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Abstract

Polymers are ubiquitous materials in daily life, offering a wide range of proper-
ties through versatile material design strategies to meet diverse application requirements.
However, traditional experimental approaches to polymer design often lead to high costs,
which motivates recent efforts to address this challenge using data-driven methods. With
the rapid advancement of data-driven technologies, their application to polymer design
has emerged as a prominent research focus. However, the limited availability of labeled
data remains a major bottleneck that hinders further progress. To overcome this limitation,

we introduce active learning techniques to enhance polymer design processes.

This research is structured into three major parts, each leveraging active learning to
optimize the design of polymer materials. The first part involves the design of random
copolymer sequences using active learning, which successfully reduces the amount of re-
quired labeled data by 98%, thus addressing the problem of data scarcity. The second part

focuses on the multiobjective optimization of monomer structures, where active learn-
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ing is employed to guide experimental design. Remarkably, with fewer than labeled data

points, the method achieves effective multi-objective optimization across a vast design

space. The final part applies the developed methods to a fully experimental dataset, tar-

geting the formulation and composition optimization of vitrimers. Using model-driven

suggestions, the optimal formulation with superior mechanical properties was identified

within the design space.

Overall, this study addresses key challenges in data-driven polymer design by inte-

grating active learning, validated through both simulation and experimental datasets. The

proposed active learning framework holds promise for practical industrial applications,

offering a pathway to accelerate the development of polymer materials tailored to specific

performance requirements.

Keywords: Polymers, Machine Learning, Active Learning, Materials Design, Optimiza-

tion
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Gyration, Rg) ek 3+ > J* A #F Y hipF > fFALERF A F RN EELEES -
WL R SRR Y B I T g PR AL [30] 0 Zhao ¥ 4 ATHF A v §
o RS B Y e s BRI R R 27k F M (Epoxy Resin) (fe
RRAEE N SRR R SR o AR RS TR VR Y
HLpe S o F TR B R [37] 0 2229 I P mABEY F g A
PR e e~ TR RR R R OP R Y IER A8 R

EEEL A

14 doi:10.6342/NTU202501030



{:C%}

Initial Candidate

Optimal Candidate

R

—— |
\ Proposal /
2 LB BEHARET - BT RAR 0 F
R -

PERAFRTAMEY

KPP REF T %R 55 2 g
Tg Literature Kim % * [35]
Rg MD simulation Ramesh % % [36]
molecular weight distribution KMC simulation Zhou % + [38]
Adsorption free energy, Energy barrier, Rg MD simulation Jablonka % 4 [39]
Hole mobility MD and DFT simulation

Antono % 4 [40]
Adhesive joint strength

Experiment Pruksawa % 4 [3]
Elastic modulus, Adhesive joint strength Experiment Kraisornkachit % % [41]
Tensile strength, Elastic Modulus, Elongation Experiment Zhao % 4 [37]

26 JHHTHAZBRREL

T

B MMA L LRBIRP IO SERP BRI FHRP T

B e SO B B R B E o el

-

Y S fRanif 3L o 5 0 R AR AL

F1i% & /% (Genetic Algorithm, GA)[42] ~ B F #7i i* (Bayesian Optimization, BO)[43]

.
DR LW A S R S AR R F R 40F 5 P e

m

5 B &% if {* (Multi-Objective Optimization, MOO) #10 e $k §1& = &

IS

FEE o RAEPERET N - AR R

£l

W e - 45 P Rd i

S B A AP B F R 3 5 (trade-off) pF > 3 %

iy

\

3

PR G b

-
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Beid it AR EARY NP SR AR Z Y R kAR o

'F_k

20 7%
B ARE o MR R T R ARAE RO VAR R R A B
HAF L nn]F o AR SR REARY A B FtnsEAl R &
M AL EFS Y - B RfE A - EfEni &0 W fE2 5 Pareto
set’ B &7 5 AFBcf# > 4L 5 Paretosolutions o P miE#F A 5 P A E L HA
A EFRS ARE LR A AT ERTFAY DR S P REET
RAET M=K G

min (fl(x)>f2(x)vvfk($)> (21)

zeX
BP KZHMBL A TREDSREL>2 X ZRFZF mm HFALREI DL
ot s MG B - BT R A REERS PR P p B
beo R BLHEHPEPRBECHES RS ET A R A ERERE P
o RFZAPEUS NP L HE B FROER PR B2 HE LW
wH PR RAT e Bl AP B T ek B T RS B0 X Paretoset 0 &
Pareto set # % — {f j23% % i 43K - e £ 2 B ¢ H @ 24 e (dominate) » B

Ty AR ay 0 VOREENE L

filws) < fizy), Vie {1,...,k} and 3j € {1,..., k}suchthatf;(zs) < f;(z1)
(2.2)

L % f Paretoset ¥ et FTALE ARFZEY 0 SUEET 45 L6 EAATH 1
T40k pEat v o B B4 1) Paretoset » #4712 ¥ F]d Paretoset ¥ #f§ BLAfHE S
duf oo - &2 L Pareto front » 4-]2.6%75F > @ Pareto set ¥ ¥75 %?K{g A

g it 3§ ¢ i f2 (Pareto optimal solutions) °

BAF RS P AR p A T 7 Mannodi-Kanakkithodi & % i i % &

T RO EEHHIEEGHE AX LA IFIDIRFET BTV K
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Objective Space

— Pareto Front
@ Optimal Solutions
@® Dominated Solutions

Objective 2

Objective 1

B] 2.6: Pareto front 7+ %, B °

-

(dielectric constant) 14 % it 4 (bandgap) % & & 114 [44] - Kraisornkachit & + J]
5 B Hyp et LB Y Fpetad 3202 0 A H RPN E 4 F 1k (Elastic
modulus) ™ % #L¥ # & 3 B (Adhesive joint strength) (1% & + fie > 2 % # 42 S #c
[41] - Jablonka % A P & _i% i F % KX 3+ (Design of Experiment, DOE) ~ % % 5 fie tar
FTEIE AP AR AIEFTEY B N5 LA KOH = AR BT
ERPRF[0]e N ip BT RANBAF AT S P EAGRELE P

- R s R T PR ORI R AT o Ao ARG R

P RS PRGN AR EFT o

2.7 Vitrimer #}3¥}

Vitrimer £ - A Z A FHMEF AT B RPFLLEHTPEZ LA FF 401 B

ATAIH AL H B d 0 f £ § 4 (Dynamic Covalent Bonds) ‘& = # f§ & § % %
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(Covalent Adaptable Networks, CANs) » it = B PFid 4 # F M Lip e
o FI27E R Vitrimer # i £ 452 458 o SAH R Adp s SR A (T,)
TREM P RIREERE EAFRAE WY P BAME T v
[45,46] ° Vitrimer $x 4~ 2_# *" fig * # (Transesterification) &5 3 > & K¥FE I =
Pofig W% ~ T3 ® 5 8] 0 350 0 LIV RN S F il 500 TE M4 2 R
Boo SRR e R R AR AR £ M 0 4o T A R L 8 AR £ MR
T ap BRAMEEARERE I H AR AR o RE > I F PR A
Ful g A a it § 5 54 (Dynamic Chemical Precursors) (4 fi-is @ & % ' M 4c 1

F A3 G o X ko Virimer (T3 T - R BT wofe R 0§ gLt s b4

TESPE LI HELRBFILEL 57 S R E [47]

W

Bl 2.7: & f&

B -

(gr
crn\i

= B4t R

R fia 4 Vitrimer 235 a2 F BE A H L HaE o SERT MG HRS
e frfe BT A (T % T LB E L @ & o LA e Vitrimer A AL G 2
B R D HE o Bk AR G B R FH RSV R R o < i =V R
WRkat B 14 o R Pquf Vitrimer & § R en T, #g ¥ 0T, # 2 L 5 45

S 0 X R AR T Al B w g [48] o Fe PE 0 3B LY #0332 (4 Zn(OAc),)
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LR AR S o - AR A BRI o R T
5 3F Vitrimer F R BF fop ABRF N 0 4 B RBETEEHES S

[40] o #* ¢F > Vitrimer B 77 91 & 4% e02) Rk e e m * 4> H A5k B2 5 7 i 99% >
vAR T HRIT 88% 3 99% 0 e b Kk w T UETR 1S v BRI A b B R o &
HAagk? SR (e ag e ik) 2 L HEAFBLERR Y B
[50]c X @ > P o 5 8K fin 3] Vitrimer 787 7 F £ 3042 i F U E Ap B ATA
B B EAFT LT NS HA R JIF R S S G R
Vitrimer % & 7 & gt 2 0t 0 o2 pkdp DA A AR R R AR
MpE s PR EEAER M A A R TR BB PR *
Flet o m A PR I AR ORI ER 0 o AR BRI 2 AR

il B > JURTE B F i S a1l (A K hE & SR

B 2 o Vitrimer ¥R P A MIBER > L EFRAE S A Ll i
R RRBAEIF A HESRFRE T FTOEE > A BRI e
RS g 1] ¥ 7 b R e E M et ) BB

B3R FAo B EROFEC G A0 RERPALE LAY D

Vitrimer 7§ &FF 7 o ¥ LAl e R R EEAE 0 SR E Y e B d it AL

L4 R g

2.8 )&

BARE o HIL F BRSEE AR R T B &

Fyag &M

R R

hpas)
2
F_k

T SR AR L R

R CF ML ME 2R FTHE R LU F A F Mgkt
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P ERCUEE R KRR AP EHT R R A ORI T RS

B imiE A o oo

9o
S
- R
<
=
Pt
o
®
<k
hy%
4y
B
\
\_.
3

LOpR S AT e A > PR Ed i o

3AEE Y AN Y R G NARY > TH L FARME T RS R
BAF AL

4. Vitrimer ¥ - AT OHE FF A FHAL e SN L5 BE LN D
Vitrimer & = fie > > P w0 £_F A FARI AP § B 9T 7 RAE o

5.‘4-L‘ul-i>’~ %‘333}’[‘%’#—;«5&\%*2‘_% v/tp ﬂ—\f& %’;rjﬂ"v,}’f’

N

TP AR AR AR 2 A B AR KA S E G R %
WP RFEPAFEY FA TR UA BRI FTRE KL

d-p /;"' 2 % At 44 -’a > EFth 2 )J- , _11' 12 Vitrimer % ;‘% %’é l/}]J o
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GRS D EIA 0 A AR SR R B IR | B
$ P g it 2 P S HHR SR Vitrimer e B 1t > A AR H g A4 = 2

AR TR R BT Sk

3.1 EZHFFBEBRERY TR

3.1.1 #mAERSH>T

LEESE R B AR PR Y 5 s hE AL B 5 Aoyagi “tiE = 1 ABA
HAHE R T[] AFHEY £ 1200 L HEFTH 0 F 2 ABA Z &
4T B £ B B 4~ + (ABA-Triblock Copolymers) 3 H M3 @5+ R E 4 &
(stress-strain curve, ss-curve) > " Aoyagi cF 7 A#H > APy R H TR FL
Adp AR TN I SAFRRAEWERF AT REIR o NP LRF A
s s L 5 Eh TR ¥ A BRI B H o0 8 AB B R

Wb s B o 4AE 60 3 120 5 6 AR P LB EG LT R

1 120
3 D 20~ 1.33 x 10% (3.1)

1=60
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PR MR @ RS 0 4 EE 2R P AP Y B 2 s

¥ R AL -

oAy R P A E T F # % (Styrene-Butadiene Rubber, SBR) »

SBR & - f& 5 B thivchy LMl - 29 A nHE ML ¥ 2 5 (Styrene) » 2
Ay P IPA” Rm o A i E 85 7 2 % (Butadiene) 0 7B & % 0 F A

G482 H Ay ’f# FACBI3. T e

CH,-CH + —tCH,-CH=CH-CH,

B 3.1: SBRT % Bl - ¥ Jﬁwﬁ;‘”ad,ﬁ,‘g\:g _%Wg;;":{;ﬁo

312 BERA

AT Y o g PV RS R TR o o X R A4S it

PR B L eAT o S AR A BEIR G A R Hde A S

g4 A B (53]
f CE AR A R R T A g

mﬁ_ﬁt’ PRV ,F ixﬁf?#ﬁla\éﬁ.m

B BRFL R A FHSFEARLE - J RRERT LR - T A

v

AT Z BRI

L AR €At Al A RS ER T HEY i
oo Ft s AP o AR pisH 2 2 (Self-Consistent Field Theory,

SCFT) ##t ™ i2 kP 4p~ 54 » SCFT £ - 82 + it Fep i 3- 5 2
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o ABER T A TatEEa TR EMBR TR AP A SRR L5 E
#48 SUSHI[54] & 7 o

2. 8RR BHE 5 F B (Node Density-Biased Monte Carlo, NDBMC )
FE o BEF R RS AN RS TGRSR A TR B P A
ﬁ?u%ﬂ@Tﬁﬁ&%%%@ﬁé%Eﬁiﬁﬁﬁﬁﬁ°

3. B i - H A * feg it 23 # 4 F (Coarse-Grained Molecular Dynamics,
CGMD) fidsf ¥ P3d o HUEE chjp o g %8 ’fﬁﬁ%—g Y TR R o AV

k8 COGNAC[S5] 278t » X F R4 B d & -

He Ay P i1 CGMD 4% ¥ 4% * Kremer-Grest #-73] [56] > &4 - f @ i
Genfade it B AFHRA BB A FHME M A% HMz FPogt ALY
%+ & Lennard-Jones * J %% 2 42 iv* 4 > d 3wt i3 A3 pd
Booovdegtb b e KA it AR s FIp T R AEEROEFEFZ 2R 2R
FHRB AT ¥ pEFaw Bl 0 FIet BRI T G o IER R A T A W
Prenis Gooom fjufe it duEARY > R Y BT H M EHHR ALY L Sk
Mo~eMEmkgty s AR AECER CHra g2 EEFE K
B2 g T oud 2 BAAMEIHEET VAol ERPE PR LT

B L T =0(m/e)/? - @ B A 3F Kremer-Grest $%] ¢ Lennard-Jones 7% 4 # %

IVERY l’lj;\l :

E’L] T B ( T ) o Tij,cut - T34, cut 9 r -~ /rl]’cut

07 T > T34, cut

(3.2)

€j froy; » E4i{-¥ % j 2 & o Lennard-Jones $-#c > 11 & F|& cn¥ =& R 14 Z

B i BA7 0@ ryjen PIEFT B3 Y 0 78R3 (cut-off distance) » 1945 18 /L

b
@%a%Aﬁiﬁﬁﬁ%&ﬁﬂézwaﬁiﬁméT@ﬂ]’MWW&W
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WA BB S BaSP YR A IO ARFLS -

gigie® 4 PIEE G

_%k;R% In {1 — (%)1 ., 1< Ry
UB(r) = (3.3)

oQ, r> Ry

HY k&% 30e/0% s Ry 5 1.50 BETSNEEEAT O g ¥ Pl

W

% 4 N T b Y NILE A AT T o EIRE A FER

Mz JEEE‘]”_}_ o

Mz R BT W s kA B e B39 w0 4G b S e
Octa[58] % ¥ ¢hst i i (7 fiht » ¢ # SUSHI 12 2 COGNAC > Hifiehg 5 4 /]
®AE 16%16%16 TR Iyt~ L T L bR R R E Y BT ARG R

* Intel 19-13900k & {7t > & - AP GELPFS L 8/ PF o

313 REREH

3131 EAMA

AT T B Sk ABEMEERR AT AWF AT 3.1 F330E
T RY - ) ABREBERF A FEL TR SBDRE Sk 2T F A4S
HHREERDREERZ D& FENRY BRI 2 HETH X RF »F PRE
BESH TRl RO AAET R TP ABUB L RF A s
Fe 0 FEPITLRNOBRIET > i@ g &8 00F S0 o

~'E|J °

4y
~my
~

-~

A4 reit i
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B 3.2: fsk= H AW 0 = B+ B4 % 5 SCFT ~ DBMC ~ CGMD fic#t i #7 17

; 2Ll g ook

0 00000 _
A AWANANANIAL A AN

n n, Nng mean, mean, mMmax, maXxg
[10 7 3 233 15 5 2]

Bl33: ABSEHE BB AT il it %6 o
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% 3.1 3 ey ~ Slicd o

FH LR FH
N FAFHE (RER)
na TS
np B ¥ 4 #c

mean, A HEMIHELELR
meang B HWTIHFEE LR
mary, AHEWMEXFELAR
marg BHEWMEXFELR

3.13.2 BAREET

AP ATIE R A L B AT AR ﬁf;‘? (Gaussian Process Regression, GPR) »
GPR H- st 03] » &5 7 faffiid ~iliv it 4 s 2 iBg o AR L™ hdffed

Bgsd > AN GPREHEF T - BTG 2HE- E o R ki

TR AL Y £ LB F Y R PRI o GPR e 0
BME N E RS L eS8 T

B9 f(z) BEFhh ol GP L3 B m i 7 E S Em() > @ kB
RS L B k() RAFEY o RF - BREF AT DHE(E3]) k2
HPE SH @ty £ S8l d - B 3dik (Kernel Function) & % & o A3 3
#ri@few jF (GPR) PFo PindeenE R I M EL > F5 Pradicfs s LELY
LY FIE B B T TR B 5B BT R LR S R s

gt g B e > E 20 Matérn % Slict AT o SEANE G

1 V2v V2v

k(@i x;) = F(y)zy_l( (@, 2)))" Ky (——d(@i, z5)) (3.5)

B 5 d(,) 5w EEH > K, 5 Bessel function » I'(-) 5 gamma function > | % 7+ %
Sk R R R A v BRI EE ST AR DS AP BRI
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150 1R B e S8 TR e 7 BT -

GPR t8 ¥ 23 pliEf2 A 2F = A b ¥ #7732 (Bayes’ theorem) ® » R >t L 2%
WEIELRPFDEAAY o AEFTERATHEL > SL BT S ER S HE R
(Maximum Log Likelihood) % . i i 398 S 2= £ Sdkc? 2 %8 £ F5iE
FF A > AP s BB & A F (joint distribution) > FF B2 2 RF AL AR BE e
KBty o ALY R B Rame A s 0 X B e f iR B 0

X527 FIR AT RS AM eI A HT LA L

~ N , (3.6)

B o fRPRFTRAME LT f ARRFFTRAMELS T K =K(X,X) 53"
FREF2ZF > Lot K, =KX, X,) 27V RFPERRET 2B ops >
A0 K = K(X,, Xo) RIEGRIZEFT M 2 BF e > LB o FQb > 2P 08 i fi
PIRFAHEF I OIS A 0 iEa K f, 0is % A~ F (posterior distribution ) o & =

oy @i % scikit-learn £ % i 7 GPR #1734 = 2 218 [59] -

3.14 iﬁ}]*ﬁ'”é WAZ

ARy g AR 3 FE T2 (uncertainty) i #0 B Y Hk oo d 30
GPR im0 S4B 5 o Bt GAfRIpeg 0 g T ami o R e A
AL > BALBEY TSR Y GPRIA - afihBar L2 8
Ao FLEFETH AU IR AF LY S B AR IEE S P IEE L §

& ABA = B4ak B & T B2 R GPR 03] - & A fRnang s L R R B I
REGTERE O AF - BRS¢ RV PF D GPR BRI 2 B REFAR

B RN R R R TR AR R ALR Y B iR i
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—_
40

’L]ég;"?'-ﬁ:ﬁ%é ‘g:é-_gc e )\;)rliﬁ?#lg; ¢ Jl % m ﬁ’ﬁf”“l » pb ﬁfiqf’” — =

I+

-

ER o RFLHNAR IR K TN L FEEL L P AN TR DA T

e

¥ 22 wBB34 - BEIFFYHY I TP > FH LR’ SO T

I R

2d A A R E e acn s AP TEE L S R 23 R T

[ Label H Chec!< J
uncertainty

No

[ Data ]—[ Model ]@ Finish ]

B 3.4 A2 P eha #5583 AR E o

L0 B A o

315 HFHHAEILFE

d 04t AB'E R R F A S ehF o

»

e g LG - BAAE O EEEREF
RETCER F ALY > EAHTHEF T AT LEUTHA TR
EERET > FIRFHEF AR A7 ¢ 7 * 0% a2 3 5 Mclnnes ¥ £ 7
# 11 e Uniform Manifold Approximation and Projection(UMAP)[60] - UMAP & - #&
AP AERS 2 BEAT BREFERLE 223 AT B BF
BBt 3 LB P 5 (projection) I M P o RE AP FR S 2 4ol 2 4L
17 (PCA) 4p+t » e Jg i T L 5 3 3 B9 chigiE a0 o 2t b > UMAP
T Y - B RenZE s S N t-SNE[61] i B [ -0 BARB end P

Pd ZlRFoFiG L ENRE AT Y ER UMAP 5 FTHRARE iR

LF 3 i ML A
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3.1.6 Q&

EAREY 0 AR BEY PG E RS B IR IIA G ko T

L A3 PR s By Aok P HRHFEE LA 5 4+ SBR>

it CGMD 4 i e 17 6 1 R

3
<
D7
4y
‘3'
|
=
9
gl

2. AF g R GPR T4 32 HEA] > HEA0 ~ 5 4 T
T %38 GPR A ARl iR L 731> G A& F Y 7 ma it
B EFAHEY

3. Y gt UMAP (P51 2 » REFEFFTRAGREN  SE0

AL S 1 RAEE Y ERY o AP ERE TR GE L .

3.2 NBEESZ BARREL

321 FTwEAHE

LR A ET S ¢ s @ % Polylnfo[6] F 5 B B E AL R 0 do e bt B

PolyInfo #_p # #4ird * 173 Aa\—?ﬁf}iié}gl%?a‘iiﬁ D N S

ks
4

HR A

)

AU o d AT DR S PRI > F R BB R A

o

] % 4t & {4 (Elongation) ™ % 38 {4+ ##c (Elastic Modulus) » 4 %] % & 444 ezt B |4
MR SRR R BT EE UL A BACRBSA T 0 KRS T U F IR A 2
B3 5zl eh % (trade-off) B 1% > & A5 & % p & & orik Dl ie
FipfsgditmrHR > THPEEKPFHIT TR AL @ Polylnfo enF 4 #rjc &

[N A

G 5 B P-SMILEs » FI Bl % - BT AL B3 A S B HATH B OH R
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() Pelylaite

Elongation

® 3.5: Polylnfo T4 & » & o

322 HFRFEAZ

B A Gy Y o PR E R R SR E TR RN A
DA i H A o Ft > B2 2R Polylnfo s TR & £ 5 805 B F e F 4L ek
TP TR B AL Gt i TALARE F R G 100 LT AR TR > AT
THEM30LFHIFL AR ETREE B FRIFE AR 2 > kA
F YRR HAEFEE  RFFPREFLSF Y R BT Y SRR

FHER O BERANGIET - R RKY o kR E R EMA G2 P o

323 REEAR

AEAR AR Y L TRARE L SF Vi A AP
9 oAp L *}_;{_?7}11 e LG gg:;b%\gqu iz 2 NI R0 é_j\pr;j ¢ B
P27 BRI > 4 % 5 GPR -~ Gradient Boost Regression(GBR) 14 % 28 #_

#c 4| TransPolymer[24] c # # GPR @ &t - Ripf g * 29 B3| £ ¥ i d

F_k

BY &A1Y a— A3 o Gredient Boosting &_# A% * ] T 3 R B
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By S AL RSB R LB S B Rl E Sk A d SRRy
3l Fpt Ad §H SddE S o RGBR 7 % % % B £ (overfitting) 14 2 8§ i@
FRE AT A B R o @ % Gradient Boosting st & * T w i R AL

(regression) F¥ » £ iE e & i H oA FF R 2 A& A (residue) > & 2 A% R AXBITE F f# o

#& # H5-73) TransPolymer P| £ 3% i A fhiig & F TR & PIIM[62] & {5 35 3"
Mo W EBEE- FH BB AT HP-SMILEs &7 » 3 R A$R* "% F (random
masking) £ ;i€ {7 > F] ¥ 00K TransPolymer AL 5 & 3 3 A F F i A7 L F
R EE YA TR RS LR EEMRD > TV R FRIEA R e
mOANFT G P Ppe 2 R Bl E S » - K 23 ¢ & (Fully Connected Layer) » £ ] * 1%
EFAEFT 2R S R 77 ¢ 44 Sdic (Loss Function) & * AdamW >

& % & (learning rate) & % Se-5 °

324 EZHFHRS

BEAFY YDA FY o Py AR AR Ry FHEF S P
Boifit o Tt g A8 K B TR TR 0 & Y 5 #F & (exploration) ™ X
F1%* (exploitation) o ff i it 14 % 55 it F § RAFR - fF 2 L L HEI A i w B
EEHEE O B A RROTAE R A RS AR 2 B aidr e @ )
FRIEARF PRA o Bt R AR PR A Y A % o i § T ORI RE
Fhd iR X FET R 4T RSB0 d 200t a fE v angd i > fdoid it
f2¢ o LAEEF I Ak TIHER AL P DEB AR HF Y F o Al
* P E 4 Pikdidit > R E AR 4 3 & frk a4 ikiis A& 0 Fp

TEG T GEA B R > A AR EIR R B kG 2 BRI o

bARLY O FF LR AR A R LE T 4 2
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Exploitation:

A largest Prediction Mean
o ' Exploration:.
8 Highest Uncertainty
i+
2
)
o

Objective 1

6: i ¥ SnficendE 2 (exploration) 12 2 1 * (exploitation) 7+ &, B °

Pareto front t el 8L » 24Pkt > G2 A2 L Pareto 31 ¥4 # 5 ¥ (Pareto-Guided
Active Learning) » £ B H A3 T - HEHEFEF H ¢ v p @ EF 5P
Th Gt pine AFETOPIRMT L - BARR > FP T 0 #-Pareto 31 F 1 # F

R ERENEE SRR £ PO ERAE AR R T S L

2, N 2N s ) sy 2 s A Sa = e .
Bl B ot A Dk itk > f FHRETHEKENE B FM 8%
N - L= o1 3A )J_
WITLRARFERY P END R 2 dp ke
Exploration Exploitation
-~
@ Labeled data - 1 @ Labeled data 1 @ Labeled data
® Unlabelgd data prediction @ Unlabeled data prediction @ Unlabeled data prediction
= Uncertainty [ ] @ Labeled data this iteration @ Labeled data this iteration

- E‘ -
iy s |HE N [ojooe

i
e opSap ElEI.E'
: EEEE SE g @@El ®

:

33
¥
{ﬁ (Exp101tat10n) Pareto front t m,‘«é«_@ " 3‘% fi °

v
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325 BARELHK

GPR e edtdh® ¢ P LI 2 /g2 » GBR A 2t a7 3 ¢ o B 253§
# = (ensumble) e % > FBiER ¥ 2 FA AR T E S BB TEE

AR L SN S SR 2 B T PR TR AR S

TransPolymer (7% Fx T 78 = VR 5 45 fe o SR WA P e g
AERRIERII ARG LR A NF S B2 A H* 98 Monte-Carlo
Dropout(MCD) #77 ;2 [63] e MCD = ;2 .4 Gal & < %) > Hym 4 F 565G 1dE

FHEA R G RRTRED L - BE- o oa L - BRFAG L

o |e) = / Py, w) q(w) dw 3.7)

IR Y R E RPN U R ) S A
EARM RS R L R R ROTCA OB E o 511 MCD 2 120 A
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CAS No 110-15-6
B Anhui Sunsing Chemicals Co., Ltd.
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2FX CioHi5304

2>TE 202.244 g/mol

CAS No 111-20-6

BIEH Anhui Sunsing Chemicals Co., Ltd.

* Adipic Acid (AA)
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OH

2FX CeH1004
2»>F= 146.14
CAS No 124-04-9
BEH Anhui Sunsing Chemicals Co., Ltd.

* 3-(carboxymethyl)cyclopentane-1,2,4-tricarboxylic acid (TCAA)

OH 0 o
OH
0
HO OH
0
2F X CioH200g
2>FE 268.262 g/mol
CAS No 24434-90-0
BRA LCY Chemical Corporation
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 Citric Acid (CA)
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CAS No 77-92-9
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« Bisphenol A diglycidyl ether (DGEBA)

L L

5}%3\ C21H2404
2>TE 340.42 g/mol
CAS No 1675-54-3
BRH Sigma-Aldrich

¢ Di-n-butylamine (=it T #%)

ZT

HJGW WGH}

75 doi:10.6342/NTU202501030



2F X CgHioN

2>TE 129.24 g/mol

CAS No 111-92-2

BEH UNI-ONWARD Corporation
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