示當β趨近0時,材料表現近似彈性;當β趨近1時,黏性效應增強,波速顯著頻散且能量快速衰減,完全符合物理理論之趨勢。由此可知,分數階指數β為一有效之控制參數,能靈活調控材料的耗散行為與頻率響應特性。
本研究所建立之模型,不僅克服了Kelvin-Voigt模型在高頻極限下相速度無窮之不合理問題,亦於物理表徵能力與擬合彈性上展現高度優勢。該模型具潛力應用於結構健康監測、生醫超聲影像、地震模擬與材料識別等多元領域,提供一套具備理論深度與實用價值的波動描述框架。
zh_TW
dc.description.abstractThis study presents a theoretical and numerical investigation of wave propagation in viscoelastic materials, focusing on the development of a viscoelastic wave equation based on the Maxwell form of the standard linear solid (SLS) model. To account for memory effects and energy dissipation, fractional calculus is incorporated into the formulation. Compared with traditional integer-order models, the use of fractional derivatives allows for a more accurate representation of nonlocal responses influenced by stress or strain history, effectively capturing key physical phenomena such as attenuation and dispersion during wave transmission in viscoelastic media.
The study begins with a review of the theoretical foundation of viscoelasticity and wave mechanics, followed by the construction of a Maxwell form of the SLS framework comprising two elastic moduli and one viscosity coefficient. By applying momentum conservation and Fourier transform techniques, the wave equation is reformulated in the frequency domain, and the complex wavenumber is derived. Real and imaginary parts of the wavenumber are then separated to obtain analytical expressions for phase velocity and attenuation via coupled equations. Additionally, a dimensionless normalization process is implemented to ensure comparability across different materials.
In the numerical simulations, three representative materials, natural rubber (NR), biomedical silicone gel (GC-5), and in vivo porcine brain tissue, which were analyzed to evaluate wave behavior under varying fractional-order indices β. The results demonstrate that as β approaches 0, the material behaves almost elastically; as β approaches 1, viscous effects become prominent, leading to increased dispersion and rapid energy attenuation, consistent with expected physical trends. The fractional-order index β is thus shown to be an effective control parameter for tuning frequency-dependent dissipative behavior.
The proposed model not only addresses the unrealistic high-frequency velocity divergence observed in Kelvin-Voigt model, but also exhibits superior capability in physical representation and curve-fitting accuracy. It provides a robust and flexible framework for modeling wave phenomena in viscoelastic media, with potential applications in structural health monitoring, biomedical ultrasound imaging, seismic simulation, and material characterization.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-23T16:30:23Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-07-23T16:30:23Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
摘要 ii
Abstract iii
目次 v
圖次 vii
表次 ix
第一章 緒論 1
1.1 研究背景與動機 1
1.2 文獻回顧 3
第二章 理論基礎與數學準備 7
2.1 一維速度場之黏性介質位移與應變率關係式 7
2.2 動量守恆方程式 9
2.3 平面波之數學表達式 12
2.4 傅立葉分析 14
2.5 鬆弛時間(relaxation time)與遲滯時間(retardation time) 16
2.6 分數階微積分與材料記憶性之關聯 19
第三章 黏彈性波動方程式之頻散(dispersion)和衰減(attenuation)推導 22
3.1 馬克士威標準線性固體模型(Maxwell form of the standard linear solid model)之黏彈性波動方程式推導 23
3.1.1 模型組成與假設 23
3.1.2 整體應力與應變關係 23
3.2 整數階頻散(dispersion)和衰減(attenuation) 26
3.2.1 頻率域轉換與波動方程式之建立 26
3.2.2 整數階相速度與衰減關係式解析解 28
3.3 馬克士威標準線性固體模型(Maxwell form of the standard linear solid model)之分數階導數黏彈性波動方程式推導 35
3.3.1 分數階阻尼項之導入 35
3.3.2 分數階本構式整理 38
3.4 組合因子驗證 38
3.4.1 組合因子定義與傅立葉轉換 39
3.4.2 q=0與q=1邊界行為分析 43
3.5 分數階頻散(dispersion)和衰減(attenuation) 43
3.5.1 頻率域本構方程式推導 44
3.5.2 分數階相速度與衰減關係式解析解 46
3.6 衰減和相速度之標準化分析 52
第四章 數值模擬與結果分析 55
4.1 模擬方法與參數設定 55
4.2 整數階模型與分數階模型之比較 55
4.3 分數階Kelvin-Voigt模型和馬克士威標準線性固體模型之差異 59
4.4 材料性質對波動行為的影響 62
4.5 分數階指數與參數變化對波動行為之控制性 65
第五章 結論與未來展望 67
5.1 結論 67
5.2 未來展望 68
參考文獻 69
-
dc.language.isozh_TW-
dc.subject波動方程式zh_TW
dc.subject頻散zh_TW
dc.subject標準線性固體模型zh_TW
dc.subject分數階導數zh_TW
dc.subject衰減zh_TW
dc.subjectattenuationen
dc.subjectdispersionen
dc.subjectwave equationen
dc.subjectstandard linear solid modelen
dc.subjectfractional derivativeen
dc.title建構於標準線性固體模型的黏彈波動方程式之推導並運用於頻散之分析zh_TW
dc.titleDerivation of a Viscoelastic Wave Equation Based on the Standard Linear Solid Model and Its Application to Dispersion Analysisen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee劉建豪;劉立偉zh_TW
dc.contributor.oralexamcommitteeChien-Hao Liu;Li-Wei Liuen
dc.subject.keyword標準線性固體模型,波動方程式,分數階導數,衰減,頻散,zh_TW
dc.subject.keywordstandard linear solid model,wave equation,fractional derivative,attenuation,dispersion,en
dc.relation.page72-
dc.identifier.doi10.6342/NTU202500959-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-07-22-
dc.contributor.author-college工學院-
dc.contributor.author-dept應用力學研究所-
dc.date.embargo-lift2025-07-24-
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf5.48 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved