請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97772完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳時欣 | zh_TW |
| dc.contributor.advisor | Shih-Hsin Chen | en |
| dc.contributor.author | 施姵綺 | zh_TW |
| dc.contributor.author | Pei-Chi Shih | en |
| dc.date.accessioned | 2025-07-16T16:13:03Z | - |
| dc.date.available | 2025-07-17 | - |
| dc.date.copyright | 2025-07-16 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-06-13 | - |
| dc.identifier.citation | 網頁:
Data Bridge Market Research. (2023). Plant-based milk market to perceive highest growth of USD 50,066.21 million by 2030. Retrieved from https://reurl.cc/aeDyOX (May, 2024) Global Market Insights. (2023). Plant milk market size - By source, distribution channel, formulation, packaging, regional outlook & forecast, 2024–2032. Retrieved from https://www.gminsights.com/industry-analysis/plant-milk-market (May, 2024) 中文: 陳泓維。2024。陽離子滲透促發技術對預熟發芽米之營養組成影響,國立臺灣大學食品科技研究所碩士論文,台北,臺灣。 林靖雯。2017。預熟製程對稻米性質的影響。國立宜蘭大學食品科學系碩士論文。宜蘭,臺灣。 楊嘉凌、鄭佳綺、許志聖(2012)。亞洲國家稻米生產概況。臺中區農業專訊。第76期。 楊嘉凌、鄭佳綺、王柏蓉、吳以健(2016)。台灣多樣化的水稻品種及硬秈稻米生產現況。臺中區農業專訊。第94期。 王柏蓉、鄧執庸、陳明芬(2019)。提升糧食自給率之臺灣多元米製產品研發。臺中區農業專訊。第106期。 鄧執庸(2020)。稻米品質與營養。臺中區農業專訊。第111期。 鄭佳綺(2022)。水稻栽培有效的用水管理-精準整地與田區整備。農業新知。第269期。 吳以健(2023)。稻米生產如何減碳?加工碾米也有機會。臺中區農情月刊。第281期。 糧食平衡表(2024)。農業部糧食供需年報。民國112年。 英文: AACC. (2000). Approved method of the American Association of Cereal Chemists (10th ed.). Method 74-09. The Association, St. Paul, Minnesota, USA. Ahmed, Z., Forsido, S. F., Kuyu, C. G., & Keyata, E. O. (2023). Optimization of soaking conditions (temperature and time) on physicochemical properties of selected parboiled rice varieties grown in Eastern Ethiopia. Food Science Nutrition, 11 (6), 3171-3183. https://doi.org/10.1002/fsn3.3298 Arjharn, W., Chatchavanthatri, N., Junyusen, T., Moolkaew, P., Arjharn, W., Junyusen, P., Junyusen, P., Treeamnuk, T., & Junyusen, T. (2020). Effect of soaking and sprouting treatment on germination rate of paddy. E3S Web of Conferences, 187. https://doi.org/10.1051/e3sconf/202018704016 Asiah, N., David, W., Ardiansyah & Madonna, S. (2019). Review on pesticide residue on rice. International Conference on Food Science and Technology, 379, 012008. https://iopscience.iop.org/article/10.1088/1755-1315/379/1/012008 Astrain-Redin, L., Alejandre, M., Raso, J., Cebrian, G., & Alvarez, I. (2021). Direct contact ultrasound in food processing: impact on food quality. Frontiers in Nutrition, 8, 633070. https://doi.org/10.3389/fnut.2021.633070 Auteri, M., Zizzo, M. G., & Serio, R. (2015). GABA and GABA receptors in the gastrointestinal tract: From motility to inflammation. Pharmacological Research, 11, 21. https://doi.org/10.1016/j.phrs.2014.12.001 Aydar, E. F., Tutuncu, S., & Ozcelik, B. (2020). Plant-based milk substitutes: Bioactive compounds, conventional and novel processes, bioavailability studies, and health effects. Journal of Functional Foods, 70. https://doi.org/10.1016/j.jff.2020.103975 Babolanimogadam, N., Gandomi, H., Basti, A. A., & Taherzadeh, M. J. (2022). Nutritional, functional, and sensorial properties of oat milk produced by single and combined acid, alkaline, α-amylase, and sprouting treatments. Food Science & Nutrition, 10, 1002. https://doi.org/10.1002/fsn3.3171 Bagchi, T. B., Das, B., Kumar, A., Kumar, G., Banerjee, J., Gain, H., Adhikari, A. A., & Chattopadhyay, K. (2023). Impact of cooking, parboiling and fermentation on nutritional components, predicted glycemic index and pasting properties of rice. Journal of Cereal Science, 114. https://doi.org/10.1016/j.jcs.2023.103763 Bakken, A. K., Daugstad, K., Johansen, A., Hjelkrem, A.-G. R., Fystro, G., Strømman, A. H., & Korsaeth, A. (2017). Environmental impacts along intensity gradients in Norwegian dairy production as evaluated by life cycle assessments. Agricultural Systems, 158, 50-60. https://doi.org/10.1016/j.agsy.2017.09.001 Balbinoti, T. C. V., Nicolin, D. J., de Matos Jorge, L. M., & Matos Jorge, R. M. (2018). Parboiled rice and parboiling process. Food Engineering Reviews, 10, 165–185. https://doi.org/10.1007/s12393-018-9177-y Baldini, C., Gardoni, D., & Guarino, M. (2017). A critical review of the recent evolution of Life Cycle Assessment applied to milk production. Journal of Cleaner Production, 140, 421-435. https://doi.org/10.1016/j.jclepro.2016.06.078 Bauer, B. A., Hartmann, M., Sommer, K., & Knorr, D. (2004). Optical in situ analysis of starch granules under high pressure with a high pressure cell. Innovative Food Science & Emerging Technologies, 5 (3), 293-298. https://doi.org/10.1016/j.ifset.2004.04.002 Beaulieu, J. C., Boue, S. M., & Goufo, P. (2022). Health-promoting germinated rice and value-added foods: A comprehensive and systematic review of germination effects on brown rice. Critical Reviews in Food Science and Nutrition, 63, 11570–11603. https://doi.org/10.1080/10408398.2022.2094887 Bewley, J. D. (1997). Seed germination and dormancy. The Plant Cell, 9, 1055–1066. https://doi.org/10.1105/tpc.9.7.1055 Bhar, S., Bose, T., Dutta, A., & Mande, S. S. (2022). A perspective on the benefits of consumption of parboiled rice over brown rice for glycaemic control. European Journal of Nutrition, 61 (2), 615-624. https://doi.org/10.1007/s00394-021-02694-x Chakraborty, I., Govindaraju, I., Kunnel, S., Managuli, V., & Mazumder, N. (2023). Effect of storage time and temperature on digestibility, thermal, and rheological properties of retrograded rice. Gels, 9, 142. https://doi.org/10.3390/gels9020142 Chatchavanthatri, N., Junyusen, T., Arjharn, W., Treeamnuk, T., Junyusen, P., & Pakawanit, P. (2021). Effects of parboiling and infrared radiation drying on the quality of germinated brown rice. Journal of Food Processing and Preservation, 45, 15892. https://doi.org/10.1111/jfpp.15892 Chemat, F., Zill e, H., & Khan, M. K. (2011). Applications of ultrasound in food technology: Processing, preservation and extraction. Ultrason Sonochem, 18 (4), 813-835. https://doi.org/10.1016/j.ultsonch.2010.11.023 Chen, B. J., Wang, X., Liu, H. R., Zhang, Y., Wu, S. H., Wang, C. F., Liu, C. X., & Qiao, Y. J. (2024). Effect of ultrasound-assisted enzyme pretreatment on γ-aminobutyric acid content, eating quality and starch properties of germinated brown rice. Journal of Cereal Science, 117. https://doi.org/10.1016/j.jcs.2024.103904 Chen, G., & Tao, D. (2005). An experimental study of stability of oil–water emulsion. Fuel Processing Technology, 86 (5), 499-508. https://doi.org/10.1016/j.fuproc.2004.03.010 Cheryan, M. (1980). Phytic acid interactions in food systems. Critical Reviews in Food Science and Nutrition, 13 (4), 297-335. https://doi.org/10.1080/10408398009527293 Chenlo, F., Moreira, R., Pereira, G., Ampudia, A. (2002). Viscosities of aqueous solutions of sucrose and sodium chloride of interest in osmotic dehydration processes. Journal of Food Engineering, 54, 347352. https://doi.org/10.1016/S0260-8774(01)00221-7 Cummins, I., Dixon, D. P., Freitag-Pohl, S., Skipsey, M., & Edwards, R. (2011). Multiple roles for plant glutathione transferases in xenobiotic detoxification. Drug Metabolism Reviews, 43 (2), 266-280. https://doi.org/10.3109/03602532.2011.552910 Dang, Y., Otsubo, T., Iwamoto, S., & Katsuno, N. (2025). Unraveling the changes of physical properties and nanostructures of rice starch incorporated with pregelatinized rice starch paste during gelatinization. Food Hydrocolloids, 162. https://doi.org/10.1016/j.foodhyd.2024.110931 Dalbhagat, C. G., Nithya, A., Mandliya, S., Vishwakarma, S., & Mishra, H. N. (2024). Effect of microwave drying and tempering on color attributes, fissure formation, and cooking characteristics of fortified rice kernels. Journal of Food Science and Technology, 61, 706–716. https://doi.org/10.1007/s13197-023-05871-4 Das, M., Banerjee, R., & Bal, S. (2008). Evaluation of physicochemical properties of enzyme treated brown rice (Part B). Food Science and Technology, 41 (10), 2092–2096. https://doi.org/10.1016/j.lwt.2007.11.018 da Silva, L. R., Velasco, J. I., & Fakhouri, F. M. (2023). Use of rice on the development of plant-based milk with antioxidant properties: From raw material to residue. LWT, 173, 114271. https://doi.org/10.1016/j.lwt.2022.114271 Derycke, V., Vandeputte, G. E., Vermeylen, R., De Man, W., Goderis, B., Koch, M. H. J., & Delcour, J. A. (2005). Starch gelatinization and amylose–lipid interactions during rice parboiling investigated by temperature resolved wide angle X-ray scattering and differential scanning calorimetry. Journal of Cereal Science, 42 (3), 334-343. https://doi.org/10.1016/j.jcs.2005.05.002 Deswal, A., Deora, N. S., & Mishra, H. N. (2013). Optimization of enzymatic production process of oat milk using response surface methodology. Food and Bioprocess Technology, 7 (2), 610-618. https://doi.org/10.1007/s11947-013-1144-2 Ding, J., Ulanov, A. V., Dong, M., Yang, T., Nemzer, B. V., Xiong, S., Zhao, S., & Feng, H. (2018). Enhancement of gamma-aminobutyric acid (GABA) and other health-related metabolites in germinated red rice (Oryza sativa L.) by ultrasonication. Ultrasonics Sonochemistry, 40, 791–797. https://doi.org/10.1016/j.ultsonch.2017.08.029 do Nascimento, L. Á., Abhilasha, A., Singh, J., Elias, M. C., & Colussi, R. (2022). Rice Germination and Its Impact on Technological and Nutritional Properties: A Review. Rice Science, 29 (3), 201-215. https://doi.org/10.1016/j.rsci.2022.01.009 do Nascimento, L. Á., Heberle, T., Wang, Y.-J., Vanier, N. L., Elias, M. C., Mesko, M. F., & Colussi, R. (2024). Rice grain germination: A review of its impact on technological properties and development of new food products. Trends in Food Science & Technology, 150. https://doi.org/10.1016/j.tifs.2024.104600 Drewnowski, A., Henry, C. J., & Dwyer, J. T. (2021). Proposed Nutrient Standards for Plant-Based Beverages Intended as Milk Alternatives. Frontiers in Nutrition, 8, 761442. https://doi.org/10.3389/fnut.2021.761442 Durand, A., Franks, G. V., & Hosken, R. W. (2003). Particle sizes and stability of UHT bovine, cereal and grain milks. Food Hydrocolloids, 17 (5), 671-678. https://doi.org/10.1016/s0268-005x(03)00012-2 Dutta, H., Mahanta, C. L., Singh, V., Das, B. B., & Rahman, N. (2016). Physical, physicochemical and nutritional characteristics of Bhoja chaul, a traditional ready-to-eat dry heat parboiled rice product processed by an improvised soaking technique. Food Chemistry, 191, 152-162. https://doi.org/10.1016/j.foodchem.2014.10.144 Feng, D., Yin, S., Wen, X., & Jing, P. (2024). Heat treatment improves the dispersion stability of rice bran milk through changing the settling behavior. Food Chemistry, 450, 139348. https://doi.org/10.1016/j.foodchem.2024.139348 Fu, D., Wu, W., Mustafa, G., Yang, Y., & Yang, P. (2025). Molecular mechanisms of rice seed germination. New Crops, 2. https://doi.org/10.1016/j.ncrops.2024.100051 Ghosh, S., Datta, K., & Datta, S. K. (2019). Rice vitamins. In J. Bao (Ed.), Rice (4th ed., pp. 195–220). AACC International Press. https://doi.org/10.1016/C2016-0-01526-7 Gong, E. S., Luo, S. J., Li, T., Liu, C. M., Zhang, G. W., Chen, J., Zeng, Z. C., & Liu, R. H. (2017). Phytochemical profiles and antioxidant activity of brown rice varieties. Food Chemistry, 227, 432-443. https://doi.org/10.1016/j.foodchem.2017.01.093 Gujral, H. S., Singh, J., Sodhi, N. S., & Singh, N. (2002). Effect of milling variables on the degree of milling of unparboiled and parboiled rice. International Journal of Food Properties, 5 (1), 193-204. https://doi.org/10.1081/jfp-120015601 Guo, J., & Kong, L. (2022). Enhancement of enzymatic resistance in V-type starch inclusion complexes by hydrothermal treatments. Food Hydrocolloids, 127. https://doi.org/10.1016/j.foodhyd.2022.107533 Gupta, R., Gigras, P., Mohapatra, H., Goswami, V. K., & Chauhan, B. (2003). Microbial α-amylases: a biotechnological perspective. Process Biochemistry, 38 (11), 1599-1616. https://doi.org/10.1016/s0032-9592(03)00053-0 Hoogenkamp, H., Kumagai, H., & Wanasundara, J. P. D. (2017). Rice protein and rice protein products. In S. R. Nadathur, J. P. D. Wanasundara, & L. Scanlin (Eds.), Sustainable protein sources (pp. 47–65). Academic Press. 10.1016/B978-0-12-802778-3.00003-2 Hu, Z., Shao, Y., Lu, L., Fang, C., Hu, X., & Zhu, Z. (2019). Effect of germination and parboiling treatment on distribution of water molecular, physicochemical profiles and microstructure of rice. Journal of Food Measurement and Characterization, 13 (3), 1898–1906. https://doi.org/10.1007/s11694-019-00108-5 Hu, Z., Tang, X., Liu, J., Zhu, Z., & Shao, Y. (2017). Effect of parboiling on phytochemical content, antioxidant activity and physicochemical properties of germinated red rice. Food Chemistry, 214, 285–292. https://doi.org/10.1016/j.foodchem.2016.07.097 Hussain, S., Zheng, M., Khan, F., Khaliq, A., Fahad, S., Peng, S., Huang, J., Cui, K., & Nie, L. (2015). Benefits of rice seed priming are offset permanently by prolonged storage and the storage conditions. Scientific Reports, 5 (1), 1–12. https://doi.org/10.1038/srep08101 Islam, M. Z., Shim, M. J., Jeong, S. Y., & Lee, Y. T. (2022). Effects of soaking and sprouting on bioactive compounds of black and red pigmented rice cultivars. International Journal of Food Science & Technology, 57 (1), 201–209. https://doi.org/10.1111/ijfs.15105 Jacobo-Velázquez, D. A., Cuéllar-Villarreal, M. d. R., Welti-Chanes, J., Cisneros-Zevallos, L., Ramos-Parra, P. A., & Hernández-Brenes, C. (2017). Nonthermal processing technologies as elicitors to induce the biosynthesis and accumulation of nutraceuticals in plant foods. Trends in Food Science & Technology, 60, 80-87. https://doi.org/10.1016/j.tifs.2016.10.021 James, J. A., & Lee, B. H. (1997). Glucoamylases: microbial sources, industrial applications and molecular biology ? A review. Journal of Food Biochemistry, 21 (6), 1-52. https://doi.org/10.1111/j.1745-4514.1997.tb00223.x Jannoey, P., Niamsup, H., Lumyong, S., Suzuki, T., Katayama, T., & Chairote, G. (2010). Comparison of gamma-aminobutyric acid production in Thai rice grains. World Journal of Microbiology and Biotechnology, 26 (2), 257–263. 10.1007/s11274-009-0168-2 Jeong, E., Abdellaoui, N., Lim, J. Y., & Seo, J. A. (2024). The presence of a significant endophytic fungus in mycobiome of rice seed compartments. Scientific Reports, 14 (1), 23367. https://doi.org/10.1038/s41598-024-73550-1 Jeske, S., Zannini, E., & Arendt, E. K. (2017). Evaluation of physicochemical and glycaemic properties of commercial plant-based milk substitutes. Plant Foods for Human Nutrition, 72 (1), 26-33. https://doi.org/10.1007/s11130-016-0583-0 Jeske, S., Zannini, E., & Arendt, E. K. (2018). Past, present and future: The strength of plant-based dairy substitutes based on gluten-free raw materials. Food Research International, 110, 42-51. https://doi.org/10.1016/j.foodres.2017.03.045 Jiamyangyuen, S., & Ooraikul, B. (2008). The physico-chemical, eating and sensorial properties of germinated brown rice. Journal of Food, Agriculture & Environment, 6 (2), 119–124. https://reurl.cc/0KeAR6 Jittanit, W., & Angkaew, K. (2020). Effect of superheated-steam drying compared to conventional parboiling on chalkiness, head rice yield and quality of chalky rice kernels. Journal of Stored Products Research, 87. https://doi.org/10.1016/j.jspr.2020.101627 Johari, M. A., & Khong, H. Y. (2019). Total phenolic content and antioxidant and antibacterial activities of Pereskia bleo. Advances in Pharmacological and Pharmaceutical Science, 7428593. https://doi.org/10.1155/2019/7428593 Jorgensen, A. D., Nohr, J., Kastrup, J. S., Gajhede, M., Sigurskjold, B. W., Sauer, J., Svergun, D. I., Svensson, B., & Vestergaard, B. (2008). Small angle X-ray studies reveal that Aspergillus niger glucoamylase has a defined extended conformation and can form dimers in solution. Journal of Biological Chemistry, 283 (21), 14772-14780. https://doi.org/10.1074/jbc.M801709200 Juliano, B. O., & Tuaño, A. P. P. (2019). Gross structure and composition of the rice grain. Rice, 31-53. https://doi.org/10.1016/b978-0-12-811508-4.00002-2 Kaushik, G., Satya, S., & Naik, S. N. (2009). Food processing a tool to pesticide residue dissipation – A review. Food Research International, 42 (1), 26-40. https://doi.org/10.1016/j.foodres.2008.09.009 Khandpur, P. & Gogate, P. R. (2016). Evaluation of ultrasound based sterilization approaches in terms of shelf life and quality parameters of fruit and vegetable juices. Ultrasonics Sonochemistry, 337-353. https://doi.org/10.1016/j.ultsonch.2015.10.008 Khanpit, V., Viswanathan, S., & Hinrichsen, O. (2024). Environmental impact of animal milk vs plant-based milk: Critical review. Journal of Cleaner Production, 449. https://doi.org/10.1016/j.jclepro.2024.141703 Kim, M. S., Ko, S. R., Le, V. T., Jee, M. G., Jung, Y. J., Kang, K. K., & Cho, Y. G. (2022). Development of SNP markers from GWAS for selecting seed coat and aleurone layers in brown rice (Oryza sativa L.). Genes (Basel), 13 (10). https://doi.org/10.3390/genes13101805 Kim, S. H., Yang, Y. J., & Chung, I. M. (2020). The effect of degree of milling on the nutraceutical content in ecofriendly and conventional rice (Oryza sativa L.). Foods, 9 (9). 10.3390/foods9091297 Kittibunchakul, S., Yuthaworawit, N., Whanmek, K., Suttisansanee, U., & Santivarangkna, C. (2021). Health beneficial properties of a novel plant-based probiotic drink produced by fermentation of brown rice milk with GABA-producing Lactobacillus pentosus isolated from Thai pickled weed. Journal of Functional Foods, 86. https://doi.org/10.1016/j.jff.2021.104710 Knorr, D., Zenker, M., Heinz, V., & Lee, D.U. (2004). Applications and potential of ultrasonics in food processing. Trends in Food Science & Technology, 15 (5), 261-266. https://doi.org/10.1016/j.tifs.2003.12.001 Koca, H. D., Doganay, S., Turgut, A., Tavman, I. H., Saidur, R., & Mahbubul, I. M. (2018). Effect of particle size on the viscosity of nanofluids: A review. Renewable and Sustainable Energy Reviews, 82, 1664-1674. https://doi.org/10.1016/j.rser.2017.07.016 Koh, W., Kwak, H., Cheong, E., & Lee, C. J. (2023). GABA tone regulation and its cognitive functions in the brain. Nature Reviews Neuroscience, 24 (9), 523-539. https://doi.org/10.1038/s41583-023-00724-7 Kraithong, S., Lee, S., & Rawdkuen, S. (2018). Physicochemical and functional properties of Thai organic rice flour. Journal of Cereal Science, 79, 259–266. https://doi.org/10.1016/j.jcs.2017.10.015 Kumar, A., Lal, M. K., Kar, S. S., Nayak, L., Ngangkham, U., Samantaray, S., & Sharma, S. G. (2017). Bioavailability of iron and zinc as affected by phytic acid content in rice grain. Journal of Food Biochemistry, 41 (6). https://doi.org/10.1111/jfbc.12413 Kumar, A., Lal, K. M., Nayak, S., Sahoo, U., Behera, A., Bagchi, B. T., Parameswaran, C., Swain, P., & Sharma, S. (2022). Effect of parboiling on starch digestibility and mineral bioavailability in rice (Oryza sativa L.). Food Science and Technology, 156, 113026. https://doi.org/10.1016/j.lwt.2021.113026 Kumar, P., & Satyanarayana, T. (2009). Microbial glucoamylases: characteristics and applications. Critical Reviews in Biotechnology, 29 (3), 225-255. https://doi.org/10.1080/07388550903136076 Le, P. H., Le, T. T., & Raes, K. (2020). Effects of pH and heat treatment on the stability of γ-aminobutyric acid (GABA) in germinated soymilk. Journal of Food Processing and Preservation, 44, e14301. https://doi.org/10.1111/jfpp.14301 Lee, J., Lim, K. T., Hong, J. H., Lee, Y. B., Rhee, C. O., Chung, J. H. (2006). Effects of ultrasound stimuli on acceleration of brown rice germination. Journal of Biosystems Engineering, 31 (6), 506-513. 10.5307/JBE.2006.31.6.506 Lee, Y. R., Lee, S. H., Jang, G. Y., Lee, Y. J., Kim, M. Y., Kim, Y. B., Lee, J., & Jeong, H. S. (2019). Antioxidative and antidiabetic effects of germinated rough rice extract in 3T3-L1 adipocytes and C57BLKS/J-db/db mice. Food & Nutrition Research, 63. https://doi.org/10.29219/fnr.v63.3603 Leethanapanich, K., Mauromoustakos, A., & Wang, Y. J. (2016). Impacts of parboiling conditions on quality characteristics of parboiled commingled rice. Journal of Cereal Science, 69, 283–289. https://doi.org/10.1016/j.jcs.2016.04.003 Li, K., Hu, G., Yu, S., Tang, Q., & Liu, J. (2018). Effect of the iron biofortification on enzymes activities and antioxidant properties in germinated brown rice. Journal of Food Measurement and Characterization, 12 (2), 789–799. https://doi.org/10.1007/s11694-017-9693-0 Li, J., Yang, S., Zhong, Z., Xia, T., Zhou, W., Tu, Z., Chen, Z., Wang, H., Dai, Z., Jin, G., & Du, Y. (2025). Effects of degree of milling on bran layer structure, physicochemical properties and cooking quality of brown rice. Food Chemistry, 462, 140847. https://doi.org/10.1016/j.foodchem.2024.140847 Li, L., Li, B., Qu, H., Tian, S., Xu, Z., Zhao, L., Li, X., & Liu, B. (2024). A new method based on melatonin-mediated seed germination to quickly remove pesticide residues and improve the nutritional quality of contaminated grains. PLOS One, 19 (5). https://doi.org/10.1371/journal.pone.0303040 Li, P., Chen, Y. H., Lu, J., Zhang, C. Q., Liu, Q. Q., & Li, Q. F. (2022). Genes and their molecular functions determining seed structure, components, and quality of rice. Rice, 15 (1), 18. https://doi.org/10.1186/s12284-022-00562-8 Li, Q., & Yang, A. (2020). Comparative studies on seed germination of two rice genotypes with different tolerances to low temperature. Environmental and Experimental Botany, 179. https://doi.org/10.1016/j.envexpbot.2020.104216 Li, X. F., Song, H. Y., & Chen, S. H. (2024). Impact of pressure and temperature on the hydration resistance of rice. Lwt, 209. https://doi.org/10.1016/j.lwt.2024.116759 Li, Y., Liu, K., Chen, F., & Cheng, Y. (2018). Comparative proteomics analysis reveals the effect of germination and selenium enrichment on the quality of brown rice during storage. Food Chemistry, 269, 220–227. https://doi.org/10.1016/j.foodchem.2018.07.022 Lin, Z., Zhou, P., Deng, Y., Liu, G., Li, P., Zeng, J., Zhang, Y., Tang, X., Zhao, Z., & Zhang, M. (2025). Impact of homogenization methods on the interfacial protein composition and stability of peanut oil body emulsion with sodium caseinate and maltodextrin. Lwt, 215. https://doi.org/10.1016/j.lwt.2024.117286 Loan, H. T. T., & Nhung, H. T. N. (2020). Effects of acid glutamic and lighting on GABA content in germinated brown rice. Journal of Advanced Research in Food Science and Nutrition, 3 (1), 11–15. https://doi.org/10.24321/2582.3892.202002 MacGregor, E. A., Janeček, Š., & Svensson, B. (2001). Relationship of sequence and structure to specificity in the α-amylase family of enzymes. Biochimica et Biophysica Acta, 1546 (1), 1–20. https://doi.org/10.1016/s0167-4838(00)00302-2 Mahmood, N., Liu, Y., Saleemi, M. A., Munir, Z., Zhang, Y., & Saeed, R. (2023). Investigation of physicochemical and textural properties of brown rice by hot air assisted radio frequency drying. Food and Bioprocess Technology, 16, 1555–1569. https://doi.org/10.1007/s11947-023-03001-8 Makinen, O. E., Wanhalinna, V., Zannini, E., & Arendt, E. K. (2016). Foods for special dietary needs: non-dairy plant-based milk substitutes and fermented dairy-type products. Critical Reviews in Food Science and Nutrition, 56 (3), 339-349. https://doi.org/10.1080/10408398.2012.761950 Martínez-Padilla, E., Li, K., Blok Frandsen, H., Skejovic Joehnke, M., Vargas-Bello-Pérez, E., & Lykke Petersen, I. (2020). In vitro protein digestibility and fatty acid profile of commercial plant-based milk alternatives. Foods, 9, 1784. https://doi.org/10.3390/foods9121784 McFee, R. B. (2024). Lactose intolerance - A practical approach, Part 1. Disease-a-month, 70 (12), 101823. https://doi.org/10.1016/j.disamonth.2024.101823 Mitchell, C. R. (2009). Rice starches: Production and properties. In J. BeMiller & R. Whistler (Eds.), Starch: Chemistry and Technology (3rd ed., pp. 569–578). https://reurl.cc/6KRooM Miura, D., Ito, Y., Mizukuchi, A., Kise, M., Aoto, H., & Yagasaki, K. (2006). Hypocholesterolemic action of pre-germinated brown rice in hepatoma-bearing rats. Life Sciences, 79 (3), 259-264. https://doi.org/10.1016/j.lfs.2006.01.001 Moongngarm A.& Saetung N. (2010). Comparison of chemical compositions and bioactive compounds of germinated rough rice and brown rice. Food Chemistry, 122, 3, 782788. https://doi.org/10.1016/j.foodchem.2010.03.053 Müller, C. P., Hoffmann, J. F., Ferreira, C. D., Diehl, G. W., Rossi, R. C., & Ziegler, V. (2021). Effect of germination on nutritional and bioactive properties of red rice grains and its application in cupcake production. International Journal of Gastronomy and Food Science, 25, 100379. https://doi.org/10.1016/j.ijgfs.2021.100379 Naheed, Z., Cheng, Z., Wu, C., Wen, Y., & Ding, H. (2017). Total polyphenols, total flavonoids, allicin and antioxidant capacities in garlic scape cultivars during controlled atmosphere storage. Postharvest Biology and Technology, 131, 39–45. https://doi.org/10.1016/j.postharvbio.2017.05.002 Nascimento, L. A., Abihilasha, A. A., Singh, J., Elias, M. C., & Colussi, R. (2022). Rice germination and its impact on technological and nutritional properties: A review. Rice Science, 29 (3), 201–215. https://doi.org/10.1016/j.rsci.2022.01.009 Nowacka, M., & Wedzik, M. (2016). Effect of ultrasound treatment on microstructure, colour and carotenoid content in fresh and dried carrot tissue. Applied Acoustics, 103, 163-171. https://doi.org/10.1016/j.apacoust.2015.06.011 Nowacka, M., Wiktor, A., Śledź, M., Jurek, N., & Witrowa-Rajchert, D. (2012). Drying of ultrasound pretreated apple and its selected physical properties. Journal of Food Engineering, 113 (3), 427-433. https://doi.org/10.1016/j.jfoodeng.2012.06.013 Ohanenye, I. C., Emenike, C. U., Mensi, A., Medina-Godoy, S., Jin, J., Ahmed, T., Sun, X., & Udenigwe, C. C. (2021). Food fortification technologies: Influence on iron, zinc and vitamin A bioavailability and potential implications on micronutrient deficiency in sub-Saharan Africa. Scientific African, 11, e00667. https://doi.org/10.1016/j.sciaf.2020.e00667 Oli, P., Ward, R., Adhikari, B., & Torley, P. (2014). Parboiled rice: Understanding from a materials science approach. Journal of Food Engineering, 124, 173-183. https://doi.org/10.1016/j.jfoodeng.2013.09.010 Oliveira, M. E. A. S., Santos, M. B., Gozzi, G., Fonseca Cechin, C. d., Gottschalk, L. M. F., Bassinello, P. Z., Colombari Filho, J. M., Kabuki, D. Y., de Carvalho, C. W. P., & Takeiti, C. Y. (2025). Performance of technological and microbiological quality characteristics of germinated rice: A comparative study of cooking techniques. Food Control, 172. https://doi.org/10.1016/j.foodcont.2025.111164 Onmankhong, J., Jongyingcharoen, J. S., & Sirisomboon, P. (2021). The influence of processing parameters of parboiled rice on its physiochemical and texture properties. Journal of Texture Studies, 52 (2), 219-227. https://doi.org/10.1111/jtxs.12576 Onmankhong, J., & Sirisomboon, P. (2021). Texture evaluation of cooked parboiled rice using nondestructive milled whole grain near infrared spectroscopy. Journal of Cereal Science, 97. https://doi.org/10.1016/j.jcs.2020.103151 Oo, E. M., Ruamyod, K., Khowawisetsut, L., et al. (2020). Germinated brown rice attenuates cell death in vascular cognitive impaired mice and glutamate-induced toxicity in HT22 cells. Journal of Agricultural and Food Chemistry, 68 (18), 5093–5106. https://doi.org/10.1021/acs.jafc.9b07957 Panahabadi, R., Ahmadikhah, A., McKee, L. S., Ingvarsson, P. K., & Farrokhi, N. (2021). Genome-wide association mapping of mixed linkage (1,3;1,4)-beta-glucan and starch contents in rice whole grain. Frontiers in Plant Science, 12, 665745. https://doi.org/10.3389/fpls.2021.665745 Pandey, A., Nigam, P., Soccol, C. R., Soccol, V. T., Singh, D., & Mohan, R. (2000). Advances in microbial amylases biotechnol. Applied Biochemistry and Biotechnology, 31, 135-152. https://doi.org/10.1042/ba19990073 Pang, Y., Ahmed, S., Xu, Y., Beta, T., Zhu, Z., Shao, Y., & Bao, J. (2018). Bound phenolic compounds and antioxidant properties of whole grain and bran of white, red and black rice. Food Chemistry, 240, 212-221. https://doi.org/10.1016/j.foodchem.2017.07.095 Parnsakhorn, S., & Noomhorm, A. (2008). Changes in physicochemical properties of parboiled brown rice during heat treatment. Agricultural Engineering International: CIGR Journal. 53648227. https://reurl.cc/OYol7y Pathare, P. B., Opara, U. L., & Al-Said, F. A. J. (2013). Colour measurement and analysis in fresh and processed foods: A review. Food and Bioprocess Technology, 6 (1), 36–60. https://doi.org/10.1007/s11947-012-0867-9 Patil, S. B., & Khan, M. K. (2011). Germinated brown rice as a value-added rice product: A review. Journal of Food Science and Technology, 48(6), 661–667. https://doi.org/10.1007/s13197-011-0232-4 Paul, J. S., Gupta, N., Beliya, E., Tiwari, S., & Jadhav, S. K. (2021). Aspects and recent trends in microbial alpha-amylase: a review. Applied Biochemistry and Biotechnology, 193 (8), 2649-2698. https://doi.org/10.1007/s12010-021-03546-4 Peleg, M. (1998). An empirical model for the description of moisture sorption curves. Journal of Food Science, 53 (4), 1216–1217. https://doi.org/10.1111/j.1365-2621.1988.tb13565.x Perata, P., Pozueta-Romero, J., Akazawa, T., & Yamaguchi, J. (1992). Effect of anoxia on starch breakdown in rice and wheat seeds. Planta, 188, 611–618. https://doi.org/10.1007/BF00197056 Pereira, C. R., Resende, J. T. V., Guerra, E. P., Lima, V. A., Martins, M. D., & Knob, A. (2017). Enzymatic conversion of sweet potato granular starch into fermentable sugars: Feasibility of sweet potato peel as alternative substrate for α-amylase production. Biocatalysis and Agricultural Biotechnology, 11, 231-238. https://doi.org/10.1016/j.bcab.2017.07.011 Polpued, R., & Khuenpet, K. (2020). Formulation of sweetened condensed rice-milk fortified with cereals in retortable pouch. International Journal of Agricultural Technology, 16 (2), 349–364. https://reurl.cc/EVv3pa Popova, A., Mihaylova, D., & Lante, A. (2023). Insights and perspectives on plant-based beverages. Plants (Basel), 12 (19). https://doi.org/10.3390/plants12193345 Prasad, K., Singh, Y., & Anil, A. (2012). Effects of grinding methods on the characteristics of Pusa 1121 rice flour. Journal of Tropical Agriculture Food Science, 40 (2), 193–201. https://reurl.cc/Z4o0bQ Pucciariello, C. (2020). Molecular mechanisms supporting rice germination and coleoptile elongation under low oxygen. Plants (Basel), 9 (8). https://doi.org/10.3390/plants9081037 Qiu, Y., Liu, Q., & Beta, T. (2010). Antioxidant properties of commercial wild rice and analysis of soluble and insoluble phenolic acids. Food Chemistry, 121, 140–147. https://doi.org/10.1016/j.foodchem.2009.12.021 Rajjou, L., Duval, M., Gallardo, K., Catusse, J., Bally, J., Job, C., & Job, D. (2012). Seed germination and vigor. Annual Review of Plant Biology, 63, 507-533. https://doi.org/10.1146/annurev-arplant-042811-105550 Reyna-Villasmil, N., Bermúdez-Pirela, V., Mengual-Moreno, E., Arias, N., Cano-Ponce, C., Leal-Gonzalez, E., Souki, A., Inglett, G. E., Israili, Z. H., Hernández-Hernández, R., Valasco, M., & Arraiz, N. (2007). Oat-derived beta-glucan significantly improves HDLC and diminishes LDLC and non-HDL cholesterol in overweight individuals with mild hypercholesterolemia. American Journal of Therapeutics, 14 (2), 203–212. https://doi.org/10.1097/01.pap.0000249917.96509.e7 Romieu, I., Ferrari, P., et al. (2012). Dietary glycemic index and glycemic load and breast cancer risk in the European Prospective Investigation into Cancer and Nutrition (EPIC). The American Journal of Clinical Nutrition, 96 (2), 345–355. https://doi.org/10.3945/ajcn.111.026724 Rondanelli, M., Ferrario, R. A., Barrile, G. C., Guido, D., Gasparri, C., Ferraris, C., Cavioni, A., Mansueto, F., Mazzola, G., Patelli, Z., Peroni, G., Pirola, M., Razza, C., Tartara, A., & Perna, S. (2023). The glycemic index of Indica and Japonica subspecies parboiled rice grown in Italy and the effect on glycemic index of different parboiling processes. Journal of Medicinal Food, 26 (6), 422-427. https://doi.org/10.1089/jmf.2022.0120 Ronie, M. E., Abdul Aziz, A. H., Mohd Noor, N. Q., Yahya, F., & Mamat, H. (2022). Characterisation of bario rice flour varieties: Nutritional compositions and physicochemical properties. Applied Sciences, 12(18). https://doi.org/10.3390/app12189064 Rosdi, M. R. H., Ariffin, A., & Ishak, Z. A. M. (2018). Optimizing homogenization parameters for improving ethylene vinyl acetate emulsion stability in pour point depressant application. Journal of King Saud University - Engineering Sciences, 30 (2), 105-115. https://doi.org/10.1016/j.jksues.2016.01.006 Russell, K., & Delahunty, C. (2004). The effect of viscosity and volume on pleasantness and satiating power of rice milk. Food Quality and Preference, 15 (7-8), 743-750. https://doi.org/10.1016/j.foodqual.2003.07.005 Saha, S., & Roy, A. (2020). Whole grain rice fortification as a solution to micronutrient deficiency: Technologies and need for more viable alternatives. Food Chemistry, 326, 127049. https://doi.org/10.1016/j.foodchem.2020.127049 Salee, N., Niranjan, K., Cheng, Q., Ghawi, S. K., Naruenartwongsakuld, S., Chaiyana, W., Inpramoon, A., & Utama-ang, N. (2024). Influence of thermal processing on the physicochemical properties, stability and antioxidant activities of jasmin rice milk containing a co-encapsulated powder of black rice and green tea. Food and Applied Bioscience Journal, 12 (3): 1-21. https://reurl.cc/W0o5Rk Saleh, A. S. M., Wang, P., Wang, N., Yang, L., & Xiao, Z. (2019). Brown rice versus white rice: nutritional quality, potential health benefits, development of food products, and preservation technologies. Comprehensive Reviews in Food Science and Food Safety, 18 (4), 1070-1096. https://doi.org/10.1111/1541-4337.12449 Santacruz, S., Andersson, R., & Åman, P. (2005). Characterisation of potato leaf starch with iodine-staining. Carbohydrate Polymers, 59 (3), 397-400. https://doi.org/10.1016/j.carbpol.2004.10.001 Sapna, I., Kamaljit, M., Priya, R., & Jayadeep, P. A. (2019). Milling and thermal treatment induced changes on phenolic components and antioxidant activities of pigmented rice flours. Journal of Food Science and Technology, 56 (1), 273-280. https://doi.org/10.1007/s13197-018-3487-1 Saraswati, M., Naik, R. H., Pallavi, M. S., Bheemanna, M., Paramasivam, M., Kumar, P., Poornima, G., Ratnamma, P., Sujay, H., Naik, M. N., Rao, N. S., & Prabhuraj, A. (2025). LC–MS/MS and GC–MS/MS quantification of pesticide residues in paddy grains and processed rice and dietary risk assessment. Microchemical Journal, 212. https://doi.org/10.1016/j.microc.2025.113391 Sareepuang, K., Siriamornpun, S., Wiset, L., & Meeso, N. (2008). Effect of soaking temperature on physical, chemical and cooking properties of parboiled fragrant rice. World Journal of Agricultural Sciences, 4 (4), 409–415. https://reurl.cc/XAbdGE Sauer, J., Sigurskjold, B. W., Christensen, U., Frandsen, T. P., Mirgorodskaya, E., Harrison, M., Roepstorff, P., & Svensson, B. (2000). Glucoamylase: Structure/function relationships, and protein engineering. Biochimica et Biophysica Acta, 1543 (2), 275–293. https://doi.org/10.1016/S0167-4838(00)00232-6 Seong, W. J., Koo, W., & Min, E. H. (2022). Numerical and experimental study on free-surface wave generation by a submerged moving body in a towing tank. Ocean Engineering, 111200. https://doi.org/10.1016/j.oceaneng.2022.111200 Sethi, S., Tyagi, S. K., & Anurag, R. K. (2016). Plant-based milk alternatives an emerging segment of functional beverages: a review. Journal of Food Science and Technology, 53 (9), 3408-3423. https://doi.org/10.1007/s13197-016-2328-3 Shao, Y., Yuan, Y., Xi, Y., Zhao, T., & Ai, N. (2023). Effects of homogenization on organoleptic quality and stability of pasteurized milk samples. Agriculture, 13, 205. https://doi.org/10.3390/agriculture13010205 Sierks, M. R., & Svensson, B. (1996). Catalytic mechanism of glucoamylase probed by mutagenesis in conjunction with hydrolysis of α-D-glucopyranosyl fluoride and maltooligosaccharides. Biochemistry, 35 (6), 1865–1871. https://doi.org/10.1021/bi951738 Silventoinen-Veijalainen, P., Sneck, A.-M., Nordlund, E., & Rosa-Sibakov, N. (2024). Influence of oat flour characteristics on the physicochemical properties of oat-based milk substitutes. Food Hydrocolloids, 147. https://doi.org/10.1016/j.foodhyd.2023.109402 Singh, N., Kaur, L., Sandhu, K. S., Kaur, J., & Nishinari, K. (2006). Relationships between physicochemical, morphological, thermal, rheological properties of rice starches. Food Hydrocolloids, 20 (4), 532-542. https://doi.org/10.1016/j.foodhyd.2005.05.003 Singh, S., Mackill, D. J., & Ismail, A. M. (2009). Responses of SUB1 rice introgression lines to submergence in the field: Yield and grain quality. Field Crops Research, 113 (1), 12-23. https://doi.org/10.1016/j.fcr.2009.04.003 Sipos, L., Agoston, K. C., Biro, P., Bozoki, S., & Csato, L. (2025). How to measure consumer's inconsistency in sensory testing? Current Research in Food Science, 10, 100982. https://doi.org/10.1016/j.crfs.2025.100982 Son, S. W., Nam, Y. J., Lee, S. H., Lee, S. M., Lee, S. H., Kim, M. J., Lee, T., Yun, J. C., & Ryu, J. G. (2011). Toxigenic fungal contaminants in the 2009-harvested rice and its milling-by products samples collected from rice processing complexes in Korea. Research in Plant Disease, 17 (3), 280-287. https://doi.org/10.5423/rpd.2011.17.3.280 Storhaug, C. L., Fosse, S. K., & Fadnes, L. T. (2017). Country, regional, and global estimates for lactose malabsorption in adults: A systematic review and meta-analysis. The Lancet Gastroenterology & Hepatology, 2 (10), 738–746. 10.1016/S2468-1253(17)30154-1 Sun, H., Zhao, P., & Peng, M. (2008). Application of maltitol to improve production of raw starch digesting glucoamylase by Aspergillus niger F-08. World Journal of Microbiology and Biotechnology, 24 (11), 2613-2618. https://doi.org/10.1007/s11274-008-9785-4 Sun, Z., Li, A., Ji, S., Li, H., Li, Z., Gao, H., Wang, X., Li, X., Han, Y., & Zhao, D. (2025). A method for improving milling quality based on pre-milling in the combined rice milling process. Innovative Food Science & Emerging Technologies, 100. https://doi.org/10.1016/j.ifset.2024.103911 Suribabu,K., Govardhan,T. L., Hemalatha,K. P. J. (2014) Application of partially purified α-amylase produced by Brevibacillus borostelensis R1 on sewage and effluents of industries. International Journal of Current Microbiology and Applied Sciences, 3 (7), 2319-7706. https://reurl.cc/2KO2lv Taleon, V., Gallego, S., Orozco, J. C., & Grenier, C. (2020). Retention of Zn, Fe and phytic acid in parboiled biofortified and non-biofortified rice. Food Chemistry: X, 8, 100105. https://doi.org/10.1016/j.fochx.2020.100105 Tanaka, K., Yoshida, T., Asada, K., & Kasai, Z. (1973). Subcellular particles isolated from aleurone layer of rice seeds. Archives of Biochemistry and Biophysics, 155 (1), 136–143. https://doi.org/10.1016/S0003-9861(73)80016-5 Tao, L., Wang, H., Wang, J., Zhang, J., Yu, L., & Song, S. (2024). Characterization and emulsion stability of soybean protein isolate/soybean peptide and ginseng polysaccharide conjugates. Lwt, 196. https://doi.org/10.1016/j.lwt.2024.115860 Teixeira da Silva, J. A., & Dobránszki, J. (2014). Sonication and ultrasound: impact on plant growth and development. Plant Cell, Tissue and Organ Culture (PCTOC), 117 (2), 131-143. https://doi.org/10.1007/s11240-014-0429-0 Teló, G. M., Marchesan, E., Zanella, R., Peixoto, S. C., Prestes, O. D., & Oliveira, M. L. (2017). Fungicide and insecticide residues in rice grains. Acta Scientiarum. Agronomy, 39 (1). https://doi.org/10.4025/actasciagron.v39i1.30594 Tester, R. F., Karkalas, J., & Qi, X. (2004). Starch—composition, fine structure and architecture. Journal of Cereal Science, 39(2), 151-165. https://doi.org/10.1016/j.jcs.2003.12.001 Tian, J., Cai, Y., Qin, W., Matsushita, Y., Ye, X., & Ogawa, Y. (2018). Parboiling reduced the crystallinity and in vitro digestibility of non-waxy short grain rice. Food Chemistry, 257, 23–28. https://doi.org/10.1016/j.foodchem.2018.03.005 Trabelsi, S., Ben Mabrouk, S., Kriaa, M., Ameri, R., Sahnoun, M., Mezghani, M., & Bejar, S. (2019). The optimized production, purification, characterization, and application in the bread making industry of three acid-stable alpha-amylases isoforms from a new isolated Bacillus subtilis strain US586. Journal of Food Biochemistry, 43 (5), e12826. https://doi.org/10.1111/jfbc.12826 To, H. T., Karrila, S. J., Nga, L. H., & Karrila, T. T. (2019). Effect of blending and pregelatinizing order on properties of pregelatinized starch from rice and cassava. Food Research, 4 (1), 102-112. https://doi.org/10.26656/fr.2017.4(1).245 Tsou, S. F., Hsu, H. Y., & Chen, S. D. (2024). Effects of different pretreatments on the GABA content of germinated brown rice. Applied Sciences, 14 (13). https://doi.org/10.3390/app14135771 Ukpong, E. S., Onyeka, E. U., & Oladeji, B. S. (2023). Bioactive compounds, nutrients and pasting properties of parboiled milled rice, brown rice and germinated brown rice of selected cultivars and the effects of germination durations. Food Chemistry Advances, 2. 100234. https://doi.org/10.1016/j.focha.2023.100234 Vashisht, P., Sharma, A., Awasti, N., Wason, S., Singh, L., Sharma, S., Charles, A. P. R., Sharma, S., Gill, A., & Khattra, A. K. (2024). Comparative review of nutri-functional and sensorial properties, health benefits and environmental impact of dairy (bovine milk) and plant-based milk (soy, almond, and oat milk). Food and Humanity, 2. https://doi.org/10.1016/j.foohum.2024.100301 Veluppillai, S., Nithyanantharajah, K., Vasantharuba, S., Balakumar, S., Arasaratnam, V. (2009) Biochemical changes associated with germinating rice grains and germination improvement. Rice Science, 16 (3), 240242. https://doi.org/10.1016/S1672-6308(08)60085-2 Vicente, M. J., Martínez-Díaz, E., Martínez-Sánchez, J. J., Franco, J. A., Bañón, S., & Conesa, E. (2020). Effect of light, temperature, and salinity and drought stresses on seed germination of Hypericum ericoides, a wild plant with ornamental potential. Scientia Horticulturae, 270. https://doi.org/10.1016/j.scienta.2020.109433 Vlaeminck, P., Jiang, T., & Vranken, L. (2014). Food labeling and eco-friendly consumption: Experimental evidence from a Belgian supermarket. Ecological Economics, 108, 180-190. https://doi.org/10.1016/j.ecolecon.2014.10.019 Wahengbam, E. D., Das, A. J., Green, B. D., Shooter, J., & Hazarika, M. K. (2019). Effect of iron and folic acid fortification on in vitro bioavailability and starch hydrolysis in ready-to-eat parboiled rice. Food Chemistry, 292, 39-46. https://doi.org/10.1016/j.foodchem.2019.04.044 Wang, H., Wang, Q., Zhu, J., & Hu, G. (2022). Comparison of high-pressure, freeze-thaw cycles and germination-parboiling treatments on lipids digestibility and rancidity of brown rice. Scientific Reports, 12 (1), 1–9. https://doi.org/10.1038/s41598-022-19272-8 Wang, H., Xiao, N., Ding, J., Zhang, Y., Liu, X., & Zhang, H. (2020). Effect of germination temperature on hierarchical structures of starch from brown rice and their relation to pasting properties. International Journal of Biological Macromolecules, 147, 965-972. https://doi.org/10.1016/j.ijbiomac.2019.10.063 Wang, H., Zhu, S., Ramaswamy, H. S., Hu, F., & Yu, Y. (2018). Effect of high pressure processing on rancidity of brown rice during storage. LWT-Food Science and Technology, 93, 405–411. https://doi.org/10.1016/j.lwt.2018.03.042 Wang, J., Zhang, D., Li, J., Zou, T., Wen, R., Hou, Y., Song, H., Li, H., Ma, H., & Shi, J. (2025). Aroma profiling of long shelf-life yoghurt from milk with varying acidity: Insights from sensory evaluation and instrumental analysis. Food Chemistry: X, 25, 102215. https://doi.org/10.1016/j.fochx.2025.102215 Wang, Q., Li, L., & Zheng, X. (2020). A review of milling damaged starch: Generation, measurement, functionality and its effect on starch-based food systems. Food Chemistry, 315, 126267. https://doi.org/10.1016/j.foodchem.2020.126267 Wang, S. L., Liang, Y. C., & Liang, T. W. (2011). Purification and characterization of a novel alkali-stable α-amylase from Chryseobacterium taeanense TKU001, and application in antioxidant and prebiotic. Process Biochemistry, 46 (3), 745-750. https://doi.org/10.1016/j.procbio.2010.11.022 Wani, A. A., Singh, P., Shah, M. A., Schweiggert‐Weisz, U., Gul, K., & Wani, I. A. (2012). Rice Starch Diversity: Effects on structural, morphological, thermal, and physicochemical properties—A review. Comprehensive Reviews in Food Science and Food Safety, 11 (5), 417-436. https://doi.org/10.1111/j.1541-4337.2012.00193.x Wei, Y., Shohag, M. J. I., Wang, Y., Lu, L., Wu, C., & Yang, X. (2012). Effect of zinc sulfate fortification in germinated brown rice on seed zinc concentration, bioavailability, and seed germination. Journal of Agricultural and Food Chemistry, 60 (7), 1871-1879. https://doi.org/10.1021/JF205025B Wei, Y., Shohag, M. J. I., Ying, F., Yang, X., Wu, C., & Wang, Y. (2013). Effect of ferrous sulfate fortification in germinated brown rice on seed iron concentration and bioavailability. Food Chemistry, 138 (2), 1952–1958. https://doi.org/10.1016/j.foodchem.2012.09.134 Windish, W. W., & Mhatre, N. S. (1965). Microbial amylases. Advances in Applied Microbiology, 7, 273-304. https://doi.org/10.1016/s0065-2164(08)70389-7 Wu, F., Chen, H., Yang, N., Wang, J., Duan, X., Jin, Z., & Xu, X. (2013). Effect of germination time on physicochemical properties of brown rice flour and starch from different rice cultivars. Journal of Cereal Science, 58, 263–271. Wu, F., Yang, N., Toure, A., Jin, Z., & Xu, X. (2013). Germinated brown rice and its role in human health. Critical Reviews in Food Science and Nutrition, 53 (5), 451-463. https://doi.org/10.1080/10408398.2010.542259 Wu, N. N., Li, R., Li, Z. J., & Tan, B. (2022). Effect of germination in the form of paddy rice and brown rice on their phytic acid, GABA, γ-oryzanol, phenolics, flavonoids and antioxidant capacity. Food Research International, 159, 111603. https://doi.org/10.1016/j.foodres.2022.111603 Wu, T., Wang, L., Li, Y., Qian, H., Liu, L., Tong, L., Zhou, X., Wang, L., & Zhou, S. (2019). Effect of milling methods on the properties of rice flour and gluten-free rice bread. LWT, 108, 137–144. https://doi.org/10.1016/j.lwt.2019.03.050 Wu, X., Guo, T., Luo, F., & Lin, Q. (2023). Brown rice: A missing nutrient-rich health food. Food Science and Human Wellness, 12 (5), 1458–1470. https://doi.org/10.1016/j.fshw.2023.02.010 Xia, Q., Tao, H., Li, Y., Pan, D., Cao, J., Liu, L., Zhou, X., & Barba, F. J. (2020). Characterizing physicochemical, nutritional and quality attributes of wholegrain Oryza sativa L. subjected to high intensity ultrasound-stimulated pre-germination. Food Control, 108, 106827. https://doi.org/10.1016/j.foodcont.2019.106827 Xiang, G., Li, J., Lin, Q., et al. (2023). The effect of heat-moisture treatment changed the binding of starch, protein and lipid in rice flour to affect its hierarchical structure and physicochemical properties. Food Chemistry, 100785. https://doi.org/10.1016/j.fochx.2023.100785 Yamuangmorn, S., Saenjum, C., & Prom, U. T. C. (2024). Germination alters the bioactive compounds of pigmented and non-pigmented rice varieties in fresh and year-old stored seeds. Food Chemistry: X, 24, 102005. https://doi.org/10.1016/j.fochx.2024.102005 Yao, Y., He, W., Cai, X., Bekhit, A. E. D. A., & Xu, B. (2022). Sensory, physicochemical and rheological properties of plant‐based milk alternatives made from soybean, peanut, adlay, adzuki bean, oat and buckwheat. International Journal of Food Science & Technology, 57 (8), 4868-4878. https://doi.org/10.1111/ijfs.15814 Ye, X., Zhang, Y., Corke, H., Sui, Z. (2019). Extraction and characterization of starch granule-associated proteins from rice that affect in vitro starch digestibility. Food Chemistry, 276, 754-760. https://doi.org/10.1016/j.foodchem.2018.10.042 Yin, X., Hu, Z., Zheng, Y., Chai, Z., Kong, X., Chen, S., Ye, X., & Tian, J. (2023). Multi-scale structure characterization and in vivo digestion of parboiled rice. Food Chemistry, 402, 134502. https://doi.org/10.1016/j.foodchem.2022.134502 Yin, X., Zheng, Y., Kong, X., Cao, S., Chen, S., Liu, D., Ye, X., & Tian, J. (2021). RG- І pectin affects the physicochemical properties and digestibility of potato starch. Food Hydrocolloids, 117. https://doi.org/10.1016/j.foodhyd.2021.106687 Yu, X., Tu, X., Tao, L., Daddam, J., Li, S., & Hu, F. (2023). Royal jelly fatty acids: chemical composition, extraction, biological activity, and prospect. Journal of Functional Foods, 111. https://doi.org/10.1016/j.jff.2023.105868 Zahra, N., & Jabeen, S. (2020). Brown rice as useful nutritional source. Pakistan Journal of Agricultural Research, 33 (10), 17582. https://reurl.cc/eMoeox Zarski, A., Kapusniak, K., Ptak, S., Rudlicka, M., Coseri, S., & Kapusniak, J. (2024). Functionalization methods of starch and its derivatives: from old limitations to new possibilities. Polymers (Basel), 16 (5). https://doi.org/10.3390/polym16050597 Zeng, Z., Hu, X., McClements, D. J., Luo, S., Liu, C., Gong, E., & Huang, K. (2019). Hydrothermal stability of phenolic extracts of brown rice. Food Chemistry, 271, 114–121. https://doi.org/10.1016/j.foodchem.2018.07.180 Zhang, B., Wang, R.-M., Chen, P., He, T.-S., & Bai, B. (2022). Study on zinc accumulation, bioavailability, physicochemical and structural characteristics of brown rice combined with germination and zinc fortification. Food Research International, 158, 111450. https://doi.org/10.1016/j.foodres.2022.111450 Zhang, C., Chen, S., Ren, X., Lu, Y., Liu, D., Cai, X., Li, Q., Gao, J., & Liu, Q. (2017). Molecular structure and physicochemical properties of starches from rice with different amylose contents resulting from modification of OsGBSSI Activity. Journal of Agricultural and Food Chemistry, 65 (10), 2222-2232. https://doi.org/10.1021/acs.jafc.6b05448 Zhang, H., Wu, F., Xu, D., & Xu, X. (2021). Effects of milling methods on the properties of glutinous rice flour and sweet dumplings. Journal of Food Science and Technology, 58 (5), 1848–1857. https://doi.org/10.1007/s13197-020-04696-9 Zhang, Q., Xiang, J., Zhu, X., Evers, J., Werf, W., Duan, L. (2014). Optimizing soaking and germination conditions to improve gamma-aminobutyric acid content in Japonica and Indica germinated brown rice. Journal of Functional Foods, 10, 283–291. https://doi.org/10.1016/j.jff.2014.06.009 Zhao, R., Ghazzawi, N., Wu, J., Le, K., Li, C., Moghadasian, M. H., & Yin, Z. (2018). Germinated brown rice attenuates atherosclerosis and vascular inflammation in low-density lipoprotein receptor-knockout mice. Journal of Agricultural and Food Chemistry, 66 (17), 4512–4520. https://doi.org/10.1021/acs.jafc.8b00005 Zhang, S., Ma, Y., Ren, X., Wu, W., & Liao, L. (2025). Combined Lactobacillus plantarum fermentation and heat-moisture treatment: Correlation analysis of physicochemical properties of rice flour and quality of rice noodles. International Journal of Gastronomy and Food Science, 39. https://doi.org/10.1016/j.ijgfs.2025.101120 Zhong, Y., Li, Z., Qu, J., Bertoft, E., Li, M., Zhu, F., Blennow, A., & Liu, X. (2021). Relationship between molecular structure and lamellar and crystalline structure of rice starch. Carbohydrate Polymers, 258, 117616. https://doi.org/10.1016/j.ijgfs.2025.101120 Zhou, C., Zhou, Y., Hu, Y., Li, B., Zhang, R., Zheng, K., Liu, J., Wang, J., Zuo, M., & Liu, S. (2021). Integrated analysis of metabolome and volatile profiles of germinated brown rice from the Japonica and Indica subspecies. Foods, 10 (10). https://doi.org/10.3390/foods10102448 Zhu, L., Cheng, L., Zhang, H., Wang, L., Qian, H., Qi, X., & Wu, G. (2019). Research on migration path and structuring role of water in rice grain during soaking. Food Hydrocolloids, 92, 41-50. https://doi.org/10.1016/j.foodhyd.2019.01.051 Zohoun, E. V., et al. (2018). Physicochemical and nutritional properties of rice as affected by parboiling steaming time at atmospheric pressure and variety. Food Science & Nutrition, 6, 638–652. https://doi.org/10.1002/fsn3.600 Zong, X., Wen, L., Wang, Y., & Li, L. (2022). Research progress of glucoamylase with industrial potential. Journal of Food Biochemistry, 46 (7), e14099. https://doi.org/10.1111/jfbc.14099 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97772 | - |
| dc.description.abstract | 隨著消費者健康意識的提升、環境保護理念的普及和素食主義的興起,植物奶產品的市場需求迅速增長。然而,目前臺灣之植物奶市場主要依賴進口產品與原料,無法落實環保與永續理念。此外,臺灣稻米產業正面臨著消費量逐年下降及生產過剩問題。本研究旨在開發臺灣稻米為基底的植物奶,並探討不同加工製程對其物化性質及生理活性之影響。分別使用糙米、發芽糙米及預熟糙米作為原料,並著重探討酵素水解及均質製程對於米基底奶品質的影響,分析其黏度、色澤、抗氧化活性及總酚類化合物含量等,以尋求適當的製程條件。為提升全穀物利用率,實驗組樣品利用過篩製程,以保留米粒完整營養成分並改善物化特性。研究結果顯示,經過酵素水解及均質製程處理後,米基底植物奶之物化特性及營養價值均有顯著的提升。酵素水解能顯著降低樣品黏度,提升流動性,如實驗組預熟糙米奶樣品(E-PBERM)於7°C黏度為 9.92 cP。此外,結合酵素水解及均質製程,使樣品質地更為細緻,同時改善色澤特性。實驗組樣品之總色澤差異指數ΔE* < 10,代表其色澤感官特性與市售產品相近。於生理活性方面,所有樣品中以E-PBRM表現最佳,其DPPH自由基清除能力達 61.51%、總酚類含量為 71.68 mg GAE/100 g DW。整體而言,本研究建立了三種稻米原料之植物奶製備流程,為國產米過剩問題提供了新的利用途徑,有望在一定程度上提升糧食自給率並減少食物里程,契合環境永續理念。然而,本研究發現經商業滅菌處理後,樣品之穩定性及風味仍須進一步改善,凸顯出未來研究應聚焦於加工技術及參數之最佳化,以促進米基底奶之商業化發展。 | zh_TW |
| dc.description.abstract | With the rising awareness of health, environmental concerns, and the growth of vegetarianism, the market demand for plant-based milk products has grown rapidly. However, the plant-based milk market in Taiwan currently relies heavily on imported products and raw materials, making it difficult to implement environmental protection and sustainability concepts. Additionally, Taiwan's domestic rice industry is facing the issues of decreasing consumption and overproduction. This study aims to develop plant-based milk using Taiwan's rice as the base and to investigate the effects of different processing methods on its physicochemical properties and physiological activities. Brown rice, germinated brown rice, and parboiled brown rice were used as raw materials. The focus was placed on examining the influence of enzymatic hydrolysis and homogenization processes on the quality of rice-based milk, with analyses covering viscosity, color, antioxidant activity, and total phenolic content to determine the optimal processing conditions. To enhance the utilization of whole grains, the experimental group samples underwent a sieving process to retain the complete nutritional components of rice and improve physicochemical properties. The results indicated that the physicochemical properties and nutritional value of the rice-based plant milk were significantly improved after enzymatic hydrolysis and homogenization. Enzymatic hydrolysis effectively reduced the viscosity of the samples and enhanced their fluidity; for instance, the viscosity of the experimental parboiled brown rice milk sample (E-PBRM) was 9.92 cP at 7°C. Moreover, the combination of enzymatic hydrolysis and homogenization resulted in a finer texture and improved color characteristics. The total color difference index (ΔE*) of the experimental group samples was less than 10, indicating that their color sensory characteristics were comparable to those of commercial products. In terms of physiological activity, the E-PBRM sample showed superior performance, with DPPH radical scavenging activity of 61.51%, and total phenolic compounds content of 71.68 mg GAE/100 g DW. Overall, this study established a processing framework for producing plant-based milk using three types of rice, offering a novel approach for utilizing surplus domestic rice. This approach may contribute to improved food self-sufficiency and reduced food miles, aligning with environmental sustainability goals. However, the findings also revealed that the stability and flavor of the samples still require improvement following commercial sterilization. This highlights the need for future research to focus on optimizing processing technologies and parameters to facilitate the commercialization of rice-based milk. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-16T16:13:03Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-07-16T16:13:03Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 I
摘要 II Abstract III 縮寫檢索表 V 目次 VII 圖次 XII 表次 XIV 壹、 前言 1 貳、 文獻回顧 2 一、 植物奶簡介 2 (一) 市場發展趨勢 2 (二) 健康益處 3 (三) 環境永續價值 4 (四) 米基底植物奶之發展潛力 7 二、 稻穀簡介 9 (一) 稻穀種類 9 1. 秈稻 9 2. 稉稻 10 3. 糯稻 10 (二) 稻穀之結構 10 1. 稻殼 11 2. 米糠層 12 3. 糊粉層 12 4. 胚乳 12 5. 胚芽 13 (三) 稻米之營養組成 14 (四) 臺灣稻米之農業背景 18 三、 發芽糙米 19 (一) 發芽機制 19 (二) 發芽製程 21 (三) 促發技術(priming) 22 (四) 發芽糙米的物理特性 24 (五) 發芽糙米之營養價值 28 四、 預熟糙米 35 (一) 預熟加工技術 35 (二) 預熟米之物理特性 39 (三) 預熟米之營養價值 42 五、 加工米的食用安全性 45 六、 樣品原料之性質分析 46 (一) 水合性質 46 (二) 吸水特性 47 七、 酵素水解 48 (一) α-澱粉酶 48 1. 來源 48 2. 酵素之微細結構 48 3. 作用模式 50 4. 酵素之應用 50 (二) 葡萄糖澱粉酶 51 1. 來源 51 2. 葡萄糖澱粉酶之微細結構 51 3. 作用模式 52 4. 酵素之應用 53 參、 實驗架構 54 一、 實驗架構圖 54 二、 實驗架構說明 56 (一) 發芽糙米製備流程 56 (二) 預熟糙米製備流程 57 (三) 實驗組米基底奶製備流程 58 肆、 材料與方法 59 一、 實驗材料 59 二、 實驗試藥 59 三、 儀器設備 60 四、 實驗方法 63 (一) 糙米製程 63 (二) 發芽糙米製備 63 (三) 預熟糙米製備 63 (四) 對照組樣品製備 64 (五) 米基底植物奶製備 64 1. 米穀粉研磨製程 64 2. 糊化製程 65 3. 酵素水解製程 65 4. 均質製程 65 5. 商業滅菌製程 65 (六) 冷凍乾燥樣品製備 65 (七) 黏度分析 66 (八) 分散穩定性分析 66 (九) 色澤分析 67 (十) 光學顯微影像分析 67 (十一) 糖度分析 67 (十二) 基本成分分析 68 (十三) 抗氧化能力分析 69 (十四) 總酚類化合物含量分析 70 (十五) γ-胺基丁酸(GABA)含量分析 70 (十六) 感官品評 71 (十七) 數據統計分析 71 伍、 結果與討論 72 一、 實驗組製程參數之篩選 72 (一) 酵素水解製程 72 (二) 均質製程 77 二、 米基底奶之物理性質 78 (一) 黏度特性 78 (二) 分散穩定性 81 (三) 色澤特性 84 三、 米基底奶之化學性質 89 (一) 基本成分分析 89 (二) 糖度分析結果 95 (三) 抗氧化能力 97 (四) 總酚類化合物含量 100 (五) γ-胺基丁酸(GABA)含量 102 四、 商業滅菌後之性質分析 104 五、 米基底奶之品評結果 112 陸、 結論與未來展望 115 一、 質地與穩定性改善 115 二、 色澤與感官特性提升 115 三、 增強營養價值 115 四、 預熟糙米作為原料之潛力 115 柒、 參考文獻 116 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 米加工製程 | zh_TW |
| dc.subject | 全榖物利用 | zh_TW |
| dc.subject | 發芽米 | zh_TW |
| dc.subject | 預熟米 | zh_TW |
| dc.subject | 米基底植物奶 | zh_TW |
| dc.subject | whole grain utilization | en |
| dc.subject | rice-based milk | en |
| dc.subject | parboiled rice | en |
| dc.subject | germinated rice | en |
| dc.subject | rice processing | en |
| dc.title | 米基底植物奶開發及物化性質分析 | zh_TW |
| dc.title | Process development of rice-based milk and its physicochemical characterizations | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 蘇俊翰;吳俊毅;林華宗 | zh_TW |
| dc.contributor.oralexamcommittee | Chun-Han Su;Jiumn-Yih Wu;Hua-Tsung Lin | en |
| dc.subject.keyword | 米基底植物奶,預熟米,發芽米,米加工製程,全榖物利用, | zh_TW |
| dc.subject.keyword | rice-based milk,parboiled rice,germinated rice,rice processing,whole grain utilization, | en |
| dc.relation.page | 146 | - |
| dc.identifier.doi | 10.6342/NTU202501111 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-06-16 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 食品科技研究所 | - |
| dc.date.embargo-lift | 2025-06-11 | - |
| 顯示於系所單位: | 食品科技研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 5.38 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
