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Abstract

This study utilizes conductivity temperature depth (CTD) data and current
measurements obtained during 26 cruises conducted off eastern Taiwan between 2012
and 2023 to investigate variations in hydrography and velocity structures of the Kuroshio
and the underlying dynamics. The study explores how the Kuroshio responds dynamically
to the impingement of westward-propagating mesoscale eddies, sea surface height (SSH)
zonal gradients, wind stress, and wind stress curl variability. Statistics of measured current
velocities indicate that the Kuroshio transport ranges from 11.99-33.09 Sv (1 Sv=10° m?
s1), with an average of 21.95 Sv and a standard deviation of 5.8 Sv. An eddy detection
algorithm was applied to assist the analysis of eddy influences on the Kuroshio. Under
the influence of cyclonic eddy (CE), northward velocity anomaly is approximately 0.05
m st within the upper 300 m, with more pronounced variations up to 0.1 m s occurring
between 121.9-122.2°E at depths shallower than 200 m. Conversely, influences of
anticyclonic eddy (AE) increase northward by approximately 0.05 m s~* within the upper
300 m, and increases up to 0.1 m st are noted within the upper 100 m between 121.9—
122°E. Under the influence of CE(AE), the isopycnal offshore side of the Kuroshio varied
vertically by approximately +10(-10) m, while the onshore side isopycnal varied by
—9(+5) m. Through the thermal wind relation, CE (AE) induced zonal isopycnal slope
decrease (increase) leads to that the average measured Kuroshio transport was 16.85
(25.78) Sv. While previous studies have suggested a weak relationship between the zonal
SSH gradient and Kuroshio transport along this section, our reanalysis using updated
satellite altimetry data reveals a significant positive correlation between observed
transport and zonal SSH gradient with correlation coefficient R of 0.74 and p=0.0001.
Further analysis by applying dynamical mode decomposition (DMD) to the velocity

structure shows a significant correlation between the barotropic (depth-independent)
iii
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northward flow component and the zonal SSH gradient (R=0.71, p=0.0003), whereas the
baroclinic (depth-dependent) component exhibits no significant correlation (R=-0.02,
p=0.9312). Additionally, the study employed an idealized eddy model to calculate the
geostrophic flow induced by eddies along the observational transect and compared the
results with the DMD outcomes. The comparison suggest that eddy influences are
primarily exhibited in the barotropic flow field. Finally, DMD was also used to assess the
relationship between wind forcing and Kuroshio dynamics. Results show that the mean
wind stress curl over the low-latitude North Pacific, lagged by —6 months, is correlated
with the strength of the Kuroshio. Moreover, regional wind stress was found to influence

the zonal migration of the Kuroshio maximum velocity axis.

Keywords: Kuroshio, hydrography and velocity profile, dynamical mode decomposition,

sea level gradient, wind stress curl, wind stress
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B4~ 2 ;‘é’!iiﬁﬂ%fﬁr‘l‘f + %) A 2000—4000 m jFenk g A5 s ket 4 47

L Bl(dF p Andresetal. » 2017 » Figure 15) -

doi:10.6342/NTU202501472



s LE- 0 3¢ < RERET 2P Jan et al. (2017) 4] * 20 LRI

% PIES L5 %

‘“}&

#2£ Princeton Ocean Model (POM)#c e 5 F B4R 1% %9 = R f

AT RR SRS N B TERERPE . D RP PR AP LRI %

BEt-k 2 T2 H o ek B2 5 > Mensahetal. (2014 > 2015) 124547 3 4
2 Seaglider sHELB| |-k 2 Tl FRMZ PP 3 ok B 2 353 5 % -k (South
China Sea Water - SCSW) ~ 2.3 /& /i (Kuroshio Tropical Water » KTW)feat = T ¥ -k

(North Pacific Water » » fid == % /5 -k (West Philippine Sea Water » WPSW) - @ @

T
P
W

s F IR 2R R B s A K2 B G AP G Y T ase AlEo
ZRoRokE e ABFREERBRDFIRERG o8 P2 HNFR 1
Bt b d FZ A P ERARDBREES B 5 b F L B -Janetal. (2019)
- # 220 ¢ & -k(Kuroshio Intermediate Water » KIW)fe#* « T % ¢ & -k (North
Pacific Intermediate Water> NPIW)2_ & % 3i.-k B & 49 < 4% (interleaving) 73R % (5] 5)°
PLE?RESBE -BAIT R REAEGE > F 222 WRE SRR E S A EF]R

B A o o d o BB AR Fe DS ATaE 42 (Double diffusion) » % 2 & %76 500—800 m
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R MEE S A KB T A ke B4 e & K KT & R AL10 5| 100 km

2% ReknE A H50m e

Depth {(m}

A v e [N 1\
1000 o g g
1201.5“E 122°E  1225°E  123°E  1235°E 121.5°E 122 E 1225°E 123°E 123 5°E

Depth (m)

Depth (m})

1000 ~ : -
121.5°E 122°E 1225°E 123°E 123.5°E 121.5°E 122°E 1225°E  123°E  1235°E

m—
34.2 344 346 4.8 35 (psu)

BIS5-: 8L ipdra 2 REMBARAEPIHRLGEE P Janetal. » 2019 Figure 3) -

Chen et al. (2022) % :F & KTVL &>t kiF 250 m ey & Rl £ 2 £ 3%
£ BT 200 At plARELPI L A enis ALUF 2 3R % (coastal uplift) - R RFE 20 £

B oo AL A e B E A2 B4 0 B 2 AR A g hy £ B IR

(ﬁ

TRt £ RATAE R A 100 m Rl pE Bk B T 355 4 5 0.49 uM(9
178%) - £% % ak A~ FI U HAE FF 91 883%  ip AL AN PR A
50 X 400 km o i 2 a1 gEeh s & Birdad A4 > T AL B Y E A K
44 g et %2 572153 "(Kuroshio paradox) ¥ 2 s A & ¥ & > fri4F

« £ 445 F Rengan(Nagai » 2019) 0 321 - Bde 4+ enfz (@ 6) -
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Coastal uplift nourishes oligotrophic Kuroshio ecosystem

Uplift of positivel Onshore uplift positively o Kuroshio
nutrients_correlated of isotherms correlated™ transport
0%%
Iincrease

Depth(m)
-6000-4000-2000 © 2000 4000 6000
£ I Fi L i

L

)

N
o

)

b
0}.

5 1y

1-3 g iz ¢ R B

B2 P g ik % R ¥# > Yasuda and Hanawa (1997)% 4 45 1966-75 # &
1976-85 & & i #p fF e i o 15 73 & 47 1966-75 & £2 1976-85 &  * T X gl & i
i -k (North Pacific Subtropical Mode Water » NPSTMW)»+ 44 = T Z gl 4 T d A
FRensgHo > NPSTMW 2 fLALE & -k (Thermocline Water) % = — & iE B A& T/ * &
16°C 2 18°C z & ek k& (Masuzawa > 1969) - Yasuda and Hanawa (1997)% 3.yt =
B NPSTMW 7 10 & #p it @ £ 1976-85 & A& » NPSTMW 2 = % chd = $8-K
BRELH > AFIZPNEALT0E A RMFRS T P A3 g&ﬁgjz‘iﬁ g
KBS TR T R e o R D HRBERATE O TRZRE S RS ORE

B BB ER T VREBID R 5 m NPSTMW L A 3ne kB Rl E 4 2 R
9
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p=

Fl5E bt 1070 & (&P Hpendesg o g At K T E Y Rans A SR AR TR 4 0 1
EE VR BIRACH F " M3z R KA o Miller et al. (1998) R 4% 2 b & 4 HT
NPSTMW &2 58 » i £ &~ 47 F Al 22 #ic @ 4% > % R 10 # = A (decadal-scale) <
7 2 (basin-scale) b & # *& & % 1t ¢ i = et = TEIRE NPSTMW "5 8 22 il 4 3
T TR 4 B84 E 1970 & (¢ Hpat ~ TFE 2 FHFPF Y <R (Aleutian
Lows)3d 55 > & = & b 3 5“7 2 REBLRI T ok B4 R B TR o

Chen et al. (2019) & * # & fi-:" P B & v & % 7 I+ & Coupled Model
Intercomparison Project (CIMP5) ¥ Representative concentration pathway 4.5 (RCP 4.5)
P T el % > RCP endp th (B 3047 ) - Bind eniz3d > Bzt st
*+ 2100 & ehif 54 5% %> 4 (Radiative Forcing)ss & > 4o RCP 4.5 5 ™ 1§ 8+ 585 # e
S5 B€ H ETH 4 3 N e onit R Pl 45 W m? (Taylor et al. » 2012) - % R &
gt TRt A e BREEBLERER NPSTMW "EFE 2w g @
A2l P FRZPEFRARR A B 2P od FINAFLTRLIFR

TR ¢ Pavid o kPR % (Sverdrup) s o A E TR € X
TR B4 CERESCA D b4 RS S E % (Sverdrup 1947) > Deser et al. (1999)
EOERLRUEN Gt EL R ER TV RAYD P ERRR B CERRICAS
O FRE Y FHERETREELIT o REHT b ES CRES T Ay

¥ i@ € (Sverdrup transport) g it £2 F R X R R g il es & oo ptb s BB pg

W% BLP| T ek T g g S E R %Y 2 Sverdrup ﬁs?]-‘iii BithlicEy - &Ko
- HAEFTR R RS RPLEN R AR SIS o Wang et al. (2016) @ *
Hybrid Coordinate Ocean Model (HYCOM) £ 4 45 FHLzEM < 3% 2 * & b &4
R RS g i 2P A TR R 0] o Huangetal. (2024) cF7 7 47 344 & R R 5
BER A EREA BB EROI P ARG o BRI S CRBEAT RS
(Global Taiwan multiscale community ocean model > TIMCOM) ez g 7 S & 5| %

B2 AR AR SR AR ER T A2 & 300 m p R R R 4 0 A

10
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b4 3 At kg ng gt o e 300m TR IR E R
277 B BB g A A n2 it £ 0% i - Chang and Oey (2011)3% % *% & b
A st mP Rz s BRSO PRt TEFRFE T
(Subtropical Counter Current » STCC)® & e s %7 M > % ® B Fad i i m
FERZPINERS od FHFAY P W Rl BT oD R A f e i

LN2 BRI Rge gt 3 BREE T TR ALE T AR

B FENENE -

-4 3273 P

RO R REEHI PR A TR R RFELFEE FA i
Bokin > B9 TR S 2B Rk T BT P R (turnover time)rt 2%
R PREROREE {2 ¥ RFRA R b RIS P RS R
B enT g 775 B 3 g (quasi-geostrophic) -+ ?ﬁz’v’ﬂt;‘r/gk(Cushman-Roisin »1994) - ihﬂ\
FRp P A A S 0 Y S RIE%A R kA STCC % & « STCC ehif %7 it £
43 STCCHrd ™ 2 -k & i & = chNEC 2 FF chsh 8 1 7 9051 3 chAl R 4 £8 212
@ A5 e i STCC-NEC i %t¥ > STCCw L ind > m NECw & /i » 3 4pF =
PHR ERTEFOLIER Y AR A FFTEIFE ERIFIANEH
be oo B R ILAP B E § 44510 (Qiu v 1999) 5 gt b STCC A = chjs 4 6 i B 4%
@ (front) 7= 3¢ = 7 & T 5k F]2 - (Chang and Oey > 2014) - iff * A& 2 (S5 p
e puie nod BRD £ AL o b T a2 B <32 4 (Rossby wave) g iz
FE R KBTS PH A et A DTR B TRTI R B TIPS S
BORBIR PILE e e WO TR A DR R R 0 A PR Bl S R R

(potential vorticity) = z_:
a (f+3\_
2 (5)=0 (1)

11
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Bpt P f 5 st S dic(Coriolis parameter) » (5 Ap¥ER  h B 5 KA B R - &
G ERE T ERF RO e A e BB A F FEEG e e R A
¥ (Cushman-Roisin » 1994) » & {8 i e & Ehpidla > F RS F AL T 0E
* (Chang and Oey » 2011 ; Qiu and Chen » 2010 ; Changetal. » 2015 ; Janetal. » 2017) -
BTN R BE R PRAET R EL R LG B AYR (F2)
En PN R L PETR DARM e Pk T R 4 o Bofsd A niE 2 4t
J& o & e s (Tsai et al. » 2015 5 Janetal. » 2017 ; Mensah et al. » 2020) - @ % Lien

etal. (2014)ch= ¢ HPERE AL > 20 F 8B HRE AN 5Sv gt
i

BB Y G TR G e d T R R P e gt fh s Yangetal.
(1999)4 ‘:EH;}'/EL/F'J‘:‘ R /]5 'TJ“ %j\mﬂ%z\m@&%l - glézﬁﬂ%ﬂ’m/ﬁ
A mAF UL F ORI kY gk FlA R A& TR R g

e L d wae F & E ¥ (Sealevel anomaly » SLA) %t i ¢ H &g A w3 ik B o
R oFArBRPRAAFE W HHETY BHH - 23 (2003) 7 P o
# W& @/ 3 7 % % (US Naval Research Laboratory » NRL)#7i& ¥ <1 North Pacific
Ocean Nowcast/Forecast System(NPACNFS)#-5¢ & % » 5 A 47 {4 (7 4viff i £ 4P
KR 2o, g5ldcd BARABB LB 2n PELPRE 7w B
F FRGE IV 2P KA phA 2 e L hbskga Mt e W 0 F RIES
&2k Rl s ok i B e o Tsaietal. (2015)¢h% & ¢ dp 4P © R RS 4L
Ren2 2T EF AL A 12-54 2 2 B > B8Ry 4100 3 450 km %
F o REEBER| B AT P R RERAE T A ] o

OKTV#H a7+ #RI| LN PG (A2 pr R o mLpl T3 R

PR P “,%4)1 BB S bRy FEA pheniz i (Janetal. » 2015
Mensahetal. » 2020) » # @ chfFd FhiFHEF au hAld R0 » e A P E R A 0E
s pler e AL R L2 optte Ln s HY L i e g N

eniy A A M F F *E(quasi-permanent anticyclonic recirculation)#k i % K 2 F b e

12
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9
=~

LB R R ITY BT EIR RS 2 R T SRR A AN ESL

it

| S e Ko Bifenr F eI v PR F ¥ L p
o R g FR R AR o4 a0 MR E RARLRIDR RN L0 F
LR E R APET Plhd e 24 AEIE F J\ql;?émﬁ ’r";—‘ﬁrﬂ,,, ESRUE S
RIZ G e PP BB TS ¢ = A fhigdEend = (Chern and Wang - 1998 ; Yang et al. »
2015) -

s %o BREF o o Lienetal (2014)3+ 2012 # 6 * 3 2013 # 6 * B3t B R

pig
7

BARA T 6 Bas ADCP BB TR AT EEFRIP AR EE LT »
%5 B & %2 ¥ A (zonal gradient of SSHA) 7 & 4p B 1£(R=0.9) » % 7 2 i1 e 4
BEBE I ZRNEP A2 FH D LB ET §raiE 2 (Uchida et al. »
1998)- 2@ OKTV 3+ & 4 Fend R * -k 2 Tl ADCP B € i #rda B e
E&ada pAM G2 % (Janetal - 2015) - % Yanand Sun (2015)=%2 3 ¥ 7%
B2 EBRCRANEAE A LG RV THRAY o 6P RH FE LR Ay
TAZe BRGNS RARS M REF 3o AT P B LT e
e FR 5 EREE e

£ 1335 Baker-Yeboah et al. (2009)i¢ * PIES s ~d Fda 245 3 R E ¥
(75 2) & buit (7 BLB hg % > -1 & (barotropic)ii 327 &L & (baroclinic) /w3 &
AR - RS P TR T fER 20%0s 5 B AR F
(variance) > ¥ % 4% B R R B 42 15 cm PF BRI ¥ LR AT%% R 5 A AR
AR T TR R R R R 3 FE DT L% 3 3+ o Andresetal. (2017)
ST F 4 I R R AR & A ¢ B8 KTV pls e & 7 (>1000 dbar) - Mensah
etal. (2020)7‘*‘:}5 o KTVL plsg gl en2 0 0 Ry kT 320§ e 30% 0 @ 3T A
I 11%-#7 3 R 0—-500m FF e 3oy b < phi= B % 5 X DR 5

4l

4_

PRk i a0l R ATR O B KTVL & P ent ReET AR & 4 i 5 45 320

13
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1 Rparke R AR 2 - HE R LB LRNZ PSR 4 B
s engs 4 Bl AL @ OKTV 3240 4 4 3076 1 KTVL Rl (d ik

% ohat i 3 123 °E > B 1)4 2012 & 9 7 1 2023 & 11 7 [ 26 i bt £l

]

D

T BEWERF A KTVL plaz k> Eihd T 3 2P &b
BREBY LA T 01-32" PR PTA A B REBY LALERE Bk R A
SRR PR DY kY FHRABELAPIRIGRY G @ ¥ ke TR

£ ¥ 4 $iC3E 4 7 (Dynamic Modes Decomposition » DMD) % 3+ & 2 & /i if 3-eficfg »

A

ET ORI k2 Brand 4 B ATIE 0 Bt B 8T e RS R S 1 RS A
RRenBiciy Rt sh o b b s B B TSk ¢ 2 Sodie (Empirical Orthogonal
Function » EOF) 4 47 p* % J8 /g $T o G ps 7 b cnsg it > g B 3V R 5 shis o 8

BRE ke 2 pmy

]

E % GTE 2 o

I RN B o L i# EOF 4 47 » & Zhang et al. (2001)s0~ 3 ¢ i * 1994
£ 97 1996 # 5 7 B> PCM-1 B|&R* &ysesni# tk(moored current meter)ip| £ 2 2
ok o K R 100m poniE f 512 (7 EOF A 47(B 7)> & ¢ & %% VEOF1 it
B E34% 0 FH IRiFT X AR5 PCM-1 %76 chf > #7120 VEOFL £ 4 2
FeyiE JVEOF 2 b8 B en25%  PIR A FR ol d wdif o - i7#
Chang et al. (2018)# * *+ 2012 & 11 » % 2014 # 10 * F¥(% 23 ¥ )& KTV il

o XA 2xenz 2 75kHzZ ADCP #7@] £ criiid 3w T AL » 1 EOF A 7R £ #75 +

(g;

K 500 m i i () 8) - @ared ¢ % - R cha & A (PCL) ik % B 6 45.8%

TR A n s A e 0 ¥ Bl hi 34 PC2 BB 029% 0 A HCH B
(R 8b)* & 2ipament T30 2Bt v 2ipind 2 B3 %49 M 14(R=0.98)-
BT EOF A 478 %% - A S 5 - WA ALk 284p s > BT ipy
PCM-1 > KTV1 &2 g $UEE 9A #hi8 4 (Chang et al. » 2018) « X m ot %
LA BT NERFCRE BV N LR T2 - > PCM-1 Bl& = =2t g

2o Pl BF R EEFER 5 1000m o A A KTV &0F R iE 4204 m L 35-K0F 5

14
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2741m; p b2 b A AP Rt R 2B AT £ 4 0 PCM-1 # * 0 11 R

'—\1

i gpeiia T 0 0 KTVL 67 5 @04 {852 B iplstah= & b & 500 m § ilik

HEH 2 AR HRABHEPEF T 4 F > Chang et al. (2018)3% 2 PCM-1 4 sk :& i7

)

P STCC s e 3 5 » KTVL ig 7% STCC jFradicg i » @ 2P g+ %
STCC re 2 i "¢ fic® P2 F¥(Changand Oey » 2011) » 2 F 325 d = a7 3 ihg %
B dApF PTG RF o SFEN T S 2aEy o AP T REFEHOLEAL S

oo id 4o R EINENNE M R QFERE T inE e R -

EOF2
Variance Explained: 25%

200

400

600 -

Depth(m)

800

1000 '
0 40 80 120 160 200 O 40 80 120 160 200

Distance(km) Distance(km)
Bl 7~ PCM-1 iplschs 2 i EOF % 4(3 p Zhang etal. - 2001 » Figure 5) -

MODE 1 : 45.8% MODE 2 : 29.0% MODE 3 : 9.8% MODE 4 : 8.4%

0 0.3
200 o
0
=300 0.1
—400 (5
@ (b) @) o

-0.3
I218 122 1222 121.8 122 1222 121.8 122 1222 121.8 122 1222

B 8 ~ KTV1 jplam 4 i EOF $4:(4 A Changetal. » 2018 - Figure 6)
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FoR ALRREAG R

2-1 F2 3 #a i T oA

2-1-1 g #p iRl k2 T

PG AL € )Tt B e OKTV 35 % 3% 2012 # 4= foipla KTVL 54 # pipl 4
AR INAE 2 P ETe k2 B o KTVL plavjE ik L ple £ 3 123°E > i)
MW xF 8 BRlE(B L) Rl f4Ed § 3 K5 KL01—K108 » il B chf §E % 10
—20km 2 (% 1) *F 5 & * ik 2 FA % p %47 - 5L 1012 44 (OR1-1012)
OR1-1017 ~ OR1-1018 ~ OR1-1042B ~ OR1-1051 ~ OR1-1066 ~ OR1-1081 ~ OR1-1088 ~
OR1-1094 ~ OR1-1098 ~ OR1-1109 ~ OR1-1117B ~ OR1-1124 ~ OR1-1134 ~ OR1-1140 ~
OR1-1165B ~ OR1-1196B ~ OR1-1213 ~ OR1-1222 ~ OR1-1233 ~ OR1-1243 ~ ;3= 1
%0029 47t (OR5-0029) - i 2007 47 (LGD-2007)~ #7771 3£ 0016 4=t (NOR1-

0016) ~ NOR1-0043A  NOR1-0067 » % 26 & (L 4 3+ @ 9) -

\ A VAV | N \ \ \ \ \ \ | l
2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
Time (year)

B 9 ~2012-2023 & & KTV1 #7e=t pF & fih o

Fl & A B s Ry A B 22 L g B R 8 B KTVL ke
FoAlod B R nE plrbavk e FALE i d Sea-Bird & 7 4 {7 ot 48 SBE Data

Processing (https://software.seabird.com/) #-ip| {8 2_ F L 5 T 38 (74 o w0 i A7 7 4y

#7i¢ % % R F & (Conductivity-Temperature-Depth » CTD) A 5L % % SEB 911 plus »
fAEETRFHEERFSPFERIE - R B9 - 2 Lpfi e kaR-¢
REAEAFTHFI-BVE  FETARFLAAIAHPFLELIT  BRFLFR S

16
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https://software.seabird.com/

fo S AL SRR

ERIFH > B St g BT 45 i SBE Data

Processing # 8 I £:Fd WM 4 8~ FRF R X7 7 /A HINEEE P B3 EF

MR E B G CTD F o @ # jiF £ p (https://www.odb.ntu.edu.tw/wp-

content/uploads/sites/10/2019/04/CTD.pdf) 2. # % # 3% = si—- Fk $54 > & Data

Conversion -~ Filter~ Align CTD ~ Cell Thermal Mass ~ Loop Edit ~ Derive ¥ Bin Average »

BT 2 SEBPITA (R 2) RS EBR s EERE -

# 1~ KTV9I plspleb sk ~ whe

A RIER -

I 2R (E) | #ACN) | #RERM)
K101 121.7203 23.8750 2462
K102 121.8602 23.8437 4204
K203 122.0 23.8125 2573
K104 122.1864 23.7813 2520
K105 122.3516 23.7429 2852
K106 122.6102 23.6953 2641
K107 122.8281 23.65 2416
K108 123.0 23.6170 2263
17
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https://www.odb.ntu.edu.tw/wp-content/uploads/sites/10/2019/04/CTD.pdf
https://www.odb.ntu.edu.tw/wp-content/uploads/sites/10/2019/04/CTD.pdf

# 2~ SBE Data Processing #t#8 4% 7 Z(5% p W2 4 8 < FRF i X o7/

FLEIBEF P AEFTHEER S CTD TR ILH L P ) o
# 3 iz pen
1 Data Conversion BhdeF At p 5 ASCH fhx g @ B 2
i #
2 Filter A A R B RS FEOERTRE T8

BARFETREF SR R ERRR S
B B R B 5T o

3 Align CTD BRECETRGERZ R 2 LEHREL L
BHABT > SVRFERAE R F o ¢ By

ALK - KB R E o

4 Cell Thermal Mass | # ¥ ¥( 7 REFE R BT o
5 Loop Edit # CTD 7z Fp/ | "X ITHFEF )

£ b T L -

6 Derive PG NI FL B OE R ET R
oo uPE OBAE - RAR - % Sd o
7 Bin Average Lo F - H2R4 - 2ol o

2-1-2 B iRl T

& AU ik 2 o F_ g FARLIRE SRR i% (Shipboard acoustic Doppler current

profiler » SADCP) % # ip| » £ 77 7 43 & * -7 SADCP 4]|5.% & 4plF » ¢ 45 75kHz &

150 kHz =1 ADCP » 75 kHz ¥ 12 g £ -k iF 500-700 m p 2 & w36 > 150 kHz geLip]

FRFGR 95 200400 m e ¥4 i@ % 300 KHz T2kt m g $nad g (Lowered

ADCP) » i¢ * pre2 CTD — b T % » ¥ &bk CTD T 3R A bRy 36 F

oo R4pFHEPEEES AR TR ERHEFAT P o &S IFM-
18

doi:10.6342/NTU202501472



GEOMAR/LDEO Matlab LADCP-Processing system (https://github.com/jgrelet/ladcp)

MH L BRI T 5 BT R KTV 85 jnig 74> A4 F %4 75kHz
SADCP | ¢k % 600 m 12 b i #2 1000 m 2+ 7 LADCP e i #- 600 m 1/
1 3 4p e 7R B 60 SADCP jiii# 22 LADCP jfi i 742 T 32/632 » 600— 1000 m 3% 4
g P8 % LADCP T » Bofsdrtd imid TR TH0 SLE 5 20m - B > A

Zé fp 2, A% f ADCP ot ( ,V)%‘?‘i °

2-2 R FH

AAERARZB LA BRAR ) AT T UR Y FE PF K (Satellite
altimeter)sj% 4 & & £ % 741 (Sea Level Anomaly » SLA) » i i #F 5 Bl F & FALs
(R B SR e R s gl

d 2% 4+ CNES(French Space Agency):~ CLS(Collecte Localisation Satellites) P
% 1 DUACSS (Data Unification and Altimeter Combination System)# & & ¢ £ iz %
? gk (Sentinel-6A ~ Sentinel-3A/B){r & s & itz ¢ ehfEk ()4 @ Jason-3 -
Saral[-DP]/AltiKa ~ Cryosat-2 ~ OSTM/Jason2 ~ Jason-1 ~ Topex/Poseidon ~ Envisat -
GFO -~ ERS-1/2 ~ Haiyang-2A/B) & 4 Copernicus Marine Environment Monitoring

Service (CMEMS> https://www.copernicus.eu/)#74 # % & T4l p & 7 SLA

R

7}_'_,

W S TS AeskF T o B9 SLA T4 6 Pujol et al. (2016)#% %

Ao i 20 £(1993-2012 £)is A G B RV ERTLF R

\\\Xr

SRl
(altimeter reference period) » 4p ¥4 5% & &2 % * 7 & (1993-1999) F L i 5 B &
AT E SLA &H O Bl o g F X A L 1T W pF(near-real-time
NRT)frut pF(delayed-time > DT) = #& - NRT F#4L 5 & p §# 41> NRT F ol eias 3 pF ¥
e QA E PR - P RJTEARRG G M REERETRE ETR G

0.25°%0.25° ; DT TR A § 58 { R FFudZae i > ¢ 3 5 ERE o Fivg
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https://github.com/jgrelet/ladcp
https://www.copernicus.eu/

1
B
o
&

Bl FE B fr— K f347 & 5 0.125°x0.125°% « A47§ ¢ * DT FplpE

5 2012/01/01 % 2023/12/31 > ;& F 26 i &=t chpLip|#p & o

2-3 mEa L ¥

KA f M- CTD Rl 5 B TR B2 10 2 K101 8 K108 § e 82 A i85 g
Lo k2 R TEER-6 BHEN(E 8 B E ) R HBAFTHERE 10 miFHTR
3 Ty EE R Sark e TSR Y £ 4 b B % (Thermal wind relation):* &
B16 B R ()¢

vy _ 90
0z  fpo0x

S0 f 5% RK(f = 20sing 0 QRS B AT @LAR) grEd il R py

(2-1-1)

LEYRAPERA B R MARES TR Y - 24 R KB
BH o2 mid o it P OERIERE AR S AR & BIFEA (bl4e 1000 m)

;Omzrﬁilt,ﬁ;ﬁ ,‘L_ii’l?»Pf’-l,,\‘]\,#qﬁ/,,1§ m°7’lk’ﬂil§¥mg’f«'—"q

\\\Xr

3 LADCP g plinsg > 72 ié * 900 dbar &9 LADCP s 3418 5 %3 insg &
» o FRAe gt A e 7 LADCP Jiig 3t 2 Rl =k R v 1000m -RiEGRE 5 0 % x o g
WP BT ED 8 B G AL e SR FHR TR K-8 BpkEk
gy FAHNEL S BEFRERERE Y o @ I Ere o

e
in-

e

SRR R R R ER P E R B AR ERREE R
KTV1 %ra 28 FF » %3 Janetal. (2015)77 ;2 #-2 B e S it T » A oo
@V A RopE X nig ha = efolding B B 5 0.2ms T kgt o fgt A

B i v 23 0.2 m st m’}%—ﬁﬁ“]ﬁ »3t [N E'J 2 BT ks R R (QG) ’ LK\;‘ e

th= x4 % k3rEd ADCP jnid #ripl 8 9 ke Bl F 4R B (Qo) o b i3t B A
TS 2 3 2 gt T ADCP 82k = FHA » T 250

0 rxe
Q6=ff vy (%, z)dxdz (2-1-2a)
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0 xe
Qszf vp(x,z)dxdz (2-1-2b)

FeoxeZHxw AN REA LT FER 0 28 TT EE L SR

o

(g

2-4 % 4 BoRs A 47

Fl i e nE L engk b F 26 B LT R R R A b PR ELR AT fvk 2 TR 2
o HTORL S AT T o B4 H0RE 4~ 47 (Gill 0 1982 5 Szutsetal. v 2012)e0 jE &
A EALR KTVL %o crjiad i f0fs o @ % & 4 {082 2 7 00k B 3472
AW SR B EE S A i RATE- R B e 2
O AT R ER G AP T R E R AL BT E o g2 hp AR
AR RS A RS R B S O o B S A F A L 1 & (barotropic) fo AL &
(baroclinic)#icfs » H ¢ ® BHCHE 5 5 F #i0ik (Mode-0) » % — #°4& (Mode-1) B 4% &
ARG - L BELET U ATE RS - AR Ao iiF R #1008 X

—’\/J\ o

(g

P FE 2B AV NUEIE BRI ¢ 7
BB TR pABRK AT VR - T T
(Boussinesq approximation) ® ;8@ s 4 f-plane F (r f 2 ¥ 8); A2 vt zta
Pavid Biosr B T R i eend A o @ TR REA Fp(2) B ERAR
fhiv s @ FORRIT I BRER L E AR WL RRF L o RE APy B
RROEEB AKX R RS, RS RIG AT
8y » 6y 6 » 1 (2-2-1)

B {s e 4] = 4258 (Governing equation)4c T :

ou dav dw (2'2'23.)
5% + @ + Z =0

Ou_ . __19p (2-2-2b)
Jt Po 0x

ov 10

P o= (2-2-2¢)
ot po 0y
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dp (2-2-2d)

0=-2"-r9g
op , 0p (2-2-2¢)
ot tw 0z =0

HY UV W S Xy sz 3mchnid AE  ph RRSTED » py s 2FBAE

gerEd v B oo #2220 E N LT

dp _ poN?
- _ w
Jt g
0%u v 1 9%
atdy f dy  po0yox
0%v N ou 1 9%
Jdtox 0x  p,0yox
9] ik 1 0
= ( —p) (2-2-3-¢)
0z 0z0t \pyN? 0z
’v  d%*u au v
— ot (5o +5) =0
Jdtox 0dtdy dx Ody
d (61} 6u>

(OW)_ 0? ( 1 ap)
at f dz) 0zot \p,N2 dz

ox 0dy
BRAIEE SR AHPFRIFEL, 28 A TEC(y,z2) =0

dv 6u+( )= 6( 1 a'p)
ox 0y NV 2) =5, poN?2 dz

AP B E R L - 4 Ko R F & # (fluctuating motion) > Fu, v, w,p, p « e°

(2-2-3a)

(2-2-3b)

(2-2-3-d)

(2-2-4)

AP EEE 224 k% ok C RER EER o o] ’a‘%*
Vlz-lp » poc eilkixtkay) 18
d 1 odp
— — |+ k?*p=0 2-2-
0z (,DON2 62) TP (2-2-5)
e k2=k S+ k@ 225 =
d
9P _ 0, z=0,H. (2-2-6a)

GQLET T Y MR Gk 25 A E(rigid lid) % & & R 3% % T & (flat bottom) »

hz=0HF w=0 (2-2-6b)
ap ap
= y = W — = 2-2-6¢C
bz=0HF  —=-w==0 ( )
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0
9P _ 0, z=0,H. (2-2-6d)

BN T L E ] - S E S AR5l

a1 1 adp, )
— — =0 -2-
0z [pON2 62] n Pn (2-2-7)
R 2E B o P2k’ N LR hiRE .

TR dip s b W oL 4 FF Runge-Kutta j# R g £ f2 5N endici®

frem AT A RPEEARMD L APROD = )aapzn’ 3O 2-2-7 WA

0
J%3+%JNWQ%w (2-2-8)

BB R g2 2-2682d CTD R & vk TR & » 2281 VA BRFHER

EEHREQR)  fAQ(D)PF R * 4 2 H A B2Q(2) 5 > Bl R w 2-2-7

TR L e R R D, o FRIRA B T 0w H G A ML Sk AR
TR T (Z) % » > B P K& 78 Stk = 1,23, K)= 0 b &l BB > ¥

‘5

JE B 32 hs 4 AL iRt X o (EDgy) -

\

EDin = ) paTel2) (2-2-10)

B L R R BRI H R - R R AT ARG S P ED B R R E T Y
FREA N PN MTUR B HCA A S P RSB F 0 LT R B ATRE 2 F R
BEPI REORGEZ P o BTk TRE LA E KTV plsaT o8 4 #
B R a-F Rl D B BT LR R X o TR Al g & s R

2 i B oo
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2-5 BB 2 Sk

& 8% i+ < % (Empirical Orthogonal Function> EOF) 7 = g /2 518 ¢ & * &
s AT R o BAFERIH L A & 4 4 47(Principal components analysis) - 2 i 2
BT IR ey BT A s X BRGNS EN K - EOF e 2 g
AR - BTSSR P v B BRI R A 2 A AT E R

Tends 4 B 2 g (Kunduetal. » 1975) » i&4 & H & d 4 i A 47end b > #5 4

sh/,;\%frﬂ\d F;'TS it g ds > ﬁg_}\‘frﬁik p_.. =3 '“'T:}'H. I EOF | % - %ﬁ lﬁ"% %ﬂ-?—}i‘lj‘
s dr 2 cEOF e a XA F A8 % AR F e e G A E

I R S LRI F R 0 4o e £ F Kaihatuetal. (1998) % @ -H Ji # 2t B 4E F iE A7
BIR A R R TR AT U £ ARk T4 (David 0 1983) 0 R 2 G Bl
B A AR T (Weareetal. > 1976)2 % £ o # 4 3 & F4t(Longetal. » 2021) - @
B2 E R 2R R UE EOF e § > Bl4c ¥ - § ¢ #73& Zhang
et al. (2001)s% F @ #-EOF & * % PCM-1 Bl chaes Tl » fu v iniE &
B R EOF » 47 » & KTV1 %75 » Chang et al. (2018)i# * 472 ADCP jB| £ e i#
g7 EOF 4 47 -

LOHFHEE EOF 245 B A KTVL %75 1 12 03 e gt gt &
1000 m ;g T > Fw #F3] KTVL 2 8 iRk 20 m /# A T 352 ADCP | £ T
Hainig ehig B e o AJR2 1519 3] 850 Bk 0 T 400 B FALEL o % EOF &
Fra0 0 A dRE (V)R 2 et imaig (VNE BV REFEE L E VS
L AR

v(x, t)=V (g, ) — V(%) (2-3-1)
Bk Vi(z) 5 =% % tp(k=1 5 OR1 — 1012 &= +k =2 % OR1 — 1017 4=
k=123, K)% o e etz (=123, N)#TR B Pl ind A R 0 LB TR

¢h3 4p B i3t & (Cross-correlation) ¥ 215 & — N X N§ #AEER(z;,2) » T
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ViV ViV .. UiUy

VoV . .
R(z;,z) = 2 - : (2-3-2)
val vaN
;?V‘ ¢ Vv = Zk 1Vk(ZL)Vk(Z]) o 4B R F“ _ﬁ'%ﬂ— :ﬁ 2‘7 &QF'KE‘ N *3‘%{{@;

(Eigenvalue » 1,)F= N & 4p ¥ J& 3% e £ (Eigenvector » ¢,) » ¢

N

Z R(22)bn(2) = Anthu(z))1 = 1,2,3...N (2-3-3)

i=1

mH P A B, 5 3 4pE < (orthogonal) »

0, if m#n
{1, if m=n (2-3-4)

N
Z ¢n(Zi)¢m(Zi) = Opm 7 Opm =
i=1

Gt F AT H N HEA PECE e £ (mode vector) o & BRI FORLE i@ F & p i

e RER T
N
Vi(z) = ZEknd)n(zi) (2-3-5)
i=1
d 150 A R B N SR D 2 S ARG ER, T ) BRI A )
N
= > V@) (2-3-6)
i=1
2-6 i ¥ 08 R|2
JOURERE R T Er SRR LRLRLI - A AT EREE G A
FHEE 44538 4 ¢RB LA SR £5 IR TS e

% B i F](Chang and Oey » 2011 ; Janetal. » 2017 ; Changetal. » 2018 ; Mensah
etal. » 2020 ; Zhangetal. » 2020) « F]pt & 45 ¢ = & S ik BRI R A LT

PEIBRIAES  HY T BLRAANAB L pRE R i T IRE R
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¥ 1215 i W 2% (Okubo-Weiss parameter) & % z_» # = ;2 ¥ d Isern-Fontanet et al.

(2004) st & Okubo (1970)4= Weiss (1991) @ 3% 41 » 3+ & 3% 4

2 2
G G- - G-
dx 0dy dx Ody dx 0dy

v ou\2 . B
Ho (£+E) % 3 *» % 25(Shearing deformation) » % 7+ #h% i

=
=
q{éz
a.
A?..

b\
R

i e (U ONE L e b . .
KA (ﬁ—ﬁ) L Rgeni £ % 25(Stretching deformation) » % H 2 5| chaip)

v ou

L el LR (a——) = i & (vorticity) » # 5 i A FniE B R R e

g2 R o Chengetal (2014)~ @ & 1 i¢ % W Sdicen™ 2 pF > gty 2108 G op

,,l;?}iii—t}’ BN 3 0% 5 e g,gu 415 T A A LG B ROPE S0P

B P|ET- CRREEE SRR T A BAEE o R e BBk S B (1) Rl
PL i T - BIURER L EFORBW<0) (2)A 5 3 AR Y DL B R LGB
T SRt PR (AR B AR D R R IR S RTH PR
THPRRL e fage s - Ko (YSLA higR BT vl T A REE
B(E] B E) B)iFay ¥ B P hSLA £ s (6)ifF iR 1F
(Feidda gREYEFRA)CE A Nd WA R FTHRER DAL 0 § &
# 7 (@ (sea level accuracy value) = i@ * pb = j iy 5 2y FREA & T GE 0 R
FE T2 A L 24% o Ak A ) Y 500% i b SR S i 98% o
+ it Cheng et al. (2014) =i 2 i Rz s * >0 d B9 L fesbor™ Uk 4 6k
ALY enig $= & JnoniE (Absolute geostrophic velocity) ¢ 3t & W Sdic B~ 1775 £
BB RE A ESLA)T A BB W Sodicis B8 i XRE R A %0 B (W<0)i
AR ITFPZFRE OB LAn 3 RAEY E FFIEZRE T2 3RETE
IR » FHRLBERESFR S »F E- 3% LAY < kTR B ELmiiE 2 Tk
BH%h o hBERGFF LT HPASLA S R v R LT

ML o EPRE RIS R T K he LR B EE G RO AR T
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2R RFEHGB

Ao 26 Bt BRI K v B T SRR S B4 R A T e

IR ST R FH AR R R e B TR S P e a4 (e

énhn

TR

LER o
CE

3-1-k= ?Fifii'-,é}’ﬁ..%-%

B 10 &7 end d & &t CTD BIE 7@ vk = T - KTVL e (g B A 5 F
FEERLE AT AMF6-10 " )b ? > GF v LA K R ECG28C)am
%o 30 gt H 3 Opl1F AR E 30°C - kR 0 Bidrdist OR1-1012(2012 # 9 * ) ~ OR1-
1042B(2013 # 6 * ) ~ OR1-1051(2013 # 9 7 )& 4i=rt » izt F B ekl # 5 &t &
50m p o @ & iind R A (22°C)R] 1 A4 % et OR1-1066(2014 & 3 1)
B oo BLBIT|A £ K B R k(<338 psu) s kA AL G50me AAL T A
SA A - BERTTRIRT Rl V- BRIFEBERRRAY 2 FRRC
34.5psu)srkid ¥ =3 KTV1 %% L ®] 50—300m rKiR2 B > @ pbja ke B 2 %
K 7 Mensah etal. (2014)#-p* % 3 K Bl chdd 4 57T > 7 13 ETIT B bt R
B fixt 16—30°C 3 M@ & (< 34.6 psu) = & 2= F B & & K (WPSTW) -
b5 BB R 4 15—30°C g A AR B & (> 35 psu)k 7t hdisc OR1-1042B
OR1-1094 - OR1-1134 ~ OR1-1140 ~ OR1-1165B ¥ @.p| 3] » ;& A& % 4 *> 100—200m
2B iztk® @A K1345 Mensah et al. (2014) 4 5 s 5 A & T EAF Ak
(NPTW) o @ A7 &k 587 L gUipl 51 & & F -KIE ¥ 4248 25°C /5 -k » 25°C K
RenZRSUFRI & 1 A(d T L)brFE s 7R 5 42 100150 m 2 F > iz
L FAER R G oy R RT R ALy LIRS R (e fie )
R A ERFEORFZ - L AT PEEE RARPET Rlaha AR R AT

i¢ = (Mensahetal. - 2014 ; Janetal. » 2015 ; Chenetal. » 2016) > # {F%rm & | R

27

doi:10.6342/NTU202501472



BRRSHRM A GHRERREG AT HE A 2P AR BEE

BnAR LR > g 2P0 £ M 4e(Jan et al. - 2015) o

OR1-1012(20120817-20120918) OR1-1017(20121106-20121108)

OR1-1233(20190720-20190722) OR1-1243(20191028-20191030) NOR1-D016(20211019-20211021)
122 1225 123 122 1225 123 2 E 122 1225

1000 MOR1-0043A(20220928-20200030), | NOR1-0067(20231109-202311 10, Salinity (pau)
122 1225 123 122 1225 123

B 10 ~ 26 B 4z > KTVL I3+ =rp] 19 2 % & 3] 1000 m i cn(a)if & 22 (b) B B %7

W ©°

3-2 ik BHA

Bl 1la~b &1 KTV1 %5 4 SADCP & LADCP & = i 45 > B 11c 7!

87 & 4 LADCP & SADCP(# LADCP 7 chiist ) o 4o TR 20 & i8] 5k 25 m ok
FE B o s A inE (V) 6 0 KTVL RISRETS dvh i) pPFTIRLEEL phid

# > 4~ OR1-1012 ~ OR1-1017 ~ OR1-1066 + OR1-1081 ~ OR1-1088 » OR1-1109 + OR1-
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1117B ~ OR1-1124 + OR1-1134 4= OR1-1196B % 10 f #a=t - fitd #usk ¢ » 4 #c
Bo b b R ST AR 0 2R A Sk (de ORL-1066) R 41 f il AL @ %
TR g4 nd b E 0 24 Mensahetal. (2020)% ¢ #-855 0-500m -KiE s iE
o FA A F R A A B AR T Y TSRS R KTV il

i E £ PR PR P % AECE)R Mt A phé £ FIARAE Fo &

\

(B)#d o a¥rg s ? a2 winid VAZE 02 msten2ipentreini 854
Ak 600m p o247 » & OR1-1117B ~ OR1-1024 ~ OR1-1134 ~ OR1-1140 ~ OR1-
1233 fv OR1-1243 % &t ¥ > (v ¥ BLIPIFIRAE 3 A > win > § B E T 20 1 K 2
Faogre bt o fmr g A2 wind(V>Imshd ¥ WA 122°E 2 o - B 7

% OR1-1165B 4=k o

AddemEU)? G 0 A RT A LA EET  (DEBRIMR L 2w U
BirE(Rein) QAU ZEE  dRIUGEE PR FpFRanpfas

Ponenip A o gt LF e U )R el e Val0% Ft e

S pinid VHAFE L AT LM
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12235 12321215 122,35 1232 1215 12235 12321215 122,35

122.35 123.2121.5 12235 1232

Bl 11 ~ 26 i 4a=x d 45§ SADCP & LADCP & =

ghO)ha = s Ula o (C)L Rzt 25 m RKiEdin B - (@7 chd B M4

e 0—500m RiRE L i dhi B o
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3-3 ¥ @it

* & ¢ - ADCP #1ip| & $leiid > 35fF 5 0T a0

V=V + Ve +V' +7 (3-3-1)
R P VE ADCP Rl 2 4w ig B > Vop = & B3 g0 Voo o AR g0 V!5 nid
b E R R (Bl iR) o NP B E R, RIS LR

(barotropic > V)7 £ & (baroclinic » V)@ B 4 > A Vs L3 iig > B R £ 5%
500102ms™) s FH MR RVR S PR o SEFEHFEL S AT S

SRR AP £ R 2 AN (2-1-1)3 B B i n (W 12) 0 ¥ #-H &2 ADCP

(SADCP £ LADCP & #)R|@ e 4 3 % imid VB A1 o S % A7 > 22 26 42
FAplEH R o d k2 TR e 1,8 ADCP Bl 2 che it 2 e i VA

3 i 4= (4 OR1-1066 ~ OR1-1213 ~ OR1-1243 et 5 ip]) I} I &g F el £ Jif 1

SVEGRE AR A BRIE BRI E T LR R ¥ AN328 7 F 2
Mensah et al. (2020)4% & e2/iiid 4 b o B % BEor fedst ¢ g S i TR R i

A iR £ E<O01°(g R )gEt 3 9 B4t & % 5 1 OR1-1066 ~ OR5-0029~OR1-
1081 ~ OR1-1134 ~ OR1-1165B ~ OR1-1222 ~ OR1-1233 ~ NOR1-0016 ~ NOR1-0043A -
A MRS 2 SRR D BRI R B0 4L 0.2624°(0 ) > 4 RIS L0 2
R sk eEESE o 2R SR R TG (D) B R EIpR IR E N BT 5 B EEERE
i &7 R 249 B # SADCP &7 LADCP & & jnig (ADCP i)z B f245 B M > &
BEFFRIMELIPPEE SR LR - QQRF LR DT RI R IRPL B

BRI S R b P IR R T B R R Bl T 58
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| P
. Lo / o = s
— . ot ‘ g
OR1-1094{20141108-20141110) 098{20150304-

B 12~ @ % dpplok 2 FAEEAA R 2 AR ok R o ¥ d E MM

A ErH 0-500 M -kiEehE X R B (& S niE A ) o

1 ADCP #7ip|erigt w 1§ B o '? P8 e (QD) P B3 E H e g/n '"'T;‘L-Ef Exi ﬁ/n
T (Qe)EF REI L 3o AT AT * 2 26 Bét ¢ 0 Qg 4 3t 10.92 Sv (OR5-
0029) % 35.21Sv (OR1-1233)z. & » T35 Qgin¥ 5 21.08Sv: {#£# £ 5 64Sve m

ADCP ;i #72+ 5 7 Qp 7 £ B 4 3+ 11.99 Sv (OR5-0029) 2 33.09 Sv (OR1-1233)2

FAN) J‘i:’QD/ :’E

52195Sv 5 5 58Sve A AFE I E M FSRELE S
BiE e 20% 4B 0 W F 0 okt (40 OR1-1088 » +58 % ; OR1-1213 - +46 %) !
MK L > A A BFREPE @ a5 494 @ 5 499 Svo infenth £ ¥ i

A SIS 0 R TR SRR A A2 L R

E-Hrira AT E RN EE LT » s BRERIBM GHcE A
$78w (B 13a) > Qe &Rl Lo w s 45 B AREF P A IPM H#kE R=0.68
(p=0.0001) > @ Qp =4p B 2B iE P 5 0.74 (p=0.0001) - Jan et al. (2015)# Yan and
Sun (2015):%= 5 & g Ak plE L SR B AT 9 b 46 B B PR o MR
@%*Piﬁ%%%ﬁﬁﬁﬁﬁﬁﬁﬁﬁ“@ﬁi%’&ﬂﬁﬁﬁ%‘%a$§
FEMETR S5 M o Pujoletal (2016)° » 2 o ppiAz EURGA K AT Y

% PATIRA S SLA % B Bl 4 7 5.1% 0 ¥t A A R Gt K ] 205 250
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VBRI ARSR D FEG e BRNE L BN oA FA L 3R FTREET D
BAFRAT o s 45 P REMEDAPMALT T4 o KA o d W Qe iAo B

Btk edp bl i Qp Mo &7 KTV9IRSR AL T w22 5 3 )i:%%)i:“,% KIELR YIS

ORE S R PERTE P
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Transport (Sv)

(a)
10 15 20 25 30 35

2024/01 . : ! |
O
2023/01
O
2022/01 -
Q
2021/01 |-
2020/01 -
O
* QO
@]
< 2019/01 |
..E @
Q
_g O
T 2018/01 -
=
@ ®) *
£
= 2017/01 |-
O
Q 3
2016/01
@]
@]
* O
2015/01 o
* =
* O
O *
2014/01 fox
£ 9]
O
2013/01 |- 6 e
¥ Q
O Q4
2012/01 - ! : : '

=30 -20 -10 0 10 20
107 3x(SLA)

S i

B 13 ~ ()2012 % 2023 # & &

Bl E4 2A1HE5L5 Qoo

125
Longitude (°E)

135 140

t KTV PSR L F w34 o B R $EFR

E MEEE L Qoo

AReod MEAdwdda i F

¢ 5 i 30 X Mid gk B (Low-pass filter) s & & 7% £ 6 & T4t (b) 2012 2

2023 & >+ 23.8125°N + «hSLA & > £ ¢
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3-4 iff ¥ Pl

B AR KTVL Rl 2 p % it «hE & F)% (Chang and Oey > 2011 ; Jan et
al. » 2017 ; Changetal. » 2018 ; Mensah etal. » 2020 ; Zhangetal. > 2020) > % |4
FarfdAia REEY L FOURBIG T 4G B RN KTVL pl&ng
(B 13b) o Flpt > Fa A ® A S R A RS ANE SRR PR 0 B BN IE
AT S e AT R MR RN SR R AR A 3.

B RS R AT 0 AR §UR(CE)E A Pkt 12 B 0 ¢ 42 ORI1-
1012 ~ OR1-1017 ~ OR1-1051 ~ OR5-0029 ~ OR1-1066 ~ OR1-1088 ~ OR1-1098 -~ OR1-
1124~ OR1-1140 ~ NOR1-0016 ~ NOR1-0043A ~ NOR1-0067 ; m B &< & § *zifs (AE)
7
OR1-1109 -~ OR1-1117B ~ OR1-1134 -~ OR1-1165B ~ OR1-1196B -~ OR1-1213 ~ OR1-

F_&

Bkt 14 B > &~ %) 5 OR1-1018A ~ OR1-1042B ~ OR1-1081 ~ OR1-1094 -

1222 ~ OR1-1233 ~ OR1-1243 ~ LGD-2007 o 434§ - A %7 » A &2+ 5 & AR T )
¥ Btk CERE it T30 plinE Qo 5 16.85Sv £ 1 4 3.92Sv» T o
P E Qo b 16.67Svy B X L 4T6Sv s A AE § Bt T Bl
F Qps 2578Sv £# £ % 488Sv> TiapfEinii® Qo 5 2486 Svo & X %

4.88 Sy -
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23 B FEREPF R X B ARSI A A s Y s
5 B¥SLA)B R - Qe 5 # * ¥ Einind B i d s Qo 5 ADCP i L
P o xR > LADCP F L% » 3+ ¥ 374 9 RIin & Qopsifiie ® o
SADCP #tip| £ et & 600m it - hA7 7 #1308 * Qo it {7 syt pF & M fhje 2
L
gy [MEERHERL LR i o SLA R
P P F | =R | ¥R (m)
OR1-1012 [2012/09/17[2012/09/18 13.10 | 17.34 | CE | 123.4375 | 22.40375 | -0.0367
OR1-1017 [2012/11/06[2012/11/08| 22.79 | 19.20 | CE | 122.9375 | 21.9375 | -0.1649
OR1-1018 [2012/11/13[2012/11/15 15.62 | 19.92 | AE | 122.4375 | 24.0625 | 0.1162
OR1-1042B  [2013/06/25[2013/06/27| 19.76 | 21.83 | AE | 124.5625 | 22.0625 | 0.3738
OR1-1051 [2013/09/29[2013/10/02| 13.73 | 13.30 | CE | 124.4375 | 21.9375 | -0.3512
OR5-0029  [2013/12/23[2013/12/24| 10.92 | 11.99 | CE | 122.8125 | 23.4375 | -0.1415
OR1-1066 [2014/03/10[2013/03/12| 13.85 | 17.05 | CE |123.9375 | 23.4375 | -0.2532
OR1-1081 [2014/07/04[2014/07/06| 25.89 | 19.25 | AE | 123.8125 | 22.6875 | 0.3260
OR1-1088  [2014/09/10[2014/09/11| 22.89 | 1451 | CE | 123.1875 | 23.8125 | 0.0447
OR1-1094  [2014/11/08[2014/11/10| 25.21 | 24.91 | AE | 124.6875 | 22.4375 | 0.3342
OR1-1098  [2015/03/04[2015/03/05| 25.44 | 21.19 | CE | 123.6875 | 23.3125 | -0.0065
OR1-1109  [2015/06/10[2015/06/11| 20.87 | 27.21 | AE | 124.9375 | 22.6875 | 0.3023
OR1-1117B  [2015/09/06[2015/09/08| 21.89 | 26.98 | AE | 123.0625 | 23.3125 | 0.2333
OR1-1124  [2015/11/06[2015/11/08| 17.26 | 13.51 | CE |122.9375 | 23.1875 | -0.2136
OR1-1134  [2016/04/18[2016/04/20| 24.16 | 32.22 | AE | 122.9375 | 23.3125 | 0.2408
OR1-1140  [2016/06/30[2016/07/01| 17.65 | 23.59 | CE | 122.3125 | 24.3125 | -0.1247
OR1-1165B [2017/06/11[2017/06/12| 25.39 | 31.10 | AE | 122.8125 | 23.0625 | 0.2465
OR1-1196B [2018/05/18[2018/05/19| 22.59 | 23.44 | AE | 122.0625 | 23.4375 | 0.1727
OR1-1213  [2018/11/04[2018/11/05 30.02 | 20.57 | AE | 122.5625 | 23.3125 | 0.1232
OR1-1222  [2019/04/25[2019/04/27| 24.26 |39.05%| AE | 123.5625 | 22.3125 | 0.3585
OR1-1233  [2019/07/20[2019/07/22| 35.21 | 33.09 | AE | 122.6875 | 23.5625 | 0.2381
OR1-1243  [2019/10/29[2019/10/30| 24.49 | 28.82 | AE | 123.9375 | 22.9375 | 0.2948
LGD-2007  [2020/08/072020/08/08| 32.73 |33.87%*| AE | 123.4375 | 23.5625 | 0.3361
NOR1-0016 [2021/10/19[2021/10/21| 12.74 [20.20%| CE | 122.1875 | 23.8125 | -0.0003
NOR1-0043A [2022/09/282022/09/30| 12.62 |23.39%| CE | 124.0625 | 22.0625 | -0.4664
NOR1-0067 [2023/11/09[2023/11/10| 17.09 | N/A | CE | 123.1875 | 22.4375 | -0.2742
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Mean wind %ress curl from January 2011 to December 2023 (130°E-120°W)
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Correlation between mean wind stress curl and dynamic mode at 5-15°N
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Correlation between mean wind stress curl and dynamic mode at 25-35°N
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Correlation between mean wind stress t and dynamic mode
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Variance explained percentage of EOF caculated from ADCP velocity
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