Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97878
Title: 聯集封閉集合中的高頻元素
Frequent elements in union-closed set families
Authors: 吳尚昱
Saintan Wu
Advisor: 戴尚年
Shagnik Das
Keyword: 極值集合論,Frankl 猜想,聯集封閉集合,第k常見元素,亂度,
Extremal Set Theory,Frankl's Conjecture,Union-Closed Family,kth frequency,Entropy,
Publication Year : 2025
Degree: 碩士
Abstract: 聯集封閉集合猜想(Union-Closed Sets Conjecture)提出:對於任意一個聯集封閉的集合族 $\F$,是否總存在一個元素,包含於至少一半的集合中。2022 年,Nagel 推出此猜想的一個推廣版本,提出在一個聯集封閉集合族中,第 $k$ 常出現的元素應出現在至少 $\frac{1}{2^{k-1} + 1} |\F|$ 個集合中。

本文結合了 Gilmer 的亂度法與 Knill 的組合論證,證明了對於所有 $k \ge 2$,Nagel 的推廣猜想皆成立。此外,我們亦證明,當 $|\F| \to \infty$ 時,第 $k$ 常見的元素至少會出現在 $\left( \frac{3 - \sqrt{5}}{2} - o(1) \right) |\F|$ 個集合中,反映出聯集封閉集合猜想近期研究所取得的進展。
The Union-Closed Sets Conjecture asks whether every union-closed set family $\F$ has an element contained in $\frac12 |\F|$ of its sets. In 2022, Nagel posed a generalisation of this problem, suggesting that the $k$th most popular element in a union-closed set family must be contained in at least $\frac{1}{2^{k-1} + 1} |\F|$ sets.

We combine the entropic method of Gilmer with the combinatorial arguments of Knill to show that this is indeed the case for all $k \ge 2$. Furthermore, we show that when $|\F| \to \infty$, the $k$th most frequent element will appear in at least $\left( \frac{3 - \sqrt{5}}{2} - o(1) \right) |\F|$ sets, reflecting the recent progress made for the Union-Closed Set Conjecture.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97878
DOI: 10.6342/NTU202501098
Fulltext Rights: 同意授權(全球公開)
metadata.dc.date.embargo-lift: 2025-07-22
Appears in Collections:數學系

Files in This Item:
File SizeFormat 
ntu-113-2.pdf634.9 kBAdobe PDFView/Open
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved