Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 海洋研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97741
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor詹森zh_TW
dc.contributor.advisorSen Janen
dc.contributor.author鄭鈞元zh_TW
dc.contributor.authorChun-Yuan Chengen
dc.date.accessioned2025-07-16T16:07:09Z-
dc.date.available2025-07-17-
dc.date.copyright2025-07-16-
dc.date.issued2025-
dc.date.submitted2025-07-07-
dc.identifier.citationAkitomo, K., Ooi, M., Awaji, T., & Kutsuwada, K. (1996). Interannual variability of the Kuroshio transport in response to the wind stress field over the North Pacific: Its relation to the path variation south of Japan. Journal of Geophysical Research: Oceans, 101(C6), 14057-14071.
Andres, M., Mensah, V., Jan, S., Chang, M. H., Yang, Y. J., Lee, C., Ma, B., & Sanford, T. (2017). Downstream evolution of the K uroshio's time‐varying transport and velocity structure. Journal of Geophysical Research: Oceans, 122(5), 3519-3542.
Baker-Yeboah, S., Watts, D. R., & Byrne, D. A. (2009). Measurements of sea surface height variability in the eastern South Atlantic from pressure sensor–equipped inverted echo sounders: Baroclinic and barotropic components. Journal of Atmospheric and Oceanic Technology, 26(12), 2593-2609.
Chang, M.-H., Jan, S., Mensah, V., Andres, M., Rainville, L., Yang, Y. J., & Cheng, Y.-H. (2018). Zonal migration and transport variations of the Kuroshio east of Taiwan induced by eddy impingements. Deep Sea Research Part I: Oceanographic Research Papers, 131, 1-15.
Chang, Y. L., & Oey, L. Y. (2011). Interannual and seasonal variations of Kuroshio transport east of Taiwan inferred from 29 years of tide‐gauge data. Geophysical Research Letters, 38(8).
Chang, Y.-L., & Oey, L.-Y. (2014). Instability of the North Pacific subtropical countercurrent. Journal of Physical Oceanography, 44(3), 818-833.
Chao, S.-Y. (1990). Circulation of the East China Sea, a numerical study. Journal of Oceanography, 46, 273-295.
Chelton, D. B., Schlax, M. G., & Samelson, R. M. (2011). Global observations of nonlinear mesoscale eddies. Progress in oceanography, 91(2), 167-216.
Chen, C. T. A., Yeh, Y. T., Yanagi, T., Bai, Y., He, X., & Huang, T. H. (2016). The tug‐of‐war between the West Philippine Sea and South China Sea Tropical Waters and Intermediate Waters in the Okinawa Trough. Journal of Geophysical Research: Oceans, 121(3), 1736-1754.
Chen, C., Wang, G., Xie, S. P., & Liu, W. (2019). Why does global warming weaken the Gulf Stream but intensify the Kuroshio?. Journal of Climate, 32(21), 7437-7451.
Chen, C.-C., Lu, C.-Y., Jan, S., Hsieh, C.-h., & Chung, C.-C. (2022). Effects of the coastal uplift on the Kuroshio ecosystem, Eastern Taiwan, the western boundary current of the North Pacific Ocean. Frontiers in Marine Science, 9, 796187.
Cheng, Y.-H., Ho, C.-R., Zheng, Q., & Kuo, N.-J. (2014). Statistical characteristics of mesoscale eddies in the North Pacific derived from satellite altimetry. Remote Sensing, 6(6), 5164-5183.
Chern, C.-S., & Wang, J. (1998). A numerical study of the summertime flow around the Luzon Strait. Journal of Oceanography, 54, 53-64.
Cushman-Roisin, B. (1994), Introduction to Geophysical Fluid Dynamics, 320 pp., Prentice Hall, N. J.
Deser, C., Alexander, M. A., & Timlin, M. S. (1999). Evidence for a wind-driven intensification of the Kuroshio Current Extension from the 1970s to the 1980s. Journal of Climate, 12(6), 1697-1706.
Ford, J. K., MacCallum, R. C., & Tait, M. (1986). The application of exploratory factor analysis in applied psychology: A critical review and analysis. Personnel psychology, 39(2), 291-314.
Gill, A. (1982). Atmosphere-Ocean Dynamics (Vol. 30). Academic Press.
Gilson, J., & Roemmich, D. (2002). Mean and temporal variability in Kuroshio geostrophic transport south of Taiwan (1993–2001). Journal of Oceanography, 58, 183-195.
Huang, J. H., Tseng, Y. H., & Kuo, Y. C. (2024). Projected Changes of Kuroshio in a Warming Climate. Journal of Climate, 37(24), 6475-6489.
Isern-Fontanet, J., Font, J., García-Ladona, E., Emelianov, M., Millot, C., & Taupier-Letage, I. (2004). Spatial structure of anticyclonic eddies in the Algerian basin (Mediterranean Sea) analyzed using the Okubo–Weiss parameter. Deep Sea Research Part II: Topical Studies in Oceanography, 51(25-26), 3009-3028.
Jan, S., Mensah, V., Andres, M., Chang, M. H., & Yang, Y. J. (2017). Eddy‐Kuroshio interactions: Local and remote effects. Journal of Geophysical Research: Oceans, 122(12), 9744-9764.
Jan, S., Wang, S.-H., Yang, K.-C., Yang, Y. J., & Chang, M.-H. (2019). Glider observations of interleaving layers beneath the Kuroshio primary velocity core east of Taiwan and analyses of underlying dynamics. Scientific Reports, 9(1), 11401.
Jan, S., Yang, Y. J., Wang, J., Mensah, V., Kuo, T. H., Chiou, M. D., Chern, C. S., Chang, M. H., & Chien, H. (2015). Large variability of the K uroshio at 23.75° N east of T aiwan. Journal of Geophysical Research: Oceans, 120(3), 1825-1840.
Johns, E., Watts, D. R., & Rossby, H. T. (1989). A test of geostrophy in the Gulf Stream. Journal of Geophysical Research: Oceans, 94(C3), 3211-3222.
Johns, W. E., Lee, T. N., Zhang, D., Zantopp, R., Liu, C.-T., & Yang, Y. (2001). The Kuroshio east of Taiwan: Moored transport observations from the WOCE PCM-1 array. Journal of Physical Oceanography, 31(4), 1031-1053.
Kaihatu, J. M., Handler, R. A., Marmorino, G. O., & Shay, L. K. (1998). Empirical orthogonal function analysis of ocean surface currents using complex and real-vector methods. Journal of Atmospheric and Oceanic Technology, 15(4), 927-941.
Kundu, P. K., Allen, J., & Smith, R. L. (1975). Modal decomposition of the velocity field near the Oregon coast. Journal of Physical Oceanography, 5(4), 683-704.
Legler, D. M. (1983). Empirical orthogonal function analysis of wind vectors over the tropical Pacific region. Bulletin of the American Meteorological Society, 64(3), 234-241.
Lien, R. C., Ma, B., Cheng, Y. H., Ho, C. R., Qiu, B., Lee, C. M., & Chang, M. H. (2014). Modulation of Kuroshio transport by mesoscale eddies at the Luzon Strait entrance. Journal of Geophysical Research: Oceans, 119(4), 2129-2142.
Long, Y., Zhu, X. H., Guo, X., Ji, F., & Li, Z. (2021). Variations of the Kuroshio in the Luzon Strait revealed by EOF analysis of repeated XBT data and sea‐level anomalies. Journal of Geophysical Research: Oceans, 126(7), e2020JC016849.
Ludvigson, S. C., & Ng, S. (2007). The empirical risk–return relation: A factor analysis approach. Journal of financial economics, 83(1), 171-222.
Masuzawa, J., 1969: Subtropical Mode Water. Deep-Sea Res.,16, 463–472.
Mensah, V., Jan, S., Andres, M., & Chang, M.-H. (2020). Response of the Kuroshio east of Taiwan to mesoscale eddies and upstream variations. Journal of Oceanography, 76, 271-288.
Mensah, V., Jan, S., Chang, M. H., & Yang, Y. J. (2015). Intraseasonal to seasonal variability of the intermediate waters along the K uroshio path east of T aiwan. Journal of Geophysical Research: Oceans, 120(8), 5473-5489.
Mensah, V., Jan, S., Chiou, M.-D., Kuo, T. H., & Lien, R.-C. (2014). Evolution of the Kuroshio Tropical Water from the Luzon Strait to the east of Taiwan. Deep Sea Research Part I: Oceanographic Research Papers, 86, 68-81.
Miller, A. J., Cayan, D. R., & White, W. B. (1998). A westward-intensified decadal change in the North Pacific thermocline and gyre-scale circulation. Journal of Climate, 11(12), 3112-3127.
Nakamura, H., Hiranaka, R., Ambe, D., & Saito, T. (2016). Local wind effect on the Kuroshio path state off the southeastern coast of Kyushu. “Hot Spots” in the Climate System: New Developments in the Extratropical Ocean-Atmosphere Interaction Research, 109-130.
Nagai, T. (2019). The Kuroshio Current: Artery of Life. Washington, DC: John Wiley & Sons.
Nitani, H. (1972). Beginning of the Kuroshio. Kuroshio, its physical aspects, 129-163.
Okubo, A. (1970). Horizontal dispersion of floatable particles in the vicinity of velocity singularities such as convergences. Deep sea research and oceanographic abstracts,
Pujol, M.-I., Faugère, Y., Taburet, G., Dupuy, S., Pelloquin, C., Ablain, M., & Picot, N. (2016). DUACS DT2014: the new multi-mission altimeter data set reprocessed over 20 years. Ocean Science, 12(5), 1067-1090.
Qiu, B. (1999). Seasonal eddy field modulation of the North Pacific Subtropical Countercurrent: TOPEX/Poseidon observations and theory. Journal of Physical Oceanography, 29(10), 2471-2486.
Qiu, B., & Chen, S. (2010). Interannual variability of the North Pacific Subtropical Countercurrent and its associated mesoscale eddy field. Journal of Physical Oceanography, 40(1), 213-225.
Sverdrup, H. U. (1947). Wind-driven currents in a baroclinic ocean; with application to the equatorial currents of the eastern Pacific. Proceedings of the National Academy of Sciences, 33(11), 318-326.
Szuts, Z., Blundell, J., Chidichimo, M., & Marotzke, J. (2012). A vertical-mode decomposition to investigate low-frequency internal motion across the Atlantic at 26 N. Ocean Science, 8(3), 345-367.
Taylor, K. E., Stouffer, R. J., & Meehl, G. A. (2012). An overview of CMIP5 and the experiment design. Bulletin of the American meteorological Society, 93(4), 485-498.
Tsai, C. J., Andres, M., Jan, S., Mensah, V., Sanford, T. B., Lien, R. C., & Lee, C. M. (2015). Eddy‐Kuroshio interaction processes revealed by mooring observations off Taiwan and Luzon. Geophysical Research Letters, 42(19), 8098-8105.
Uchida, H., Imawaki, S., & Hu, J.-H. (1998). Comparison of Kuroshio surface velocities derived from satellite altimeter and drifting buoy data. Journal of Oceanography, 54, 115-122.
Wang, Y. L., Wu, C. R., & Chao, S. Y. (2016). Warming and weakening trends of the Kuroshio during 1993–2013. Geophysical Research Letters, 43(17), 9200-9207.
Weare, B. C., Navato, A. R., & Newell, R. E. (1976). Empirical orthogonal analysis of Pacific sea surface temperatures. Journal of Physical Oceanography, 6(5), 671-678.
Weiss, J. (1991). The dynamics of enstrophy transfer in two-dimensional hydrodynamics. Physica D: Nonlinear Phenomena, 48(2-3), 273-294.
Yan, X., & Sun, C. (2015). An altimetric transport index for Kuroshio inflow northeast of Taiwan Island. Science China Earth Sciences, 58, 697-706.
Yang, K.-C., Wang, J., Lee, C. M., Ma, B., Lien, R.-C., Jan, S., Yang, Y. J., & Chang, M.-H. (2015). Two mechanisms cause dual velocity maxima in the Kuroshio east of Taiwan. Oceanography, 28(4), 64-73.
Yang, Y., Liu, C.-T., Hu, J.-H., & Koga, M. (1999). Taiwan Current (Kuroshio) and impinging eddies. Journal of Oceanography, 55, 609-617.
Yasuda, T., & Hanawa, K. (1997). Decadal changes in the mode waters in the midlatitude North Pacific. Journal of Physical Oceanography, 27(6), 858-870.
Zhang, D., Lee, T. N., Johns, W. E., Liu, C.-T., & Zantopp, R. (2001). The Kuroshio east of Taiwan: Modes of variability and relationship to interior ocean mesoscale eddies. Journal of Physical Oceanography, 31(4), 1054-1074.
Zhang, Z.-L., Nakamura, H., & Zhu, X.-H. (2021). Seasonal velocity variations over the entire Kuroshio path part I: Data analysis and numerical experiments. Journal of Oceanography, 77, 719-744.
李逸環(2003)。西太平洋中尺度渦漩及其對黑潮的影響。(博士論文。國立臺灣大學).
詹森, & 江偉全. (2023). 黑潮震盪: 從臺灣東岸啟航的北太平洋時空之旅 : 跟隨研究船和旗魚的航跡,騎乘黑潮的海上故事.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97741-
dc.description.abstract本研究使用於2012年至2023間在臺灣東部黑潮海域進行的26個研究船航次觀測所得的溫鹽深與流速資料,探討黑潮流速的統計狀況與結構模態的變化,並分析黑潮在受到渦旋撞擊、海表面梯度變化、風應力、風應力旋度等作用下之變化。
根據實測流速資料計算結果顯示此區域黑潮流量值在11.99–33.09 Sv (1 Sv=106 m3 s−1)之間,平均流量為 21.95 Sv,標準差為5.8 Sv。透過渦旋偵測方法,將航次觀測期間的黑潮分類成受渦旋(CE)與反渦旋(AE)的案例,結果顯示在CE的影響下黑潮上層300 m內有−0.05 m s−1流速減小,在水深200 m內121.9–122.2°E間有−0.1 m s−1的流速變異。在AE的影響時下層300 m內流速增加0.05 m s−1,在100 m內的水層於121.9−122°E間流速增加0.1 m s−1。CE (AE)的影響下黑潮東側等密面有+10 (−10) m的垂直位移,西側等密面則有−9 (+5) m的垂直位移,由熱力風關係裡的東西向密度梯度變化,造成北向流速與相應的流量減小(增大),計算平均的實測流量為16.85(25.78) Sv。先前的研究結果示此斷面的海表面高度東西向梯度與北向流量的關係並不顯著,此研究中使用新出版的海表面高度計資料,重新計算並發現實測流量與海表面高度東西向梯度的相關係數R提升為0.74 (p=0.0001)。透過動力模態分析拆解流速,我們發現此斷面的北向流(V)正壓流與東西向海表面梯度相關係數為R=0.71 (p= 0.0003),在斜壓流上此相關僅有R=−0.02 (p=0.9312)。此研究亦透過理想渦旋來計算渦旋於測線上之地轉流強度,並將其與動力模態分析結果作比較,結果發現渦旋的影響以正壓流場為主。透過動力模態分析,此研究分析風應力旋度與風應力和此區域黑潮的相關性,結果發現6個月前的北太平洋環流區域低緯度平均風應力旋度與黑潮的流速、流量強度有相關,此外也顯示本區域風應力會造成黑潮於此區域的擺動。
zh_TW
dc.description.abstractThis study utilizes conductivity temperature depth (CTD) data and current measurements obtained during 26 cruises conducted off eastern Taiwan between 2012 and 2023 to investigate variations in hydrography and velocity structures of the Kuroshio and the underlying dynamics. The study explores how the Kuroshio responds dynamically to the impingement of westward-propagating mesoscale eddies, sea surface height (SSH) zonal gradients, wind stress, and wind stress curl variability. Statistics of measured current velocities indicate that the Kuroshio transport ranges from 11.99−33.09 Sv (1 Sv=10⁶ m³ s−1), with an average of 21.95 Sv and a standard deviation of 5.8 Sv. An eddy detection algorithm was applied to assist the analysis of eddy influences on the Kuroshio. Under the influence of cyclonic eddy (CE), northward velocity anomaly is approximately 0.05 m s−1 within the upper 300 m, with more pronounced variations up to 0.1 m s−1 occurring between 121.9−122.2°E at depths shallower than 200 m. Conversely, influences of anticyclonic eddy (AE) increase northward by approximately 0.05 m s−1 within the upper 300 m, and increases up to 0.1 m s−1 are noted within the upper 100 m between 121.9− 122°E. Under the influence of CE(AE), the isopycnal offshore side of the Kuroshio varied vertically by approximately +10(−10) m, while the onshore side isopycnal varied by −9(+5) m. Through the thermal wind relation, CE (AE) induced zonal isopycnal slope decrease (increase) leads to that the average measured Kuroshio transport was 16.85 (25.78) Sv. While previous studies have suggested a weak relationship between the zonal SSH gradient and Kuroshio transport along this section, our reanalysis using updated satellite altimetry data reveals a significant positive correlation between observed transport and zonal SSH gradient with correlation coefficient R of 0.74 and p=0.0001. Further analysis by applying dynamical mode decomposition (DMD) to the velocity structure shows a significant correlation between the barotropic (depth-independent) northward flow component and the zonal SSH gradient (R=0.71, p=0.0003), whereas the baroclinic (depth-dependent) component exhibits no significant correlation (R=−0.02, p=0.9312). Additionally, the study employed an idealized eddy model to calculate the geostrophic flow induced by eddies along the observational transect and compared the results with the DMD outcomes. The comparison suggest that eddy influences are primarily exhibited in the barotropic flow field. Finally, DMD was also used to assess the relationship between wind forcing and Kuroshio dynamics. Results show that the mean wind stress curl over the low-latitude North Pacific, lagged by −6 months, is correlated with the strength of the Kuroshio. Moreover, regional wind stress was found to influence the zonal migration of the Kuroshio maximum velocity axis.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-16T16:07:09Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-07-16T16:07:09Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 i
中文摘要 ii
Abstract iii
目次 v
圖次 vii
表次 x
第一章 緒論 1
1-1 黑潮特性與歷史研究回顧 1
1-2 OKTV計畫 2
1-3 黑潮的氣候尺度變動 9
1-4 本研究目標 11
第二章 研究資料與分析方法 16
2-1 研究船測資料 16
2-1-1 研究船測水文資料 16
2-1-2 研究船測流速資料 18
2-2 衛星資料 19
2-3 流速與流量計算 20
2-4 動力模態分析 21
2-5 經驗正交函數 24
2-6 渦旋偵測法 25
第三章 結果與討論 27
3-1 水文資料分析結果 27
3-2 流速結構分析 28
3-3 地轉流分析 31
3-4 渦旋偵測 35
3-5 動力模態分析 43
3-5-1 動力模態分析結果 43
3-5-2 動力模態與海表面高度梯度關係 47
3-5-3 動力模態與渦旋關係 49
3-5-4 動力模態與風應力旋度關係 50
3-5-5 動力模態與區域風應力關係 55
3-5-6 風應力與風應力旋度對於KTV1測線海流的影響 58
3-6 經驗正交函數(EOF) 62
3-7 使用動力模態分析推測斷面流速 64
第四章 結論 68
參考文獻 72
-
dc.language.isozh_TW-
dc.subject水文與流速結構zh_TW
dc.subject風應力zh_TW
dc.subject風應力旋度zh_TW
dc.subject海面高度梯度zh_TW
dc.subject動力模態分析zh_TW
dc.subject黑潮zh_TW
dc.subjectsea level gradienten
dc.subjectdynamical mode decompositionen
dc.subjecthydrography and velocity profileen
dc.subjectKuroshioen
dc.subjectwind stressen
dc.subjectwind stress curlen
dc.title黑潮水文流速時空結構之研究zh_TW
dc.titleTemporal and Spatial Structure of Hydrography and Velocity across the Kuroshioen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee張明輝;楊穎堅;鄭宇昕zh_TW
dc.contributor.oralexamcommitteeMing-Huei Chang;Yiing Jang Yang;Yu-Hsin Chengen
dc.subject.keyword黑潮,水文與流速結構,動力模態分析,海面高度梯度,風應力旋度,風應力,zh_TW
dc.subject.keywordKuroshio,hydrography and velocity profile,dynamical mode decomposition,sea level gradient,wind stress curl,wind stress,en
dc.relation.page78-
dc.identifier.doi10.6342/NTU202501472-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-07-08-
dc.contributor.author-college理學院-
dc.contributor.author-dept海洋研究所-
dc.date.embargo-lift2025-07-17-
顯示於系所單位:海洋研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf7.44 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved