Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97990
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蘇偉儁zh_TW
dc.contributor.advisorWei-Jiun Suen
dc.contributor.author鄭傑升zh_TW
dc.contributor.authorChieh-Sheng Chengen
dc.date.accessioned2025-07-23T16:22:21Z-
dc.date.available2025-07-24-
dc.date.copyright2025-07-23-
dc.date.issued2025-
dc.date.submitted2025-07-01-
dc.identifier.citationA. Erturk and D. J. Inman, "A Distributed Parameter Electromechanical Model for Cantilevered Piezoelectric Energy Harvesters," Journal of Vibration and Acoustics, vol. 130, no. 4, 2008, doi: 10.1115/1.2890402.
A. Erturk and D. J. Inman, "An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations," Smart Materials and Structures, vol. 18, no. 2, p. 025009, 2009, doi: 10.1088/0964-1726/18/2/025009.
F. Müller and M. Krack, "On the locomotion of the slider within a self-adaptive beam–slider system," International Journal of Non-Linear Mechanics, vol. 159, p. 104595, 2024, doi: 10.1016/j.ijnonlinmec.2023.104595.
M. Krack, N. Aboulfotoh, J. Twiefel, J. Wallaschek, L. A. Bergman, and A. F. Vakakis, "Toward understanding the self-adaptive dynamics of a harmonically forced beam with a sliding mass," Archive of Applied Mechanics, vol. 87, no. 4, pp. 699-720, 2016, doi: 10.1007/s00419-016-1218-5.
L. M. Miller, P. Pillatsch, E. Halvorsen, P. K. Wright, E. M. Yeatman, and A. S. Holmes, "Experimental passive self-tuning behavior of a beam resonator with sliding proof mass," Journal of Sound and Vibration, vol. 332, no. 26, pp. 7142-7152, 2013, doi: 10.1016/j.jsv.2013.08.023.
Y.-H. Shin et al., "Automatic resonance tuning mechanism for ultra-wide bandwidth mechanical energy harvesting," Nano Energy, vol. 77, p. 104986, 2020, doi: 10.1016/j.nanoen.2020.104986.
L. Yu, L. Tang, L. Xiong, T. Yang, B. R. Mace, and A. Erturk, "A passive self-tuning nonlinear resonator with beam-slider structure," presented at the Active and Passive Smart Structures and Integrated Systems XIII, 2019.
L. Yu, L. Tang, and T. Yang, "Experimental investigation of a passive self-tuning resonator based on a beam-slider structure," Acta Mechanica Sinica, vol. 35, no. 5, pp. 1079-1092, 2019, doi: 10.1007/s10409-019-00868-9.
N. Aboulfotoh, J. Twiefel, M. Krack, and J. Wallaschek, "Experimental Study on Performance Enhancement of a Piezoelectric Vibration Energy Harvester by applying Self-Resonating Behavior," Energy Harvesting and Systems, vol. 4, no. 3, pp. 131-136, 2017, doi: 10.1515/ehs-2016-0027.
L. Yu, L. Tang, and T. Yang, "Piezoelectric passive self-tuning energy harvester based on a beam-slider structure," Journal of Sound and Vibration, vol. 489, p. 115689, 2020, doi: 10.1016/j.jsv.2020.115689.
C. Lan, Z. Chen, G. Hu, Y. Liao, and W. Qin, "Achieve frequency-self-tracking energy harvesting using a passively adaptive cantilever beam," Mechanical Systems and Signal Processing, vol. 156, p. 107672, 2021, doi: 10.1016/j.ymssp.2021.107672.
G. Shi et al., "A Sensorless Self-Tuning Resonance System for Piezoelectric Broadband Vibration Energy Harvesting," IEEE Transactions on Industrial Electronics, vol. 68, no. 3, pp. 2225-2235, 2021, doi: 10.1109/tie.2020.2975457.
H. Li, D. Liu, J. Wang, X. Shang, and M. R. Hajj, "Broadband bimorph piezoelectric energy harvesting by exploiting bending-torsion of L-shaped structure," Energy Conversion and Management, vol. 206, p. 112503, 2020, doi: 10.1016/j.enconman.2020.112503.
A. Erturk, J. M. Renno, and D. J. Inman, "Modeling of Piezoelectric Energy Harvesting from an L-shaped Beam-mass Structure with an Application to UAVs," Journal of Intelligent Material Systems and Structures, vol. 20, no. 5, pp. 529-544, 2008, doi: 10.1177/1045389x08098096.
S. Qi, R. Shuttleworth, S. Olutunde Oyadiji, and J. Wright, "Design of a multiresonant beam for broadband piezoelectric energy harvesting," Smart Materials and Structures, vol. 19, no. 9, p. 094009, 2010, doi: 10.1088/0964-1726/19/9/094009.
R. Chen, L. Ren, H. Xia, X. Yuan, and X. Liu, "Energy harvesting performance of a dandelion-like multi-directional piezoelectric vibration energy harvester," Sensors and Actuators A: Physical, vol. 230, pp. 1-8, 2015, doi: 10.1016/j.sna.2015.03.038.
K. Chen, Q. Gao, S. Fang, D. Zou, Z. Yang, and W.-H. Liao, "An auxetic nonlinear piezoelectric energy harvester for enhancing efficiency and bandwidth," Applied Energy, vol. 298, 2021, doi: 10.1016/j.apenergy.2021.117274.
S. C. Stanton, C. C. McGehee, and B. P. Mann, "Reversible hysteresis for broadband magnetopiezoelastic energy harvesting," Applied Physics Letters, vol. 95, no. 17, 2009, doi: 10.1063/1.3253710.
游士寬, "基於懸臂梁之拉伸式非線性壓電能量採集器之設計與分析," 碩士, 機械工程學研究所, 國立臺灣大學, 台北市, 2022.
H.-H. Chen, S.-K. You, and W.-J. Su, "The design, fabrication and analysis of a cantilever-based tensile-mode nonlinear piezoelectric energy harvester," Mechanical Systems and Signal Processing, vol. 212, p. 111317, 2024/04/15/ 2024, doi: doi.org/10.1016/j.ymssp.2024.111317.
H.-L. Chang and W.-J. Su, "Design and development of a high-performance tensile-mode piezoelectric energy harvester based on a three-hinged force-amplification mechanism," Smart Materials and Structures, vol. 31, no. 7, p. 075018, 2022/06/10 2022, doi: 10.1088/1361-665X/ac7489.
曾亮維, "基於滑塊自調頻之拉伸式非線性壓電能量採集器," 碩士, 機械工程學系, 國立臺灣大學, 2024.
J. Yang, An introduction to the theory of piezoelectricity. Springer, 2005.
W. Qing-Ming and L. E. Cross, "Constitutive equations of symmetrical triple layer piezoelectric benders," IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 46, no. 6, pp. 1343-1351, 1999, doi: 10.1109/58.808857.
楊智翔, "壓電能量擷取器應用於感應線圈驅動同步切換電路之自供電系統設計," 碩士, 工程科學及海洋工程學研究所, 國立臺灣大學, 台北市, 2011.
C.-K. Lee, "PIEZOELECTRIC LAMINATES FOR TORSIONAL AND BENDING MODAL CONTROL: THEORY AND EXPERIMENT," Ph.D., Cornell University, United States -- New York, 8724154, 1987.
J. J. Thomsen, "Vibration Suppression by Using Self-Arranging Mass: Effects of Adding Restoring Force," Journal of Sound and Vibration, vol. 197, no. 4, pp. 403-425, 1996, doi: 10.1006/jsvi.1996.0540.
F. Müller, M. W. Beck, and M. Krack, "Experimental validation of a model for a self-adaptive beam–slider system," Mechanical Systems and Signal Processing, vol. 182, p. 109551, 2023, doi: 10.1016/j.ymssp.2022.109551.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97990-
dc.description.abstract本研究針對傳統壓電能量採集器頻寬狹窄、壓電材料拉伸量不均,以及發電效率受限的問題,設計並開發了一種具備自調頻功能的壓電能量採集機構。該機構主要由鋼體梁、壓電材料PVDF及可自由移動的滑塊組成,透過滑塊的運動來調整系統的共振頻率,以拓展頻寬並提升能量轉換效率。此外,本研究亦探討了機構在不同傾角條件下的能量採集效能,分析重力對滑塊運動行為的影響,以進一步提升系統穩定性與輸出效能。本研究基於拉格朗日方程式以及壓電本構方程式推導出完整的數學模型,包括鋼體梁運動方程式、滑動質量塊運動方程式與壓電材料的電學方程式,並透過MATLAB求解系統的運動行為。接著,進行一系列實驗驗證數學模型的準確性,包含掃頻測試與定頻測試,探討不同滑塊初始位置對系統頻率響應的影響。實驗結果顯示,當滑塊位置改變時,共振頻率可自適應調整,證實該機構具備拓展頻寬的能力。進一步分析發現,當系統處於有傾角狀態時,可藉由重力影響更順暢地進入高能階狀態,提高能量輸出。比較無傾角與有傾角實驗數據可知,適當的傾角設計能夠降低滑塊移動的慣性門檻,使系統更容易達到最佳能量採集狀態,進而提升輸出功率與穩定性。另一方面,模擬與實驗結果高度吻合,驗證了數學模型的準確性,並確認本研究所提出的設計在不同運行條件下皆具穩定的自調頻效能。加入傾角設計後,穩態輸出功率顯著提升,最大輸出電壓為6.63 V,比無傾角設計的能量採集器高出1.89倍,在頻寬上的大小也多出了3.08倍。zh_TW
dc.description.abstractThis study addresses the limitations of traditional piezoelectric energy harvesters, including narrow bandwidth, uneven strain distribution in piezoelectric materials, and restricted power generation efficiency. A piezoelectric energy harvester with self-tuning capability was designed and developed. The mechanism consists of a rigid beam, a piezoelectric PVDF material, and a freely movable sliding mass. By adjusting the sliding mass position, the system's resonance frequency can be tuned for broadening the bandwidth and enhancing energy conversion efficiency. Furthermore, this study investigates the energy harvesting performance under different inclination angles, and analyzes the effect of gravity on the sliding mass motion to further improve system stability and energy output. In this study, a complete mathematical model was derived based on Lagrange equation and the constitutive equations of piezoelectric materials. including the equations of motion for the rigid beam and sliding mass, and the electrical equations for piezoelectric material. And then the system dynamics were solved by MATLAB. A series of experiments were conducted to validate the accuracy of the mathematical model, including sweep frequency tests and fixed frequency tests, to investigate the effect of different initial positions of the sliding mass on the system's frequency response. Experimental results indicate that the system’s resonance frequency can adaptively adjust as the sliding mass moves, demonstrating its capability to broaden the bandwidth. Further analysis reveals that the inclined configuration allows the system to more smoothly enter high-energy orbits by the influence of gravity, leading to improved energy output. By comparing experimental data with inclination and without inclination, it is evident that an appropriate inclination design reduces the inertia for sliding mass movement, allowing the system to reach an optimal energy harvesting state more easily, thereby improving power output and stability. Moreover, the simulation and experimental results exhibit a high degree of agreement, validating the accuracy of the mathematical model and confirming that the design maintains stable self-tuning performance under various conditions. With inclination design, the steady-state output power was significantly enhanced. The maximum output voltage reached 6.63 V, which is 1.89 times higher than the energy harvester without inclination design. Additionally, the bandwidth was expanded by 3.08 times.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-23T16:22:21Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-07-23T16:22:21Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents論文口試委員審定書 i
誌謝 ii
中文摘要 iii
ABSTRACT iv
目次 vi
圖次 viii
表次 xii
符號表 xiii
Chapter 1 緒論 1
1.1 前言 1
1.2 文獻回顧 2
1.3 研究動機與方法 6
1.4 論文架構 7
Chapter 2 壓電能量擷取理論 8
2.1 壓電效應 8
2.2 壓電本構方程式 10
Chapter 3 能量採集器模型 12
3.1 採集器之力學模型 12
3.2 壓電能量採集器之電學模型 17
Chapter 4 實驗設計 20
4.1 結構設計與製作 20
4.2 實驗設備與設備配置 23
4.3 實驗流程 27
Chapter 5 結果驗證與討論 30
5.1 掃頻實驗 32
5.2 定頻實驗 42
Chapter 6 結論與未來展望 77
6.1 結論 77
6.2 未來展望 78
參考文獻 80
-
dc.language.isozh_TW-
dc.subject軸向拉伸結構zh_TW
dc.subject傾角自調頻結構zh_TW
dc.subject壓電能量採集器zh_TW
dc.subject非線性硬化效應zh_TW
dc.subjectHardening effecten
dc.subjectPiezoelectric energy harvesteren
dc.subjectSelf-tuning structure with inclinationen
dc.subjectAxial stretching structureen
dc.title具傾角與滑塊自調頻之拉伸式非線性壓電能量採集器zh_TW
dc.titleAn Inclined Self-Tuning Stretching-type Nonlinear Piezoelectric Energy Harvester with a Sliding Massen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee王建凱;陳蓉珊zh_TW
dc.contributor.oralexamcommitteeChien-Kai Wang;Jung-San Chenen
dc.subject.keyword壓電能量採集器,傾角自調頻結構,軸向拉伸結構,非線性硬化效應,zh_TW
dc.subject.keywordPiezoelectric energy harvester,Self-tuning structure with inclination,Axial stretching structure,Hardening effect,en
dc.relation.page82-
dc.identifier.doi10.6342/NTU202501446-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-07-02-
dc.contributor.author-college工學院-
dc.contributor.author-dept機械工程學系-
dc.date.embargo-lift2026-12-31-
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  此日期後於網路公開 2026-12-31
6.63 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved