Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97633
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳俊杉zh_TW
dc.contributor.advisorChuin-Shan Chenen
dc.contributor.author張瑋哲zh_TW
dc.contributor.authorWei-Che Changen
dc.date.accessioned2025-07-09T16:09:49Z-
dc.date.available2025-07-10-
dc.date.copyright2025-07-09-
dc.date.issued2025-
dc.date.submitted2025-07-01-
dc.identifier.citation[1] Ruimin Ma, Hanfeng Zhang, and Tengfei Luo. Exploring high thermal conductivity amorphous polymers using reinforcement learning. ACS Applied Materials & Interfaces, 14(13):15587–15598, 2022.
[2] Danh Nguyen, Lei Tao, and Ying Li. Integration of machine learning and coarse grained molecular simulations for polymer materials: physical understandings and molecular design. Frontiers in Chemistry, 9:820417, 2022.
[3] Sirawit Pruksawan, Guillaume Lambard, Sadaki Samitsu, Keitaro Sodeyama, and Masanobu Naito. Prediction and optimization of epoxy adhesive strength from a small dataset through active learning. Science and Technology of Advanced Materials, 20(1):1010–1021, 2019.
[4] Anubhav Jain, Shyue Ping Ong, Geoffroy Hautier, Wei Chen, William Davidson Richards, Stephen Dacek, Shreyas Cholia, Dan Gunter, David Skinner, Gerbrand Ceder, et al. Commentary: The materials project: A materials genome approach to accelerating materials innovation. APL materials, 1(1), 2013.
[5] WuxinSha, YanLi, Shun Tang, Jie Tian, Yuming Zhao, Yaqing Guo, Weixin Zhang, Xinfang Zhang, Songfeng Lu, Yuan-Cheng Cao, et al. Machine learning in polymer informatics. InfoMat, 3(4):353–361, 2021.
[6] ShingoOtsuka, Isao Kuwajima, Junko Hosoya, YibinXu, andMasayoshiYamazaki. Polyinfo: Polymer database for polymeric materials design. In 2011 International Conference on Emerging Intelligent Data and Web Technologies, pages 22–29. IEEE, 2011.
[7] Chiho Kim, Anand Chandrasekaran, Tran Doan Huan, Deya Das, and Rampi Ramprasad. Polymer genome: adata-powered polymer informatics platform for property predictions. The Journal of Physical Chemistry C, 122(31):17575–17585, 2018.
[8] Joseph L Durant, Burton A Leland, Douglas R Henry, and James G Nourse. Reoptimization of mdl keys for use in drug discovery. Journal of Chemical Information and Computer Sciences, 42(6):1273–1280, 2002.
[9] Harry L Morgan. The generation of a unique machine description for chemical structures-a technique developed at chemical abstracts service. Journal of Chemical Documentation, 5(2):107–113, 1965.
[10] A Patrícia Bento, Anne Hersey, Eloy Félix, Greg Landrum, Anna Gaulton, Francis Atkinson, Louisa J Bellis, Marleen De Veij, and Andrew R Leach. An open source chemical structure curation pipeline using rdkit. Journal of Cheminformatics, 12:116, 2020.
[11] David Weininger. SMILES, a chemical language and information system. 1. introduction to methodology and encoding rules. Journal of Chemical Information and Computer Sciences, 28(1):31–36, 1988.
[12] Hossein Ziaee, Seyyed Mohsen Hosseini, Abdolmajid Sharafpoor, Mohammad Fazavi, Mohammad Mahdi Ghiasi, and Alireza Bahadori. Prediction of solubility of carbon dioxide in different polymers using support vector machine algorithm. Journal of the Taiwan Institute of Chemical Engineers, 46:205–213, 2015.
[13] ZZhang,N-MBarkoula,JKarger-Kocsis, andKFriedrich. Artificialneural network predictions on erosive wear of polymers. Wear, 255(1-6):708–713, 2003.
[14] TarakKPatra. Data-driven methodsforaccelerating polymer design. ACS Polymers Au, 2(1):8–26, 2021.
[15] Venkatesh Meenakshisundaram, Jui-Hsiang Hung, Tarak K Patra, and David S Simmons. Designing sequence-specific copolymer compatibilizers using a moleculardynamics-simulation-based genetic algorithm. Macromolecules, 50(3):1155–1166, 2017.
[16] Lei Tao, Jinlong He, Nuwayo Eric Munyaneza, Vikas Varshney, Wei Chen, Guoliang Liu, and Ying Li. Discovery of multi-functional polyimides through highthroughput screening using explainable machine learning. Chemical Engineering Journal, 465:142949, 2023.
[17] Michael P Allen. Introduction to molecular dynamics simulation. Computational Soft Matter: From Synthetic Polymers to Proteins, 23(1):1–28, 2004.
[18] Aidan P Thompson, H Metin Aktulga, Richard Berger, Dan S Bolintineanu, W Michael Brown, Paul S Crozier, Pieter J In’t Veld, Axel Kohlmeyer, Stan G Moore, Trung Dac Nguyen, et al. LAMMPS-a flexible simulation tool for particlebased materials modeling at the atomic, meso, and continuum scales. Computer Physics Communications, 271:108171, 2022.
[19] David Van Der Spoel, Erik Lindahl, Berk Hess, Gerrit Groenhof, Alan E Mark, and Herman JC Berendsen. Gromacs: fast, flexible, and free. Journal of Computational Chemistry, 26(16):1701–1718, 2005.
[20] Rui Shi, Hu-Jun Qian, and Zhong-Yuan Lu. Coarse-grained molecular dynamics simulation of polymers: Structures and dynamics. Wiley Interdisciplinary Reviews: Computational Molecular Science, 13(6):e1683, 2023.
[21] Shaorui Yang and Jianmin Qu. Coarse-grained molecular dynamics simulations of the tensile behavior of a thermosetting polymer. Physical Review E, 90(1):012601, 2014.
[22] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 conference of the North Americanchapteroftheassociation for computational linguistics: human language technologies, volume 1 (long and short papers), pages 4171–4186, 2019.
[23] Christopher Kuenneth and Rampi Ramprasad. polyBERT: a chemical language model to enable fully machine-driven ultrafast polymer informatics. Nature Communications, 14(1):4099, 2023.
[24] Changwen Xu, Yuyang Wang, and Amir Barati Farimani. Transpolymer: a transformer-based language model for polymer property predictions. Computational Materials, 9(1):64, 2023. npj
[25] FanmengWang,WentaoGuo,MinjieCheng,ShenYuan,HongtengXu, andZhifeng Gao. MMpolymer: A multimodal multitask pretraining framework for polymer property prediction. pages 2336–2346, 2024.
[26] Qinghe Gao, Tammo Dukker, Artur M Schweidtmann, and Jana M Weber. Selfsupervised graph neural networks for polymer property prediction. Molecular Systems Design & Engineering, 9(11):1130–1143, 2024.
[27] Issam El Naqa and Martin J Murphy. What is machine learning? In Machine Learning in Radiation Oncology: Theory and Applications, pages 3–11. Springer, 2015.
[28] EduardoMosqueira-Rey,ElenaHernández-Pereira, DavidAlonso-Ríos, JoséBobesBascarán, and Ángel Fernández-Leal. Human-in-the-loop machine learning: a state of the art. Artificial Intelligence Review, 56(4):3005–3054, 2023.
[29] BurrSettles. Fromtheories to queries: Active learning in practice. In Active learning and experimental design workshop in conjunction with AISTATS 2010, pages 1–18. JMLRWorkshop and Conference Proceedings, 2011.
[30] William H Beluch, Tim Genewein, Andreas Nürnberger, and Jan M Köhler. The power of ensembles for active learning in image classification. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 9368–9377, 2018.
[31] AjayJJoshi, Fatih Porikli, and Nikolaos Papanikolopoulos. Multi-class active learning for image classification. In 2009 IEEE Conference on Computer Vision and Pattern Recognition, pages 2372–2379. IEEE, 2009.
[32] Mustafa Bilgic and Lise Getoor. Link-based active learning. In NIPS Workshop on Analyzing Networks and Learning With Graphs, volume 4, page 9, 2009.
[33] Alexander Freytag, Erik Rodner, and Joachim Denzler. Selecting influential examples: Active learning with expected model output changes. In ComputerVision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part IV 13, pages 562–577. Springer, 2014.
[34] Yazhou Yang and Marco Loog. Active learning using uncertainty information. In 2016 23rd International Conference on Pattern Recognition (ICPR), pages 26462651. IEEE, 2016.
[35] Chiho Kim, Anand Chandrasekaran, Anurag Jha, and Rampi Ramprasad. Active learning and materials design: the example of high glass transition temperature polymers. MRS Communications, 9(3):860–866, 2019.
[36] Praneeth S Ramesh and Tarak K Patra. Polymer sequence design via molecular simulation-based active learning. Soft Matter, 19(2):282–294, 2023.
[37] Wenlin Zhao, Xuemeng Fu, Xinyao Xu, Liangshun Zhang, Liquan Wang, Jiaping Lin, Yaxi Hu, Liang Gao, Lei Du, and Xiaohui Tian. Design of multicomponent thermosetting polymers with enhanced tensile properties through active learning. Composites Science and Technology, 256:110779, 2024.
[38] HaifanZhou, YueFang,andHanyuGao. Usingactivelearningforthecomputational design of polymer molecular weight distributions. ACS Engineering Au, 4(2):231240, 2023.
[39] Kevin Maik Jablonka, Giriprasad Melpatti Jothiappan, Shefang Wang, Berend Smit, and Brian Yoo. Bias free multiobjective active learning for materials design and discovery. Nature Communications, 12(1):2312, 2021.
[40] Erin Antono, Nobuyuki N Matsuzawa, Julia Ling, James Edward Saal, Hideyuki Arai, MasaruSasago, andEijiFujii. Machine-learning guided quantum chemical and molecular dynamics calculations to design novel hole-conducting organic materials. The Journal of Physical Chemistry A, 124(40):8330–8340, 2020.
[41] Paripat Kraisornkachit, Masanobu Naito, Chao Kang, and Chiaki Sato. Multi-objective optimization of adhesive joint strength and elastic modulus of adhesive epoxy with active learning. Materials, 17(12):2866, 2024.
[42] Seyedali Mirjalili and Seyedali Mirjalili. Genetic algorithm. Evolutionary Algorithms and Neural Networks: Theory and Applications, pages 43–55, 2019.
[43] BobakShahriari, Kevin Swersky, Ziyu Wang, RyanPAdams, andNandoDeFreitas. Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE, 104(1):148–175, 2015.
[44] Arun Mannodi-Kanakkithodi, Ghanshyam Pilania, Rampi Ramprasad, Turab Lookman, and James E Gubernatis. Multi-objective optimization techniques to design the pareto front of organic dielectric polymers. Computational Materials Science, 125:92–99, 2016.
[45] Nathan J Van Zee and Renaud Nicolaÿ. Vitrimers: Permanently crosslinked polymers with dynamic network topology. Progress in Polymer Science, 104:101233, 2020.
[46] Melania Bednarek and Przemysław Kubisa. Reversible networks of degradable polyesters containing weak covalent bonds. Polymer Chemistry, 10(15):1848–1872, 2019.
[47] YongZheng, Tingting Liu, Haodong He, Zilu Lv, Jiayun Xu, Dayong Ding, Lin Dai, Zhanhua Huang, and Chuanling Si. Lignin-based epoxy composite vitrimers with light-controlled remoldability. Advanced Composites and HybridMaterials, 6(1):53, 2023.
[48] SumanDebnath, Swaraj Kaushal, and Umaprasana Ojha. Catalyst-free partially bio-based polyester vitrimers. ACS Applied Polymer Materials, 2(2):1006–1013, 2020.
[49] Marc Guerre, Christian Taplan, Johan M Winne, and Filip E Du Prez. Vitrimers: directing chemical reactivity to control material properties. Chemical science, 11(19):4855–4870, 2020.
[50] Vincent Schenk, Karine Labastie, Mathias Destarac, Philippe Olivier, and Marc Guerre. Vitrimer composites: current status and future challenges. Materials Advances, 3(22):8012–8029, 2022.
[51] Shao-Yu Chien, Jane Wang, and Ying-Ling Liu. Biodegradable polyester-based vitrimers exhibiting transesterification-induced topography isomerization under recycling. ACS Applied Polymer Materials, 6(15):9191–9199, 2024.
[52] Takeshi Aoyagi. Optimization of the elastic properties of block copolymers using coarse-grained simulation and an artificial neural network. Computational Materials Science, 207:111286, 2022.
[53] Shao-Min Mai, Withawat Mingvanish, Simon C Turner, Chiraphon Chaibundit, J Patrick A Fairclough, Frank Heatley, Mark W Matsen, Anthony J Ryan, and Colin Booth. Microphase-separation behavior of triblock copolymer melts. comparison with diblock copolymer melts. Macromolecules, 33(14):5124–5130, 2000.
[54] Takashi Honda. SUSHI: Density functional theory simulator. Computer Simulation of Polymeric Materials: Applications of the OCTA System, pages 67–100, 2016.
[55] Takeshi Aoyagi. COGNAC: Coarse-grained molecular dynamics simulator. Computer Simulation of Polymeric Materials: Applications of the OCTA System, pages 29–65, 2016.
[56] Kurt Kremer and Gary S Grest. Dynamics of entangled linear polymer melts: A molecular-dynamics simulation. The Journal of Chemical Physics, 92(8):50575086, 1990.
[57] Takeshi Aoyagi, Takashi Honda, and Masao Doi. Microstructural study of mechanical properties of the aba triblock copolymer using self-consistent field and molecular dynamics. The Journal of Chemical Physics, 117(17):8153–8161, 2002.
[58] Masao Doi. Octa (open computational tool for advanced material technology). In Macromolecular Symposia, volume 195, pages 101–108. Wiley Online Library, 2003.
[59] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-learn: Machine learning in python. the Journal of Machine Learning Research, 12:2825–2830, 2011.
[60] LelandMcInnes,JohnHealy,andJamesMelville. Umap: Uniformmanifoldapproximation and projection for dimension reduction. arXiv preprint arXiv:1802.03426, 2018.
[61] LaurensVanderMaatenandGeoffreyHinton. Visualizingdatausingt-SNE. Journal of Machine Learning Research, 9(11), 2008.
[62] Ruimin MaandTengfei Luo. PI1M: a benchmark database for polymer informatics. Journal of Chemical Information and Modeling, 60(10):4684–4690, 2020. 71
[63] Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model uncertainty in deep learning. In International Conference on Machine Learning, pages 1050–1059. PMLR, 2016.
[64] Jhonatan Contreras and Thomas Bocklitz. Enhancing decision confidence in ai using monte carlo dropout for raman spectra classification. Analytica Chimica Acta, 1332:343346, 2024.
[65] Anurag Jha, Anand Chandrasekaran, Chiho Kim, and Rampi Ramprasad. Impact of dataset uncertainties on machinelearningmodelpredictions: theexampleofpolymer glass transition temperatures. Modelling and Simulation in Materials Science and Engineering, 27(2):024002, 2019.
[66] Hsu-I Mao, Jun-Yuan Hu, Jia-Wei Shiu, Syang-Peng Rwei, and Chin-Wen Chen. Sustainability and repeatedly recycled epoxy-based vitrimer electromagnetic shielding composite material. Polymer Testing, 127:108200, 2023.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97633-
dc.description.abstract高分子是生活中常見的材料,能夠透過多樣化的材料設計方式得到不同性能,以滿足各種需求,然而過往使用實驗高分子設計所需成本過高,因此有許多研究試圖以數據驅動方法解決此設計難題。現今數據驅動方法蓬勃發展,數據驅動用於高分子設計也成為熱門的研究議題,然而資料不足侷限了其發展,固在本研究中導入主動學習技術,解決此設計難題。
本研究共分為三部分,皆以主動學習進行高分子材料性質設計最佳化。包含使用主動學習進行隨機共聚物序列設計,成功減少98%需要標註的資料量,有望解決標註資料不足的問題。第二部分的研究則是進行單體多目標最佳化,透過主動學習驅動實驗設計,僅以102以下的標註資料量,即可在龐大的設計空間中完成高分子單體多目標最佳化。最後一部分研究將先前的方法用於純實驗數據驅動設計,並以Vitrimer之配方以及比例進行研究,透過模型建議,成功在設計空間中找出機械性質最佳之配方。
本研究解決了過往數據驅動高分子設計的難題,並以模擬及實驗資料分別進行驗證,此研究成果所建立的主動學習設計方法,可望用於實際工業應用,加速不同需求之高分子材料的開發。
zh_TW
dc.description.abstractPolymers are ubiquitous materials in daily life, offering a wide range of properties through versatile material design strategies to meet diverse application requirements. However, traditional experimental approaches to polymer design often lead to high costs, which motivates recent efforts to address this challenge using data-driven methods. With the rapid advancement of data-driven technologies, their application to polymer design has emerged as a prominent research focus. However, the limited availability of labeled data remains a major bottleneck that hinders further progress. To overcome this limitation, we introduce active learning techniques to enhance polymer design processes.
This research is structured into three major parts, each leveraging active learning to optimize the design of polymer materials. The first part involves the design of random copolymer sequences using active learning, which successfully reduces the amount of required labeled data by 98%, thus addressing the problem of data scarcity. The second part focuses on the multiobjective optimization of monomer structures, where active learning is employed to guide experimental design. Remarkably, with fewer than labeled data points, the method achieves effective multi-objective optimization across a vast design space. The final part applies the developed methods to a fully experimental dataset, targeting the formulation and composition optimization of vitrimers. Using model-driven suggestions, the optimal formulation with superior mechanical properties was identified within the design space.
Overall, this study addresses key challenges in data-driven polymer design by integrating active learning, validated through both simulation and experimental datasets. The proposed active learning framework holds promise for practical industrial applications, offering a pathway to accelerate the development of polymer materials tailored to specific performance requirements.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-09T16:09:49Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-07-09T16:09:49Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 iii
摘要 v
Abstract vii
目次 ix
圖次 xiii
表次 xv
第一章緒論 1
1.1研究背景. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2研究動機. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3研究目的. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4論文架構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
第二章文獻探討 7
2.1數據驅動高分子材料設計. . . . . . . . . . . . . . . . . . . . . . . . 7
2.2高分子機械性質模擬. . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3高分子基礎模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4主動學習. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5主動學習輔助高分子材料設計. . . . . . . . . . . . . . . . . . . . . 14
2.6高分子材料多目標最佳化. . . . . . . . . . . . . . . . . . . . . . . . 15
2.7 Vitrimer材料. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.8小結. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
第三章研究方法 21
3.1主動學習隨機共聚物序列設計. . . . . . . . . . . . . . . . . . . . . 21
3.1.1軟硬共聚高分子. . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1.2模擬流程. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.1.3代理模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.1.3.1模型輸入. . . . . . . . . . . . . . . . . . . . . . . . 24
3.1.3.2模型選擇. . . . . . . . . . . . . . . . . . . . . . . . 26
3.1.4主動學習流程. . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.1.5資料視覺化方法. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.1.6小結. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2小數據驅動多目標最佳化. . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.1實驗資料集. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.2研究流程. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.3代理模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.4主動學習策略. . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2.5模型不確定性. . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2.6多目標最佳化衡量指標. . . . . . . . . . . . . . . . . . . . . . . 34
3.2.7小結. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3實驗數據驅動聚酯型Vitrimer最佳化. . . . . . . . . . . . . . . . . 35
3.3.1 Vitrimer單體選擇. . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3.2 Vitrimer合成及性質量測方法. . . . . . . . . . . . . . . . . . . . 36
3.3.3設計空間. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3.4主動學習流程. . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3.5小結. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
第四章結果與討論 39
4.1主動學習隨機共聚物序列設計. . . . . . . . . . . . . . . . . . . . . 39
4.1.1隨機共聚物資料挑選及資料分佈. . . . . . . . . . . . . . . . . . 39
4.1.2主動學習結果. . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.1.3模型採樣資料分佈. . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.1.4設計空間之外採樣結果. . . . . . . . . . . . . . . . . . . . . . . 44
4.1.5小結. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2小數據驅動多目標最佳化. . . . . . . . . . . . . . . . . . . . . . . . 46
4.2.1代理模型比較. . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2.2主動學習策略比較. . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2.3主動學習收斂性比較. . . . . . . . . . . . . . . . . . . . . . . . 49
4.2.4標註資料數量. . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2.5小結. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.3實驗數據驅動聚酯型Vitrimer最佳化. . . . . . . . . . . . . . . . . 52
4.3.1初始資料集採樣及模型訓練結果. . . . . . . . . . . . . . . . . . 52
4.3.2第一次迭代結果. . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.3.3第二次迭代結果. . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.3.4第三次迭代結果. . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.3.5小結. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
第五章結論與未來展望 59
5.1結論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.1.1主動學習共聚物序列設計. . . . . . . . . . . . . . . . . . . . . . 59
5.1.2小數據驅動高分子單體多目標最佳化. . . . . . . . . . . . . . . 60
5.1.3實驗數據驅動聚酯型Vitrimer最佳化. . . . . . . . . . . . . . . 60
5.2未來展望. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
參考文獻 63
附錄A—實驗藥品 73
-
dc.language.isozh_TW-
dc.subject機器學習zh_TW
dc.subject主動學習zh_TW
dc.subject材料設計zh_TW
dc.subject最佳化zh_TW
dc.subject高分子材料zh_TW
dc.subjectOptimizationen
dc.subjectPolymersen
dc.subjectMachine Learningen
dc.subjectActive Learningen
dc.subjectMaterials Designen
dc.title主動學習高分子材料設計zh_TW
dc.titleActive Learning for Polymer Materials Designen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee丁川康;陳錦文;趙基揚zh_TW
dc.contributor.oralexamcommitteeChuan-Kang Ting;Chin-Wen Chen;Chi-Yang Chaoen
dc.subject.keyword高分子材料,機器學習,主動學習,材料設計,最佳化,zh_TW
dc.subject.keywordPolymers,Machine Learning,Active Learning,Materials Design,Optimization,en
dc.relation.page76-
dc.identifier.doi10.6342/NTU202501030-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-07-01-
dc.contributor.author-college工學院-
dc.contributor.author-dept材料科學與工程學系-
dc.date.embargo-lift2025-07-10-
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf9.51 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved