Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資料科學學位學程
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97662
Title: 最佳化半監督式歸一化指數函式抽樣
Optimal Semi-Supervised Subsampling for Softmax Regression
Authors: 王愛琳
Ai-Lin Wang
Advisor: 潘建興
Frederick Kin Hing Phoa
Co-Advisor: 林澤
Che Lin
Keyword: 半監督式最佳化抽樣,歸一化指數函式,預測均方誤差,
Semi-supervised optimal subsampling,Softmax regression,Mean squared prediction error,
Publication Year : 2025
Degree: 碩士
Abstract: 在最佳次抽樣方法中,標籤資訊的缺失對抽樣機率的估計構成顯著挑戰,特別是在進行分類任務時,傳統方法往往依賴完整的回應資料。為解決此問題,本文提出一套應用於 softmax 回歸模型的半監督 A-/L-最適次抽樣框架。該方法於基準約束條件下推導出理論上的最適抽樣機率,並進一步探討其在平衡類別回應分布方面的統計意涵。同時,我們亦考量不受拘束條件影響的抽樣方法,提出以最小化漸近預測均方誤差(Asymptotic Mean Squared Prediction Error, MSPE)為目標的抽樣策略,使所構建之抽樣機率對模型約束具備更高的穩健性。理論結果經由模擬數據與實證資料驗證,皆顯示本方法能有效提升預測準確率與計算效率。
Missing label information presents a significant challenge for optimal subsampling methods, which typically rely on complete response data to compute sampling probabilities. In this study, we propose a semi-supervised A-/L-optimal subsampling framework for softmax regression that effectively addresses this issue. We derive the optimal subsampling probabilities under the baseline constraint and highlight their role in balancing categorical responses. In addition, we explore constraint-invariant subsampling by minimizing the asymptotic mean squared prediction error (MSPE), enabling the construction of subsampling probabilities for each observation, which is robust to model constraint choices. Our theoretical findings are supported by simulations and real-data applications, demonstrating improvements in both prediction accuracy and computational efficiency.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97662
DOI: 10.6342/NTU202501310
Fulltext Rights: 未授權
metadata.dc.date.embargo-lift: N/A
Appears in Collections:資料科學學位學程

Files in This Item:
File SizeFormat 
ntu-113-2.pdf
  Restricted Access
3.63 MBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved