請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97483| 標題: | 整合超穎透鏡與微型發光二極體之直接近眼式擴增實境系統開發 Development of Direct Near-Eye Augmented Reality System with Metalens-Integrated Micro-LEDs |
| 作者: | 李聖暉 Sheng-Hui Li |
| 指導教授: | 蘇國棟 Guo-Dung J. Su |
| 關鍵字: | 擴增實境系統,微型發光二極體,超穎透鏡,近眼式顯示器,多通道成像,影像穿插,被動矩陣驅動, augmented reality system,micro-light-emitting diode,metalens,near-eye display,multi-channel imaging,interleaved image,passive-matrix driving, |
| 出版年 : | 2025 |
| 學位: | 博士 |
| 摘要: | 隨著人工智慧與高速通訊技術的迅速發展,擴增實境頭戴式顯示器正逐漸成為下一世代顯示平台,促進深化的人機互動。然而,現今擴增實境裝置仍面臨光學系統體積龐大、光效率低下的挑戰。為此,本研究提出一種直接近眼式透視擴增實境系統,僅透過整合微型發光二極體顯示器與超穎透鏡即可產生擴增影像,無須額外光學元件。微型發光二極體陣列所發出的發散光經由超薄厚度超穎透鏡準直後直接進入人眼並在無窮遠處形成虛像,同時維持通道結構之間的環境透視功能。
針對高密度被動矩陣微型發光二極體中金屬爬升所導致的開路問題,本研究優化感應耦合電漿乾蝕刻製程,製作具有傾斜側壁的氮化鎵結構,有效提升微型發光二極體陣列的製程可靠度。為了進一步突破像素間距限制,本研究提出多通道影像穿插技術將四個光軸錯位的通道整合為單一高解析影像,將像素間距由12 微米降至等效6微米以提升像素密度。實驗結果驗證影像成像品質完整性,並與理論預測之視角與每度像素數高度一致。此外,本研究亦針對系統的透視特性與由雜散光引起之影像失真進行分析,提供未來系統優化方向。 本系統藉由六軸高精度定位平台進行整合,有效完成顯示面板與超穎透鏡之精準對位,並成功實現投影虛像於現實環境中。超過20%的光學效率遠優於普遍低於1 %的傳統波導式擴增實境系統表現,同時仍能維持適合穿戴式應用的超薄外型尺寸。透過持續地製程與系統優化,本架構具備未來擴展至全彩顯示與微型驅動電路整合的潛力,為新世代近眼顯示技術提供創新可行的發展方向。 With the rapid advancement of artificial intelligence and high-speed communication technologies, augmented reality (AR) head-mounted displays are emerging as next-generation display platforms, facilitating deeper human–digital interactions. However, current AR devices still face limitations such as bulky optical architectures and poor light efficiency. This study proposes a direct near-eye (DNE) see-through AR system, which integrates a micro-light-emitting diode (µLED) display and a metasurface-based collimating lens to form virtual images without the need for additional optical components. Divergent light emitted from the µLED array is collimated by a compact metalens and projected directly into the human eye, forming a virtual image at optical infinity while preserving environmental visibility between display channels. To address the issue of metal climbing, which leads to open-circuit failures in fine-pitch passive-matrix (PM) µLEDs, the inductively coupled plasma etching process is optimized to produce oblique GaN sidewalls, significantly enhancing the fabrication reliability of high-density µLED arrays. To further overcome the pixel pitch constraints imposed by monolithic PM µLED displays, a multi-channel interleaved imaging architecture is developed. Four spatially offset channels are combined to form a high-resolution composite image, effectively reducing the pixel pitch from 12 µm to 6 µm and increasing pixel density. Experimental validation confirms the fidelity of image formation, a system-level optical efficiency exceeding 20%, and strong agreement between measured and theoretical values for field of view and pixels per degree. Furthermore, the system’s see-through characteristics and stray-light-induced artifacts are analyzed, providing valuable insights for future performance optimization. The system is integrated using a high-precision six-axis positioning stage to ensure accurate alignment between the micro-display panel and the metalens array, enabling the successful projection of augmented images into real-world environments. Experimental results demonstrate that the system achieves an optical efficiency exceeding 20%, significantly surpassing that of conventional waveguide-based AR systems, which typically exhibit efficiencies below 1%, while simultaneously maintaining an ultra-compact form factor suitable for wearable applications. With continued optimization of fabrication processes and system integration, the proposed platform holds strong potential for future extension toward full-color operation and integration with micro-scale driver circuits, offering a promising pathway for next-generation near-eye display technologies. |
| URI: | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97483 |
| DOI: | 10.6342/NTU202500971 |
| 全文授權: | 未授權 |
| 電子全文公開日期: | N/A |
| 顯示於系所單位: | 光電工程學研究所 |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 5.53 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
