Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97650
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林太家zh_TW
dc.contributor.advisorTai-Chia Linen
dc.contributor.author呂治鴻zh_TW
dc.contributor.authorJhih-Hong Lyuen
dc.date.accessioned2025-07-09T16:14:36Z-
dc.date.available2025-07-10-
dc.date.copyright2025-07-09-
dc.date.issued2025-
dc.date.submitted2025-06-27-
dc.identifier.citation[1] E. Abbena, A. Gray, and L. Vanhecke, Steiner's formula for the volume of a parallel hypersurface in a riemannian manifold, Annali Sc. Norm. Sup. Pisa, 8 (1981), pp. 473-493, https://www.numdam.org/item/ASNSP_1981_4_8_3_473_0
[2] S. Agmon, A. Douglis, and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I, Commun. Pure Appl., 12 (1959), pp. 623-727, https://doi.org/10.1002/cpa.3160120405
[3] M. D. Altman, J. P. Bardhan, J. K. White, and B. Tidor, Accurate solution of multi-region continuum biomolecule electrostatic problems using the linearized Poisson-Boltzmann equation with curved boundary elements, J. Comput. Chem., 30 (2009), pp. 132-153, https://doi.org/10.1002/jcc.21027
[4] D. Andelman, Electrostatic Properties of Membrances: The Poisson-Boltzmann Theory. in Structure and Dynamics of Membrances, R. Lipowsku and E. Sackmann, eds., vol. 1, North-Holland, 1995, pp. 603-642, https://doi.org/10.1016/S1383-8121(06)80005-9
[5] P. B. Balbuena and K. E. Gubbins, Theoretical interpretation of adsorption behavior of simple fluids in slit pores, Langmuir, 9 (1993), pp. 1801-1814, https://doi.org/10.1021/la00031a031
[6] N. A. Baker, Poisson-Boltzmann Methods for Biomolecular Electrostatics. in Numerical Computer Methods, Part D, L. Brand and M. L. Johnson, eds., vol. 383, Academic Press, 2004, pp. 94-118, https://doi.org/10.1016/S0076-6879(04)83005-2
[7] V. Barcilon, D.-P. Chen, R. S. Eisenberg, and J. W. Jerome, Qualitative properties of steady-state Poisson-Nernst-Planck systems: perturbation and simulation study, SIAM J. Appl. Math., 57 (1997) pp. 631-648, https://doi.org/10.1137/S0036139995312149
[8] M. Z. Bazant, K. T. Chu, and B. J. Bayly, Current-voltage relations for electrochemical thin films, SIAM J. Appl. Math., 65 (2005) pp. 1463-1484, https://doi.org/10.1137/040609938
[9] M. Z. Bazant, B. D. Storey, and A. A. Kornshev, Double Layer in Ionic Liquids: Overscreening versus Crowding, Phys. Rev. Lett., 106 (2011), 046102, https://doi.org/10.1103/PhysRevLett.106.046102
[10] J. J. Bikerman, Structure and capacity of electrical double layer, Philos. Mag., 7 (1942), pp. 384-397, https://doi.org/10.1080/14786444208520813
[11] R. Blossey, The Poisson-Boltzmann Equation: An Introduction, Springer-Verlag, 2023, https://doi.org/10.1007/978-3-031-24782-8
[12] I. Borukhov and D. Andelman, Steric Effects in Electrolytes: A Modified Poisson-Boltzmann Equation, Phys. Rev. Lett., 79 (1997), pp. 435-438, https://doi.org/10.1103/PhysRevLett.79.435
[13] J. A. Carrillo, On a nonlocal elliptic equation with decreasing nonlinearity arising in plasma physics and heat conduction, Nonlinear Anal. TMA., 32 (1998), pp. 97-115, https://doi.org/10.1016/S0362-546X(97)00455-0
[14] J. Cartailler, Z. Schuss, and D. Holcman, Analysis of the Poisson-Nernst-Planck equation in a ball for modeling the Voltage-Current relation in neurobiological microdomains, Physica D, 339 (2017), pp. 39-48, https://doi.org/10.1016/j.physd.2016.09.001
[15] J. Cartailler, Z. Schuss, and D. Holcman, Electrostatics of non-neutral biological microdomains, Scientific Reports, 7 (2017), 11269, https://doi.org/10.1038/s41598-017-11590-6
[16] T. E. Cecil, Focal Points and Support Functions in Affine Differential Geometry, Geometriae Dedicata, 50 (1994), pp. 291-300, https://doi.org/10.1007/BF01267871
[17] B. M. N. Clarke and P. J. Stiles, Finite electric boundary-layer solutions of a generalized Poisson–Boltzmann equation, Proc. R. Soc. A, 471 (2015), 24, https://doi.org/10.1098/rspa.2015.0024
[18] S. Das and S. Chakraborty, Effect of Conductivity Variations within the Electric Double Layer on the Streaming Potential Estimation in Narrow Fluidic Confinements, Langmuir, 26 (2010), pp. 11589-11596, https://doi.org/10.1021/la1009237
[19] H. David and S. Zeev, The Poisson-Nernst-Planck Equations in a Ball, Asymptotics of Elliptic and Parabolic PDEs, and their Applications in Statistical Physics, Computational Neuroscience, and Biophysics (2018), pp. 341-383, https://doi.org/10.1007/978-3-319-76895-3_10
[20] P. Debye and E. Hückel, Zur Theorie der Elektrolyte. I. Gefrierpunktserniedrigung und verwandte Erscheinungen, Physikalische Zeitschrift, 24 (1923), pp. 185-206, https://doi.org/10.1007/978-3-642-94260-0_9
[21] K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, Berlin, 1973, https://doi.org/10.1007/978-3-662-00547-7
[22] F. Dong, B. Olsen, and N. A. Baker, Computational Methods for Biomolecular Electrostatics. in Biophysical Tools for Biologists, Volume One: In Vitro Techniques, J. J. Correia, and H. W. Detrich, III, eds., vol. 84, Academic Press, 2008, ch. 26, pp. 843-870, https://doi.org/10.1016/S0091-679X(07)84026-X
[23] A. H. B. Dourado, Electric Double Layer: The Good, the Bad, and the Beauty, Electrochem, 3 (2022), pp. 789-808, https://doi.org/10.3390/electrochem3040052
[24] B. B. Eakins, S. D. Patel, A. P. Kalra, V. Rezania, K. Shankar, and J. A. Tuszynski, Modeling Microtubule Counterion Distributions and Conductivity Using the Poisson-Boltzmann Equation, Front. Mol. Biosci., 8 (2021), 650757, https://doi.org/10.3389/fmolb.2021.650757
[25] B. Eisenberg, Proteins, channels and crowded ions, Biophys. Chem., 100 (2003), pp. 507-517, https://doi.org/10.1016/S0301-4622(02)00302-2
[26] B. Eisenberg, Interacting ions in biophysics: Real is not ideal, Biophys. J., 104 (2013), pp. 1849-1866, https://doi.org/10.1016/j.bpj.2013.03.049
[27] J. J. Elisea-Espinoza, E. González-Tovar, and G. I. Guerrero-García, Theoretical description of the electrical double layer for a mixture of n ionic species with arbitrary size and charge asymmetries. I. Spherical geometry, J. Chem. Phys., 158 (2023), 224111, https://doi.org/10.1063/5.0151140
[28] G. I. El-Baghdady, M. S. El-Azab, and W. S. El-Beshbeshy, Legendre-Gauss-Lobatto pseudo-spectral method for one-dimensional advection-diffusion equation, Sohag J. Math., 2 (2015), pp. 29-35, http://dx.doi.org/10.12785/sjm/020105
[29] D. F. Evans and H. Wennerstr¨om, The Colloidal Domain: Where Physics, Chemistry, Biology, and Technology Meet (2nd ed.), VCH Publishers, 1999.
[30] L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions: Revised Edition, CRC Press, 2015, https://doi.org/10.1201/b18333
[31] K. Fellner and V. A. Kovtunenko, A singularly perturbed nonlinear Poisson-Boltzmann equation: uniform and super-asymptotic expansions, Math. Methods Appl. Sci., 38 (2015), pp. 3575-3586, https://doi.org/10.1002/mma.3593
[32] G. Feng, D. Jiang, and P. T. Cummings, Curvature effect on the capacitance of electric double layers at ionic liquid/onion-like carbon interfaces, J. Chem. Theory Comput., 8 (2012), pp. 1058-1063, https://doi.org/10.1021/ct200914j
[33] F. Fogolari, A. Brigo, and H. Molinari, The Poisson–Boltzmann equation for biomolecular electrostatics: a tool for structural biology, J. Mol. Recognit., 15 (2002), pp. 377-392, https://doi.org/10.1002/jmr.577
[34] M. A. Fontelos and K. B. Gamboa, On the structure of double layers in Poisson-Boltzmann equation, Discrete Cont. Dyn. Syst. - B, 17 (2012), pp. 1939-1967, https://doi.org/10.3934/dcdsb.2012.17.1939
[35] A. Flavell, J. Kabre, and X. Li, An energy-preserving discretization for the Poisson-Nernst-Planck equations, J. Comput. Electron., 16 (2017), pp. 431-441, https://doi.org/10.1007/s10825-017-0969-8
[36] A. Friedman and K. Tintarev, Boundary asymptotics for solutions of the Poisson-Boltzmann equation, J. Differ. Equ., 69 (1987), pp. 15-38, https://doi.org/10.1016/0022-0396(87)90100-8
[37] M. A. Gebbie, H. A. Dobbs, M. Valtiner, and J. N. Israelachvili, Long-range electrostatic screening in ionic liquids, PNSA, 112 (2015), pp. 7432-7437, https://doi.org/10.1073/pnas.1508366112
[38] D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, 1977, https://doi.org/10.1007/978-3-642-61798-0
[39] D. Gillespie, A review of steric interactions of ions: Why some theories succeed and others fail to account for ion size, Microfluid Nanofluid, 18 (2015), pp. 717-738, https://doi.org/10.1007/s10404-014-1489-5
[40] A. Gray, Tubes (2nd ed.), Springer Basel AG, 2004, https://doi.org/10.1007/978-3-0348-7966-8
[41] C. G. Gray and P. J. Stiles, Nonlinear electrostatics: the Poisson-Boltzmann equation, Eur. J. Phys., 39 (2018), 053002, https://doi.org/10.1088/1361-6404/aaca5a
[42] D. J. Griffiths, Introduction to Electrodynamics (4th ed.), Cambridge University Press, 2017, https://doi.org/10.1017/9781108333511
[43] P. Grochowski and J. Trylska, Continuum molecular electrostatics, salt effects, and counterion binding-A review of the Poisson-Boltzmann theory and its modifications, Biopolymers, 89 (2007), pp. 93-113, https://doi.org/10.1002/bip.20877
[44] M. Han and X. Xing, Renormalized Surface Charge Density for a Strongly Charged Plate in Asymmetric Electrolytes: Exact Asymptotic Expansion in Poisson Boltzmann Theory, J. Stat. Phys., 151 (2013), pp. 1121-1139, https://doi.org/10.1007/s10955-013-0751-7
[45] J. Hineman and R. Ryham, Very weak solutions for Poisson-Nernst-Planck system, Nonlinear Anal., 115 (2015), pp. 12-24, https://doi.org/10.1016/j.na.2014.11.018
[46] D. Holcman and R. Yuste, The new nanophysiology: regulation of ionic flow in neuronal subcompartments, Nat. Rev. Neurosci., 16 (2015), pp. 685-692, https://doi.org/10.1038/nrn4022
[47] D. Holcman and Z. Schuss, Asymptotics of Elliptic and Parabolic PDEs, Springer, 2018, https://doi.org/10.1007/978-3-319-76895-3
[48] B. Honig and A. Nichols, Classical electrostatics in biology and chemistry, Science, 268 (1995), pp. 1144-1149, https://doi.org/10.1126/science.7761829
[49] A. Hoorfar and M. Hassani, Inequalities on the Lambert W function and hyperpower function, JIPAM, 9 (2008), pp. 93-113, http://eudml.org/doc/130024
[50] T.-L. Horng, T.-C. Lin, C. Liu, and B. Eisenberg, PNP equations with steric effects: A model of ion flow through channels, J. Phys. Chem. B, 116 (2012), pp. 11422-11441, https://doi.org/10.1021/jp305273n
[51] C.-Y. Hsieh, Y. Hyon, H. Lee, T.-C. Lin, and C. Liu, Transport of charged particles: entropy production and maximum dissipation principle, J. Math. Anal. Appl., 422 (2015), pp. 309-336, https://doi.org/10.1016/j.jmaa.2014.07.078
[52] C.-Y. Hsieh and T.-C. Lin, Exponential decay estimates for the stability of boundary layer solutions to Poisson-Nernst-Planck systems: one spatial dimension case, SIAM J. Math. Anal., 47 (2015), pp. 3442-3465, https://doi.org/10.1137/140994095
[53] C.-Y. Hsieh, Stability of radial solutions of the Poisson-Nernst-Planck system in annular domains, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019) pp. 2657-2681, https://doi.org/10.3934/dcdsb.2018269
[54] C.-Y. Hsieh, Global existence of solutions for the Poisson-Nernst-Planck system with steric effects, Nonlinear Anal. Real World Appl., 50 (2019), pp. 34-54, https://doi.org/10.1016/j.nonrwa.2019.04.001
[55] Y. Hyon, B. Eisenberg, and C. Liu, A mathematical model for the hard sphere repulsion in ionic solutions, Commun. Math. Sci., 9 (2011), pp. 459-475, https://doi.org/10.4310/CMS.2011.v9.n2.a5
[56] Y. Hyon, B. Eisenber, and C. Liu, An energetic variational approach to ion channel dynamics, Math. Meth. Appl. Sci., 37 (2014), pp. 952-961, https://doi.org/10.1002/mma.2852
[57] Y. Hyon, D.Y. Kwak, and C. Liu, Energetic variational approach in complex fluids: maximum dissipation principle, Discrete Contin. Dyn. Syst., 26 (2010), pp. 1291-1304, https://doi.org/10.3934/dcds.2010.26.1291
[58] B. Huang, S. Maset, and K. Bohinc, Interaction between charged cylinders in electrolyte solution; Excluded volume effect, J. Phys. Chem. B, 121 (2017), pp. 9013-9023, https://doi.org/10.1021/acs.jpcb.7b05444
[59] J. Jacobsen, K. Schmitt, The Liouville-Bratu-Gelfand Problem for Radial Operators, J. Differ. Equ., 184 (2002), pp. 283-298, https://doi.org/10.1006/jdeq.2001.4151
[60] I. Kalcher, J. C. F. Schulz, and J. Dzubiella, Ion-specific excluded-volume correlations and solvation forces, Phys. Rev. Lett., 104 (2010), 097802, https://doi.org/10.1103/PhysRevLett.104.097802
[61] V. Kamysbayev, V. Srivastava, N. B. Ludwig, O. J. Borkiewicz, H. Zhang, J. Ilavsky, B. Lee, K. W. Chapman, S. Vaikuntanathan, and D. V. Talapin, Nanocrystals in Molten Salts and Ionic Liquids: Experimental Observation of Ionic Correlations Extending beyond the Debye Length, ACS Nano, 13 (2019), pp. 5760-5770, https://doi.org/10.1021/acsnano.9b01292
[62] A. Khlyupin, I. Nesterova, and K. Gerke, Molecular scale roughness effects on electric double layer structure in asymmetric ionic liquids, Electrochimica Acta, 450 (2023), 142261, https://doi.org/10.1016/j.electacta.2023.142261
[63] C. Khripin, A. Jagota, and C.-Y. Hui, Electric fields in an electrolyte solution near a strip of fixed potential, J. Chem. Phys., 123 (2005), 134705, https://doi.org/10.1063/1.2043067
[64] E. Kierlik and M. L. Rosinberg. Density-functional theory for inhomogeneous fluids: Adsorption of binary mixtures, Phys. Rev. A, 44 (1991), pp. 5025-5037, https://doi.org/10.1103/PhysRevA.44.5025
[65] B. K. Klein, C. F. Anderson, and M. T. Record, Comparison of Poisson-Boltzmann and condensation model expressions for the colligative properties of cylindrical polyions, Biopolymers, 20 (1981), pp. 2263-2280, https://doi.org/10.1002/bip.1981.360201018
[66] C. Köhn, D. van Laethem, J. Deconinck, and A. Hubin, A simulation study of steric effects on the anodic dissolution at high current densities, Mater. Corros., 72 (2020), pp. 610-619, https://doi.org/10.1002/maco.202012051
[67] A. A. Kornyshev, Double-layer in ioninc liquids: Paradigm change, J. Phys. Chem. B, 111 (2007), pp. 5545-5557, https://doi.org/10.1021/jp067857o
[68] S. G. Krantz and H. R. Parks, The Implicit Function Theorem: History, Theory, and Applications, Birkhäuser, Basel, 2002, https://doi.org/10.1007/978-1-4614-5981-1
[69] G. Lamm, The Poisson-Boltzmann equation, In Reviews in Computational Chemistry, K. B. Lipkowitz, R. Larter, and T. R. Cundari, eds., vol. 19, John Wiley & Sons, Ltd., 2003, ch. 4, pp. 147-365, https://doi.org/10.1002/0471466638.ch4
[70] C.-C. Lee, H. Lee, Y. Hyon, T.-C. Lin, and C. Liu, New Poisson-Boltzmann type equations: one-dimensional solutions, Nonlinearity, 24 (2011), pp. 431-458, https://doi.org/10.1088/0951-7715/24/2/004
[71] C.-C. Lee, The charge conserving Poisson-Boltzmann equations: Existence, uniqueness, and maximum principle, J. Math. Phys., 55 (2014), 051503, https://doi.org/10.1063/1.4878492
[72] J. W. Lee, R. H. Nilson, J. A. Templeton, S. K. Griffiths, A. Kung, and B. M. Wong, Comparison of molecular dynamics with classical density functional and Poisson-Boltzmann theories of the electric double layer in nanochannels, J. Chem. Theory Comput., 8 (2012), pp. 2012-2022, https://doi.org/10.1021/ct3001156
[73] C.-C. Lee, H. Lee, Y. Hyon, T.-C. Lin, and C. Liu, Boundary Layer Solution of Charge Conserving Poisson-Boltzmann Equations: One-Dimensional Case, Comm. Math. Sci., 14 (2016), pp. 911-940, https://doi.org/10.4310/CMS.2016.v14.n4.a2
[74] C.-C. Lee, Asymptotic analysis of charge conserving Poisson-Boltzmann equations with variable dielectric coefficients, Discrete Contin. Dyn. Syst. Ser. A, 36 (2016), pp. 3251-3276, https://doi.org/10.3934/dcds.2016.36.3251
[75] C.-C. Lee and R. J. Ryham, Boundary asymptotics for a non-neutral electrochemistry model with small Debye length, Z. Angew. Math. Phys., 69 (2018), pp. 41--53, https://doi.org/10.1007/s00033-018-0931-z
[76] C.-C. Lee, Thin layer analysis of a non-local model for the double layer structure, J. Differ. Equ., 266 (2019), pp. 742-802, https://doi.org/10.1016/j.jde.2018.07.055
[77] C.-C. Lee, Domain-size effects on boundary layers of a nonlocal sinh-Gordon equation, Nonlinear. Anal., 202 (2021), 112141, https://doi.org/10.1016/j.na.2020.112141
[78] M. Lee and K.-Y. Chan, Non-neutrality in a charged slit pore, Chem. Phys. Lett., 275 (1997), pp. 56-62, https://doi.org/10.1016/S0009-2614(97)00737-9
[79] B. Leimkuhler and C. Matthews, Molecular Dynamics with Deterministic and Stochastic Numerical Methods, Springer, New York, 2015, https://doi.org/10.1007/978-3-319-16375-8
[80] Bo Li, Continuum electrostatics for ionic solutions with non-uniform ionic sizes, Nonlinearity, 22 (2009), pp. 811-833, https://doi.org/10.1088/0951-7715/22/4/007
[81] Bo Li, Minimization of electrostatic free energy and the Poisson-Boltzmann equation for molecular solvation with implicit solvent, SIAM J. Math. Anal., 40 (2009), pp. 2536-2566, https://doi.org/10.1137/080712350
[82] Bo Li, P. Liu, Z. Xu, and S. Zhou, Ionic size effects: generalized Boltzmann distributions, counterion stratification and modified Debye length, Nonlinearity, 26 (2013), pp. 2899-2922, https://doi.org/10.1088/0951-7715/26/10/2899
[83] F.-H. Lin and X. P. Yang, Geometric Measure Theory: An Introduction, Science Press, 2002.
[84] T.-C. Lin and B. Eisenberg, A new approach to the Lennard-Jones potential and a new model: PNP-steric equations, Commun. Math., 12 (2014), pp. 149-173, https://dx.doi.org/10.4310/CMS.2014.v12.n1.a7
[85] T.-C. Lin and B. Eisenberg, Multiple solutions of steady-state Poisson-Nernst-Planck equations with steric effects, Nonlinearity, 28 (2015), pp. 2053-2080, https://doi.org/10.1088/0951-7715/28/7/2053
[86] W. Liu, Y. Zhou, and P. Shi, Shear electroconvective instability in electrodialysis channel under extreme depletion and its scaling laws, Phys. Rev. E, 101 (2020), 043105, https://doi.org/10.1103/PhysRevE.101.043105
[87] B. Z. Lu, Y. C. Zhou, M. J. Holst, and J. A. McCammon, Recent progress in numerical methods for the Poisson-Boltzmann equation in biophysical applications, Commun. Comput. Phys., 3 (2008), pp. 973-1009, https://doi.org/2008-CiCP-7885
[88] B. Lu and Y. C. Zhou, Poisson-Nernst-Planck Equations for Simulating Biomolecular Diffusion-Reaction Processes II: Size Effects on Ionic Distributions and Diffusion-Reaction Rates, Biophys. J., 100 (2011), pp. 2475-2485, https://doi.org/10.1016/j.bpj.2011.03.059
[89] J.-H. Lyu, C.-C. Lee and T.-C. Lin, Near- and far-field expansions for stationary solutions of Poisson-Nernst-Planck equations, Math. Methods Appl. Sci., 44 (2021), pp. 10837-10860, https://doi.org/10.1002/mma.7453
[90] J.-H. Lyu and T.-C. Lin, PB-steric equations: A general model of PB equations, SIAM J. Applied Math., 83 (2023), pp. 1603-1622, https://doi.org/10.1137/22M1516270
[91] A. Mamonov, R. Coalson, A. Nitzan, and M. Kurnikova, The role of the dielectric barrier in narrow biological channels: a novel composite approach to modeling single channel currents, Biophys. J., 84 (2003), pp. 3646-3661, https://doi.org/10.1016/S0006-3495(03)75095-4
[92] N. Martinov, D. Ouroushev, and E. Chelevie, New types of polarisation following from the nonlinear spherical radial Poisson-Boltzmann equation, J. Phys. A: Math. Gen., 19 (1986), pp. 1327-1332, https://doi.org/10.1088/0305-4470/19/8/014
[93] I. Mező, The Lambert W Function: Its Generalizations and Applications, Chapman and Hall, London, 2022, https://doi.org/10.1201/9781003168102
[94] Y. Mori, J. W. Jerome, and C. S. Peskin, A three-dimensional model of cellular electrical activity, Bull. Inst. Math. Acad. Sin., 2 (2007), pp. 367-390, https://www.math.sinica.edu.tw/bulletins/20072/2007212.pdf
[95] R. H. Nilson and S.K. Griffiths, Influence of atomistic physics on electro-osmotic flow: An analysis based on density functional theory, J. Chem. Phys., 125 (2006), 164510, https://doi.org/10.1063/1.2358684
[96] L. H. Olesen, H. Bruus, and A. Ajdari, ac electrokinetic micropumps: The effect of geometrical confinement, Faradaic current injection, and nonlinear surface capacitance, Phys. Rev. E, 73 (2006), 056313, https://doi.org/10.1103/PhysRevE.73.056313
[97] J. H. Park and J. W. Jerome, Qualitative properties of steady-state Poisson-Nernst-Planck systems: mathematical study, SIAM J. Appl. Math., 57 (2017), pp. 609-630, https://www.jstor.org/stable/2951898
[98] J. L. G. Pestana and D. H. Eckhardt, An approximate analytic solution to the three-dimensional Poisson-Boltzmann equation, J. Phys. A: Math. Theor., 40 (2007), pp. 12001-12006, https://doi.org/10.1088/1751-8113/40/39/019
[99] D. N. Petsev, F. van Swol, and L. J. D. Frink, Molecular Theory of Electric Double Layers, IOP Publishing, 2021, https://doi.org/10.1088/978-0-7503-2276-8
[100] F. Plouraboué and H.-C. Chang, Attraction between two similar particles in an electrolyte: effects of Stern layer absorption, An Acad Bras Cienc, 82 (2010), pp. 95-108, https://doi.org/10.1590/S0001-37652010000100009
[101] D. C. Rapaport, The Art of Molecular Dynamics Simulation, Cambridge University Press, Cambridge, 1995, https://doi.org/10.1017/CBO9780511816581
[102] R. A. Rica, R. Ziano, D. Salerno, F. Mantegazza, and D. Brogioli, Thermodynamic relation between voltage concentration dependence and salt adsorption in electrochemical cells, Phys. Rev. Lett., 109 (2012), 156103, https://doi.org/10.1103/PhysRevLett.109.156103
[103] S. M. Rubinstein, G. Manukyan, A. Staicu, I. Rubinstein, B. Zaltzman, R. G. H. Lammertink, F. Mugele, and M. Wessling, Direct observation of a nonequilibrium electro-osmotic instability, Phys. Rev. Lett., 101 (2008), 236101, https://doi.org/10.1103/PhysRevLett.101.236101
[104] W. B. Russel, D. A. Saville, and W. R. Schowalter, Colloidal Dispersions, Cambridge Univ. Press, 1989, https://doi.org/10.1017/CBO9780511608810
[105] R. Ryham, C. Liu, and Z.-Q. Wang, On electro-kinetic fluids: One dimensional configurations, Discrete Cont. Dyn. Syst. - B, 6 (2006), pp. 357-371, https://doi.org/10.3934/dcdsb.2006.6.357
[106] L. Samaj and E. Trizac, Effective charge of cylindrical and spherical colloids immersed in an electrolyte: the quasi-planar limit, J. Phys. A: Math. Theor., 48 (2015), 265003, https://doi.org/10.1088/1751-8113/48/26/265003
[107] A. Singer, D. Gillespie, J. Norbury, and R. S. Eisenberg, Singular perturbation analysis of the steady-state Poisson-Nernst-Planck system: applications to ion channels, European J. Appl. Math., 19 (2008), pp. 541-560, https://doi.org/10.1017/S0956792508007596
[108] A. R. Stinchcombe, Y. Mori, and C. S. Peskin, Well-Posed Treatment of Space-Charge Layers in the Electroneutral Limit of Electrodiffusion, Commun. Pure Appl. Math., 69 (2016), pp. 2221-2249, https://doi.org/10.1002/cpa.21611
[109] M. Struwe, Variational Methods: Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Springer, 2008, https://doi.org/10.1007/978-3-540-74013-1
[110] H. Sugioka, Ion-conserving Poisson-Boltzmann theory, Phys. Rev. E, 86 (2012), 016318, https://doi.org/10.1103/PhysRevE.86.016318
[111] Z. Tang, L. E. Scriven, and H. T. Davis, A three-component model of the electrical double layer, J. Chem. Phys., 97 (1992), pp. 494-503, https://doi.org/10.1063/1.463595
[112] L. Wan, S. Xu, M. Liao, C. Liu, and P. Sheng, Self-Consistent Approach to Global Charge Neutrality in Electrokinetics: A Surface Potential Trap Model, Phys. Rev. X, 4 (2014), 011042, https://doi.org/10.1103/PhysRevX.4.011042
[113] X. Xing, Poisson-Boltzmann theory for two parallel uniformly charged plates, Phys. Rev. E, 83 (2011), 041410, https://doi.org/10.1103/PhysRevE.83.041410
[114] Y. Yang, J. Walz, and P. Pintauro, Curvature effects on electric double-layer forces, Part 1. — Comparisons with parallel plate geometry, J. Chem. Soc. Farady trans., 91 (1995), pp. 2827-2836, https://doi.org/10.1039/FT9959102827
[115] Y. Yang, J. Walz, and P. Pintauro, Curvature effects on electric double-layer forces, Part 2. — Dependence of forces on cavity radius and relative permittivity, J. Chem. Soc. Farady trans., 93 (1997), pp. 603-611, https://doi.org/10.1039/A607031K
[116] F. Ziebert, M. Z. Bazant, and D. Lacoste, Effective zero-thickness model for a conductive membrane driven by an electric field, Phys. Rev. E, 81 (2010), 031912, https://doi.org/10.1103/PhysRevE.81.031912
[117] S. Zhou, Z. Wang, and B. Li, Mean-field description of ionic size effects with nonuniform ionic sizes: A numerical approach, Phys. Rev. E, 84 (2011), 021901, https://doi.org/10.1103/PhysRevE.84.021901
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97650-
dc.description.abstract帕松波茲曼方程式可被用於描述電解質液的離子濃度分布情形,從而在生物化學與電化學領域中有諸多重要的應用,在細胞膜上的離子通道便是一重要例子。然而傳統的帕松波茲曼方程式視離子為質點而不帶有體積,而離子通過狹窄的離子通道時便有不可忽略的體積效應。在既有的文獻中已經有許多將體積效應納入考量的模型,但這些模型均無法描述如密度泛函理論中所產生的非單調總電荷密度的現象,這就啟發我們去推導更一般的帕松波茲曼模型。這樣的模型不僅涵蓋傳統與修正後的帕松波茲曼模型,也能產生具非單調總電荷密度的方程式。

更進一步地,由於離子通道的複雜幾何結構,我們研究一般光滑區域上的帕松波茲曼類方程隨介電常數趨於零時所產生的邊界解。此處帕松波茲曼類方程包含了傳統、修正後與電中性條件下的電荷守恆帕松波茲曼模型。源於電荷守恆條件下的非局部非線性項使得離子守恆的帕松波茲曼模型的分析更加困難,其結果也有別於傳統與修正後的帕松波茲曼模型。透過主軸坐標系統、指數型估計與移動平面法,我們嚴格地證明了邊界層解的二階漸近展開式,其中包含了均曲率項。進一步地,我們也計算出許多關鍵的物理量的漸近展開式,這包括了電位、電場、總電荷密度與總電荷,而這些物理量也揭示了區域幾何的影響。

相較於前段所研究的電荷守恆帕松波茲曼模型為電中性條件,其電位保持均勻有界性。而對於非電中性條件下,電位便會隨著介電常數趨於零時而產生爆破現象。對於最極端的非電中性條件,我們研究一維上帶單粒子的電荷守恆帕松波茲曼模型。透過適當的平移假設下,我們將問題轉為邊界爆破問題。藉由解的表達式,我們研究了近場與遠場展開從而完整的刻畫了靠近邊界區域的解的所有漸近行為,也證明了總電荷密度的邊界集中性。另一方面,我們研究了雙離子的電荷守恆帕松波茲曼模型的差異。形式上來看,當雙離子模型中的其中一粒子總濃度相當小時便會趨近單離子模型,而我們給出一充分條件去證明這樣的猜測成立。
zh_TW
dc.description.abstractThe Poisson–Boltzmann (PB) equation serves as a fundamental model for describing ionic concentration distributions in electrolyte solutions, with significant applications in both biochemical and electrochemical fields. One prominent example arises in the study of ion channels on cellular membranes. However, the classical PB equation treats ions as point particles without volume, which becomes inadequate when ions pass through narrow channels so the steric effect should not be negligible. Although several modified models incorporating steric effects have been proposed in the literature, they cannot capture the non-monotonic behavior of total ionic charge density observed in density functional theory. This motivates us to derive a more general Poisson–Boltzmann framework that not only includes the classical and modified PB models, but also includes the model that has non-monotonic total ionic charge density.

Further, motivated by the complex geometry of ion channels, we investigate the boundary layer behavior of Poisson–Boltzmann type equations as the dielectric constant tends to zero in general smooth domains. Here the PB type equations include the classical PB, modified PB, and charge-conserving PB models with the electroneutrality condition.Due to the presence of nonlocal nonlinear terms arising from the charge conservation, the analysis of charge-conserving PB models presents the analytical challenges and leads to different behaviors compared to that of other models. By employing principal coordinate systems, exponential-type estimates, and the moving plane argument, we rigorously derive second-order asymptotic expansions of boundary layer solutions, incorporating curvature-dependent terms. We also compute asymptotic expansions for several key physical quantities, including the electrostatic potential, electric field, total charge density, and total charge, thereby revealing the influence of domain geometry on the ionic distributions.

In contrast to the electroneutral regime, where the electrostatic potential remains uniformly bounded, the potential exhibits blow-up behavior under non-electroneutral conditions as the dielectric constant tends to zero. To explore this extreme case, we examine the one-dimensional charge-conserving PB model with a single species. Under an appropriate shift assumption, we reformulate the problem as a boundary blow-up problem. Thanks to the explicit solution representation, we can analyze both near-field and far-field expansions and hence provide a complete characterization of the asymptotic behavior near the boundary. In addition, we rigorously establish the boundary concentration phenomenon of the total ionic charge density. On the other hand, we also investigate the differences arising in charge-conserving PB models with two ionic species. Formally, such two-species model would approach to the single-species model when the total concentration of one ions species becomes sufficiently small. We provide a sufficient condition to justify this conjecture.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-09T16:14:36Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-07-09T16:14:36Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 i
致謝 Acknowledgement ii
中文摘要 Abstract in Chinese iv
英文摘要 Abstract in English v
目次 vii
圖次 ix
表次 xi
1 Introduction 1
2 PB-steric equations: A general model of Poisson-Boltzmann equations 7
2.1 Introduction 7
2.2 Analysis of nonlinear terms under (A1)-(A2) and (A3)-(A4) 17
2.2.1 Analysis of ci,Λ and f_Λ under (A1)-(A2) 17
2.2.2 Analysis of ci* and f* under (A1)-(A2) 21
2.2.3 Analysis of ci,Λ and ~f_Λ under (A3)-(A4) 23
2.2.4 Analysis of ci* and ~f* under (A3)-(A4) 26
2.3 Proof of Theorems 2.1 and 2.2 30
2.3.1 Uniform boundedness of ϕ_Λ and c0,Λ(ϕ_Λ) under (A1)-(A2) 30
2.3.2 Convergence of ϕ_Λ under (A1)-(A2) 32
2.3.3 Uniform boundedness of ϕ_Λ and c0,Λ(ϕ_Λ) under (A3)-(A4) 34
2.3.4 Convergence of ϕ_Λ under (A3)-(A4) 37
2.4 Numerical methods 38
2A Derivation of (2.10) and (2.11) 45
2B The existence and uniqueness of ϕ_Λ to (2.14)-(2.15) 46
2C An example of oscillatory of f_Λ for Remark 2.4 50
3 Asymptotic analysis of boundary layer solutions to Poisson-Boltzmann type equations in general bounded smooth domains 51
3.1 Introduction 51
3.2 Proof of Theorem 3.1 66
3.2.1 First-order asymptotic expansion of ϕ_ϵ 66
3.2.2 Second-order asymptotic expansion of ϕ_ϵ in Ω_{k,ϵ} 79
3.2.3 Proof of Corollary 3.1 84
3.3 Proof of Theorem 3.2 86
3.3.1 Estimate of the solution ϕ_ϵ and f_ϵ 87
3.3.2 First-order asymptotic expansion of ϕ_ϵ 92
3.3.3 Uniform boundedness of |ϕ_ϵ*-ϕ_0*|/√/ϵ 98
3.3.4 Second-order asymptotic expansion of ϕ_ϵ in Ω_{k,ϵ} 107
3.3.5 Proof of Corollary 3.2 116
3A Exponential-type estimate of radial solution 119
3B Properties of the solution to (3.7)-(3.9) and (3.21)-(3.23) 123
3C Properties of the solution to (3.10)-(3.12) and (3.24)-(3.26) 128
3D Properties of the solution to (3.27)-(3.29) 132
4 Near- and far-field expansions for stationary solutions to Poisson-Nernst-Planck equations 135
4.1 Introduction 135
4.1.1 Near-field and far-field expansions 138
4.1.2 A new comparison with charge-conserving Poisson-Boltzmann equations 141
4.2 The main results of (4.5)-(4.6) 146
4.3 Proof of Theorems 4.2 and 4.3 and Corollary 4.1 149
4.3.1 Proof of Theorem 4.3 151
4.3.2 Proof of Corollary 4.1 153
4.4 Proof of Theorem 4.1 155
4.4.1 Some basic properties 156
4.4.2 Proof of (4.68) 157
4.4.3 Proof of (4.69) 158
4.4.4 Proof of Theorem 4.1(b) 160
4.5 Applications and discussion 161
4A Proof of Lemma 4.2 163
參考文獻 165
-
dc.language.isoen-
dc.subject非局部非線性zh_TW
dc.subject爆破現象zh_TW
dc.subject體積效應zh_TW
dc.subject邊界層zh_TW
dc.subject帕松波茲曼方程zh_TW
dc.subjectBlow-up Phenomenonen
dc.subjectPoisson-Boltzmann Equationen
dc.subjectBoundary Layeren
dc.subjectSteric Effecten
dc.subjectNonlocal Nonlinearityen
dc.title帕松波茲曼類方程的邊界層解zh_TW
dc.titleBoundary Layer Solutions to PB Type Equationsen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree博士-
dc.contributor.oralexamcommittee陳俊全;夏俊雄;陳建隆;黃信元;陳志有;郭庭榕zh_TW
dc.contributor.oralexamcommitteeChiun-Chuan Chen;Chun-Hsiung Hsia;Jann-Long Chern;Hsin-Yuan Huang;Zhi-You Chen;Ting-Jung Kuoen
dc.subject.keyword帕松波茲曼方程,邊界層,體積效應,非局部非線性,爆破現象,zh_TW
dc.subject.keywordPoisson-Boltzmann Equation,Boundary Layer,Steric Effect,Nonlocal Nonlinearity,Blow-up Phenomenon,en
dc.relation.page178-
dc.identifier.doi10.6342/NTU202501331-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-06-30-
dc.contributor.author-college理學院-
dc.contributor.author-dept數學系-
dc.date.embargo-lift2025-07-10-
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf6.13 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved