Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97990
標題: 具傾角與滑塊自調頻之拉伸式非線性壓電能量採集器
An Inclined Self-Tuning Stretching-type Nonlinear Piezoelectric Energy Harvester with a Sliding Mass
作者: 鄭傑升
Chieh-Sheng Cheng
指導教授: 蘇偉儁
Wei-Jiun Su
關鍵字: 壓電能量採集器,傾角自調頻結構,軸向拉伸結構,非線性硬化效應,
Piezoelectric energy harvester,Self-tuning structure with inclination,Axial stretching structure,Hardening effect,
出版年 : 2025
學位: 碩士
摘要: 本研究針對傳統壓電能量採集器頻寬狹窄、壓電材料拉伸量不均,以及發電效率受限的問題,設計並開發了一種具備自調頻功能的壓電能量採集機構。該機構主要由鋼體梁、壓電材料PVDF及可自由移動的滑塊組成,透過滑塊的運動來調整系統的共振頻率,以拓展頻寬並提升能量轉換效率。此外,本研究亦探討了機構在不同傾角條件下的能量採集效能,分析重力對滑塊運動行為的影響,以進一步提升系統穩定性與輸出效能。本研究基於拉格朗日方程式以及壓電本構方程式推導出完整的數學模型,包括鋼體梁運動方程式、滑動質量塊運動方程式與壓電材料的電學方程式,並透過MATLAB求解系統的運動行為。接著,進行一系列實驗驗證數學模型的準確性,包含掃頻測試與定頻測試,探討不同滑塊初始位置對系統頻率響應的影響。實驗結果顯示,當滑塊位置改變時,共振頻率可自適應調整,證實該機構具備拓展頻寬的能力。進一步分析發現,當系統處於有傾角狀態時,可藉由重力影響更順暢地進入高能階狀態,提高能量輸出。比較無傾角與有傾角實驗數據可知,適當的傾角設計能夠降低滑塊移動的慣性門檻,使系統更容易達到最佳能量採集狀態,進而提升輸出功率與穩定性。另一方面,模擬與實驗結果高度吻合,驗證了數學模型的準確性,並確認本研究所提出的設計在不同運行條件下皆具穩定的自調頻效能。加入傾角設計後,穩態輸出功率顯著提升,最大輸出電壓為6.63 V,比無傾角設計的能量採集器高出1.89倍,在頻寬上的大小也多出了3.08倍。
This study addresses the limitations of traditional piezoelectric energy harvesters, including narrow bandwidth, uneven strain distribution in piezoelectric materials, and restricted power generation efficiency. A piezoelectric energy harvester with self-tuning capability was designed and developed. The mechanism consists of a rigid beam, a piezoelectric PVDF material, and a freely movable sliding mass. By adjusting the sliding mass position, the system's resonance frequency can be tuned for broadening the bandwidth and enhancing energy conversion efficiency. Furthermore, this study investigates the energy harvesting performance under different inclination angles, and analyzes the effect of gravity on the sliding mass motion to further improve system stability and energy output. In this study, a complete mathematical model was derived based on Lagrange equation and the constitutive equations of piezoelectric materials. including the equations of motion for the rigid beam and sliding mass, and the electrical equations for piezoelectric material. And then the system dynamics were solved by MATLAB. A series of experiments were conducted to validate the accuracy of the mathematical model, including sweep frequency tests and fixed frequency tests, to investigate the effect of different initial positions of the sliding mass on the system's frequency response. Experimental results indicate that the system’s resonance frequency can adaptively adjust as the sliding mass moves, demonstrating its capability to broaden the bandwidth. Further analysis reveals that the inclined configuration allows the system to more smoothly enter high-energy orbits by the influence of gravity, leading to improved energy output. By comparing experimental data with inclination and without inclination, it is evident that an appropriate inclination design reduces the inertia for sliding mass movement, allowing the system to reach an optimal energy harvesting state more easily, thereby improving power output and stability. Moreover, the simulation and experimental results exhibit a high degree of agreement, validating the accuracy of the mathematical model and confirming that the design maintains stable self-tuning performance under various conditions. With inclination design, the steady-state output power was significantly enhanced. The maximum output voltage reached 6.63 V, which is 1.89 times higher than the energy harvester without inclination design. Additionally, the bandwidth was expanded by 3.08 times.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97990
DOI: 10.6342/NTU202501446
全文授權: 同意授權(全球公開)
電子全文公開日期: 2026-12-31
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  此日期後於網路公開 2026-12-31
6.63 MBAdobe PDF
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved