請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97792完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳嘉文 | zh_TW |
| dc.contributor.advisor | Kevin C.-W. Wu | en |
| dc.contributor.author | 翁在萱 | zh_TW |
| dc.contributor.author | Tzay-Shiuan Ueng | en |
| dc.date.accessioned | 2025-07-16T16:16:45Z | - |
| dc.date.available | 2025-07-17 | - |
| dc.date.copyright | 2025-07-16 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-10 | - |
| dc.identifier.citation | [1] Diegelmann, R. F.; Evans, M. C., Wound healing: an overview of acute, fibrotic and delayed healing. Front. biosci. 2004, 9, 283-289.
[2] Nurden, A. T.; Nurden, P.; Sanchez, M.; Andia, I.; Anitua, E., Platelets and wound healing. Front. Biosci. 2008, 13, 3532-3548. [3] Gonzalez, A. C. d. O.; Costa, T. F.; Andrade, Z. d. A.; Medrado, A. R. A. P., Wound healing-A literature review. An. Bras. Dermatol. 2016, 91, 614-620. [4] Gabbiani, G., The myofibroblast in wound healing and fibrocontractive diseases. J. Pathol. 2003, 200, 500-503. [5] Desmoulière, A.; Chaponnier, C.; Gabbiani, G., Tissue repair, contraction, and the myofibroblast. Wound Repair Regen. 2005, 13, 7-12. [6] Chen, D.; Li, Q.; Zhang, H.; Kou, F.; Li, Q.; Lyu, C.; Wei, H., Traditional Chinese medicine for hypertrophic scars—A review of the therapeutic methods and potential effects. Front. Pharmacol. 2022, 13, 1025602. [7] Shih, B.; Garside, E.; McGrouther, D. A.; Bayat, A., Molecular dissection of abnormal wound healing processes resulting in keloid disease. Wound Repair Regen. 2010, 18, 139-153. [8] Wight, T. N.; Potter-Perigo, S., The extracellular matrix: an active or passive player in fibrosis? Am. J. Physiol.-Gastr. L. Physiology 2011, 301, G950-G955. [9] Gauglitz, G. G.; Korting, H. C.; Pavicic, T.; Ruzicka, T.; Jeschke, M. G., Hypertrophic scarring and keloids: pathomechanisms and current and emerging treatment strategies. Mol. Med. 2011, 17, 113-125. [10] Ehrlich, H. P.; Desmoulière, A.; Diegelmann, R. F.; Cohen, I. K.; Compton, C. C.; Garner, W. L.; Kapanci, Y.; Gabbiani, G., Morphological and immunochemical differences between keloid and hypertrophic scar. Am. J. Pathol. 1994, 145, 105. [11] Penn, J. W.; Grobbelaar, A. O.; Rolfe, K. J., The role of the TGF-β family in wound healing, burns and scarring: a review. Int. J. Burns Trauma 2012, 2, 18. [12] Ghazawi, F. M.; Zargham, R.; Gilardino, M. S.; Sasseville, D.; Jafarian, F., Insights into the pathophysiology of hypertrophic scars and keloids: how do they differ? Adv. Skin Wound Care 2018, 31, 582-595. [13] Burd, A., So what is a keloid scar? J. Plast. Reconstr. Aesthet. Surg. 2008, 61, 1-3. [14] Berman, B.; Maderal, A.; Raphael, B., Keloids and hypertrophic scars: pathophysiology, classification, and treatment. Dermatol. Surg. 2017, 43, S3-S18. [15] Morelli Coppola, M.; Salzillo, R.; Segreto, F.; Persichetti, P., Triamcinolone acetonide intralesional injection for the treatment of keloid scars: patient selection and perspectives. Clin. Cosmet. Investig. Dermatol. 2018, 387-396. [16] Berman, B.; Bieley, H. C., Adjunct therapies to surgical management of keloids. Dermatol. Surg. 1996, 22, 126-130. [17] Ogawa, R., The most current algorithms for the treatment and prevention of hypertrophic scars and keloids: a 2020 update of the algorithms published 10 years ago. Plast. Reconstr. Surg. 2022, 149, 79e-94e. [18] Yang, J.; Yang, Y. W., Metal-organic frameworks for biomedical applications. Small 2020, 16, 1906846. [19] Liu, X.; Liang, T.; Zhang, R.; Ding, Q.; Wu, S.; Li, C.; Lin, Y.; Ye, Y.; Zhong, Z.; Zhou, M., Iron-based metal-organic frameworks in drug delivery and biomedicine. ACS Appl. Mater. Inter. 2021, 13, 9643-9655. [20] Quijia, C. R.; Lima, C.; Silva, C.; Alves, R. C.; Frem, R.; Chorilli, M., Application of MIL-100 (Fe) in drug delivery and biomedicine. J. Drug Deliv. Sci. Tec. 2021, 61, 102217. [21] Bellido, E.; Guillevic, M.; Hidalgo, T.; Santander-Ortega, M. J.; Serre, C.; Horcajada, P., Understanding the colloidal stability of the mesoporous MIL-100 (Fe) nanoparticles in physiological media. Langmuir 2014, 30, 5911-5920. [22] Duscher, D.; Neofytou, E.; Wong, V. W.; Maan, Z. N.; Rennert, R. C.; Inayathullah, M.; Januszyk, M.; Rodrigues, M.; Malkovskiy, A. V.; Whitmore, A. J., Transdermal deferoxamine prevents pressure-induced diabetic ulcers. P. Natl. Acad. Sci. 2015, 112, 94-99. [23] Patel, A. V.; Shah, B. N., TRANSDERMAL DRUG DELIVERY SYSTEM: A REVIEW. Pharma Sci. Monit. 2018, 9. [24] Jeong, W. Y.; Kwon, M.; Choi, H. E.; Kim, K. S., Recent advances in transdermal drug delivery systems: A review. Biomater. Res. 2021, 25, 1-15. [25] Lee, I. C.; Lin, W. M.; Shu, J. C.; Tsai, S. W.; Chen, C. H.; Tsai, M. T., Formulation of two‐layer dissolving polymeric microneedle patches for insulin transdermal delivery in diabetic mice. J. Biomed. Mater. Res. A 2017, 105, 84-93. [26] Trommer, H.; Neubert, R., Overcoming the stratum corneum: the modulation of skin penetration: a review. Skin Pharmacol. Phys. 2006, 19, 106-121. [27] McCrudden, M. T.; McAlister, E.; Courtenay, A. J.; González-Vázquez, P.; Raj Singh, T. R.; Donnelly, R. F., Microneedle applications in improving skin appearance. Exp. Dermatol. 2015, 24, 561-566. [28] Tuan-Mahmood, T.-M.; McCrudden, M. T.; Torrisi, B. M.; McAlister, E.; Garland, M. J.; Singh, T. R. R.; Donnelly, R. F., Microneedles for intradermal and transdermal drug delivery. Eur. J. Pharm. Sci. 2013, 50, 623-637. [29] Golshirazi, A.; Mohammadzadeh, M.; Labbaf, S., The Synergistic Potential of Hydrogel Microneedles and Nanomaterials: Breaking Barriers in Transdermal Therapy. Macromol. Biosci. 2025, 25, 2400228. [30] Park, J.-H.; Allen, M. G.; Prausnitz, M. R., Biodegradable polymer microneedles: fabrication, mechanics and transdermal drug delivery. J. Control. Release 2005, 104, 51-66. [31] Singh, P.; Carrier, A.; Chen, Y.; Lin, S.; Wang, J.; Cui, S.; Zhang, X., Polymeric microneedles for controlled transdermal drug delivery. J. Control. Release 2019, 315, 97-113. [32] Kandavilli, S.; Nair, V.; Panchagnula, R., Polymers in transdermal drug delivery systems. Pharm. Technol. 2002, 26, 62-81. [33] Donnelly, R. F.; Singh, T. R. R.; Garland, M. J.; Migalska, K.; Majithiya, R.; McCrudden, C. M.; Kole, P. L.; Mahmood, T. M. T.; McCarthy, H. O.; Woolfson, A. D., Hydrogel-forming microneedle arrays for enhanced transdermal drug delivery. Adv. Funct. Mater. 2012, 22, 4879-4890. [34] Jain, N.; Singh, V. K.; Chauhan, S., A review on mechanical and water absorption properties of polyvinyl alcohol based composites/films. J. Mech. Behav. Mater. 2017, 26, 213-222. [35] Kumar, A.; Han, S. S., PVA-based hydrogels for tissue engineering: A review. Int. J. Polym. Mater. Polym. Biomater. 2017, 66, 159-182. [36] Wu, Y.; Xiang, Y.; Fang, J.; Li, X.; Lin, Z.; Dai, G.; Yin, J.; Wei, P.; Zhang, D., The influence of the stiffness of GelMA substrate on the outgrowth of PC12 cells. Biosci. Rep. 2019, 39, BSR20181748. [37] Ling, M.-H.; Chen, M.-C., Dissolving polymer microneedle patches for rapid and efficient transdermal delivery of insulin to diabetic rats. Acta Biomater. 2013, 9, 8952-8961. [38] Dadfar, S. M. M.; Kavoosi, G., Mechanical and water binding properties of carboxymethyl cellulose/multiwalled carbon nanotube nanocomposites. Polym. Composite. 2015, 36, 145-152. [39] Chen, M.-C.; Huang, S.-F.; Lai, K.-Y.; Ling, M.-H., Fully embeddable chitosan microneedles as a sustained release depot for intradermal vaccination. Biomaterials 2013, 34, 3077-3086. [40] Wang, L.; Chen, Q.; Yarlagadda, P. K.; Zhu, F.; Li, Q.; Li, Z., Single-parameter mechanical design of a 3D-printed octet truss topological scaffold to match natural cancellous bones. Mater. Design 2021, 209, 109986. [41] Wang, M.; Hu, L.; Xu, C., Recent advances in the design of polymeric microneedles for transdermal drug delivery and biosensing. Lab Chip 2017, 17, 1373-1387. [42] Peng, X.; Huang, J.; Qin, L.; Xiong, C.; Fang, J., A method to determine Young’s modulus of soft gels for cell adhesion. Acta Mech. Sinica 2009, 25, 565-570. [43] Taberlet, N.; Ferrand, J.; Camus, É.; Lachaud, L.; Plihon, N., How tall can gelatin towers be? An introduction to elasticity and buckling. Am. J. Phys. 2017, 85, 908-914. [44] Pinto, V.; Ramos, T.; Alves, S.; Xavier, J.; Tavares, P.; Moreira, P.; Guedes, R. M., Comparative failure analysis of PLA, PLA/GNP and PLA/CNT-COOH biodegradable nanocomposites thin films. Procedia Engineer. 2015, 114, 635-642. [45] Chen, W.; Wang, C.; Yan, L.; Huang, L.; Zhu, X.; Chen, B.; Sant, H. J.; Niu, X.; Zhu, G.; Yu, K., Improved polyvinylpyrrolidone microneedle arrays with non-stoichiometric cyclodextrin. J. Mater. Chem. B 2014, 2, 1699-1705. [46] Zhang, F.; Shi, J.; Jin, Y.; Fu, Y.; Zhong, Y.; Zhu, W., Facile synthesis of MIL-100 (Fe) under HF-free conditions and its application in the acetalization of aldehydes with diols. Chem. Eng. J. 2015, 259, 183-190. [47] Simon, M. A.; Anggraeni, E.; Soetaredjo, F. E.; Santoso, S. P.; Irawaty, W.; Thanh, T. C.; Hartono, S. B.; Yuliana, M.; Ismadji, S., Hydrothermal synthesize of HF-free MIL-100 (Fe) for isoniazid-drug delivery. Sci. Rep. 2019, 9, 16907. [48] Le, B. T.; La, D. D.; Nguyen, P. T. H., Ultrasonic-assisted fabrication of MIL-100 (Fe) metal-organic frameworks as a carrier for the controlled delivery of the chloroquine drug. ACS Omega 2022, 8, 1262-1270. [49] Gorban, I. E.; Soldatov, M. A.; Butova, V. V.; Medvedev, P. V.; Burachevskaya, O. A.; Belanova, A.; Zolotukhin, P.; Soldatov, A. V., ᶫ-Leucine loading and release in MIL-100 nanoparticles. Int. J. Mol. Sci. 2020, 21, 9758. [50] Chen, G.; Leng, X.; Luo, J.; You, L.; Qu, C.; Dong, X.; Huang, H.; Yin, X.; Ni, J., In vitro toxicity study of a porous iron (III) metal-organic framework. Molecules 2019, 24, 1211. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97792 | - |
| dc.description.abstract | 皮膚纖維化是由於正常的傷口修復機制失調,導致過度膠原蛋白生成並形成異常疤痕。本研究提出一種具生物相容性的經皮藥物傳輸系統,將含鐵之有機金屬框架材料(MIL-100(Fe))結合於可溶性微針貼片中,並選用聚乙烯醇(PVA)或羧甲基纖維素鈉(CMC)作為基材。MIL-100(Fe)藉由微波輔助水熱法合成,並透過X光繞射(XRD)、掃描式電子顯微鏡(SEM)、穿透式電子顯微鏡(TEM)、氮氣吸附脫附測試與動態光散射(DLS)等技術進行結構與物性分析,結果證實其具備良好的結構完整性、形貌均勻性與穩定性。細胞毒性測試顯示,MIL-100(Fe)對人類蟹足腫纖維母細胞在最高至500 μg/mL的濃度下仍保有90%以上的細胞存活率,展現出優異的生物相容性。機械性質分析指出,7 wt%的CMC擁有較7 wt%的PVA更高的楊氏模數,但兩者皆需進一步優化以達成理想的皮膚穿透能力。豬皮體外實驗顯示,相較於固定力插入,施加瞬間手部壓力能有效提升微針穿透效果。綜合而言,本研究所開發之MIL-100(Fe)載藥微針系統具備局部、微創治療皮膚纖維化的潛力,未來可透過微針結構與材料成分的調整進一步優化其治療效果。 | zh_TW |
| dc.description.abstract | Skin fibrosis arises when normal wound repair becomes dysregulated, leading to excessive collagen production and the formation of abnormal scars. This study proposes a biocompatible transdermal delivery system that incorporates iron-based metal-organic frameworks (i.e., MIL-100(Fe)) into dissolvable microneedle patches made from polyvinyl alcohol (PVA) or sodium carboxymethyl cellulose (CMC). MIL-100(Fe) was synthesized through a microwave-assisted hydrothermal method, and it was characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), N2 adsorption/desorption, and dynamic light scattering (DLS) analyses. These characterizations confirmed its structure, uniform morphology, and good colloidal stability. Cytotoxicity tests conducted on human keloid fibroblasts indicated high cell viability of over 90% at concentrations up to 500 μg/mL, demonstrating excellent biocompatibility. Mechanical analysis showed that 7 wt% CMC exhibited a higher Young’s modulus than 7 wt% PVA. However, both polymers will require further optimization to ensure complete skin penetration. In vitro tests on porcine skin revealed that applying microneedles with manual pressure resulted in better insertion compared to a constant-force application. Overall, the MIL-100(Fe)-loaded microneedle system offers a promising strategy for the localized, minimally invasive treatment of skin fibrosis, with potential for further refinement in both structure and composition. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-16T16:16:45Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-07-16T16:16:45Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 i
致謝 ii 摘要 iii Abstract iv Table of Contents vi List of Figures x List of Tables xvi 1. Introduction 1 1.1. Skin fibrosis 1 1.1.1. Wound healing process 1 1.1.2. Abnormal scars 2 1.1.3. Current treatments 4 1.2. Metal-organic frameworks (MOFs) in biomedical applications 4 1.3. Transdermal drug delivery 6 1.4. Microneedle system 7 2. Literature Review 9 3. Objective 13 4. Experimental 15 4.1. Materials 15 4.2. Equipment 17 4.3. Cell line 19 4.4. Statistical analysis 19 4.5. Synthesis of MIL-100(Fe) 19 4.6. Microneedle patches 20 4.6.1. 3D-printed mold 20 4.6.2. Resin container 21 4.6.3. PDMS mold 22 4.6.4. Centrifuge tube 23 4.6.5. General procedure for fabricating microneedle patches 23 4.6.6. Washing process for PDMS negative molds 24 4.6.7. In vitro test for drug release depth in porcine skin 25 4.7. Characterization 26 4.7.1. X-ray diffractometer (XRD) 26 4.7.2. Dynamic light scattering (DLS) 27 4.7.3. Specific surface area 27 4.7.4. Cold-field emission scanning electron microscope (CFE-SEM) 28 4.7.5. Transmission electron microscope (TEM) 28 4.7.6. Optical microscope (OM) 28 4.7.7. Cytotoxicity assay 29 4.7.8. Dynamic mechanical analysis (DMA) 30 4.7.9. Confocal laser scanning microscope (CLSM) 31 5. Results and Discussion 32 5.1. Synthesis and characterization of MIL-100(Fe) 32 5.2. Biocompatibility of MIL-100(Fe) 39 5.3. Young’s modulus of the needle part of the microneedle patch 42 5.4. Morphology of the microneedle patch 45 5.4.1. Microneedle patches composed of 7 wt% PVA with a needle length of 0.3 mm 45 5.4.2. Microneedle patches composed of 7 wt% PVA with a needle length of 1.5 mm 47 5.4.3. Microneedle patches composed of 7 wt% PVA with a needle length of 2.0 mm 49 5.4.4. Microneedle patches composed of 7 wt% CMC with a needle length of 0.3 mm 50 5.4.5. Microneedle patches composed of 7 wt% CMC with a needle length of 1.5 mm 52 5.4.6. Microneedle patches composed of 7 wt% CMC with a needle length of 2.0 mm 53 5.5. In vitro test for drug release depth in porcine skin 55 5.5.1. Insertion performance of 7 wt% PVA microneedles with varying lengths 55 5.5.2. Insertion performance of 7 wt% CMC microneedles with varying lengths 58 5.5.3. Insertion performance of microneedle patches applied with manual pressure 61 6. Conclusion 63 7. Future Work 65 References 66 | - |
| dc.language.iso | en | - |
| dc.subject | 有機金屬框架 | zh_TW |
| dc.subject | MIL-100(Fe) | zh_TW |
| dc.subject | 經皮藥物輸送 | zh_TW |
| dc.subject | 微針 | zh_TW |
| dc.subject | 皮膚纖維化 | zh_TW |
| dc.subject | MIL-100(Fe) | en |
| dc.subject | Skin fibrosis | en |
| dc.subject | microneedle | en |
| dc.subject | transdermal drug delivery | en |
| dc.subject | metal-organic frameworks (MOFs) | en |
| dc.title | 含鐵有機金屬框架結合具生物相容性之微針系統於局部經皮應用 | zh_TW |
| dc.title | Biocompatible Microneedle Systems Loaded with Iron-Based Metal-Organic Frameworks for Localized Transdermal Application | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 高煌凱;李亦淇;莊爾元;陳靖昀 | zh_TW |
| dc.contributor.oralexamcommittee | Huang-Kai Kao;I-Chi Lee;Andrew E.-Y. Chuang;Ching-Yun Chen | en |
| dc.subject.keyword | 皮膚纖維化,微針,經皮藥物輸送,有機金屬框架,MIL-100(Fe), | zh_TW |
| dc.subject.keyword | Skin fibrosis,microneedle,transdermal drug delivery,metal-organic frameworks (MOFs),MIL-100(Fe), | en |
| dc.relation.page | 73 | - |
| dc.identifier.doi | 10.6342/NTU202501655 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-07-14 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 化學工程學系 | - |
| dc.date.embargo-lift | 2025-07-17 | - |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 3.27 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
