Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97483
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蘇國棟zh_TW
dc.contributor.advisorGuo-Dung J. Suen
dc.contributor.author李聖暉zh_TW
dc.contributor.authorSheng-Hui Lien
dc.date.accessioned2025-06-18T16:20:46Z-
dc.date.available2025-06-19-
dc.date.copyright2025-06-18-
dc.date.issued2025-
dc.date.submitted2025-05-28-
dc.identifier.citation1. J. Carmigniani, B. Furht, M. Anisetti, P. Ceravolo, E. Damiani, and M. Ivkovic, "Augmented reality technologies, systems and applications," Multimedia Tools Appl. 51, 341-377 (2011).
2. R. Wen, W.-L. Tay, B. P. Nguyen, C.-B. Chng, and C.-K. Chui, "Hand gesture guided robot-assisted surgery based on a direct augmented reality interface," Computer methods and programs in biomedicine 116, 68-80 (2014).
3. D. Yu, J. S. Jin, S. Luo, W. Lai, and Q. Huang, "A useful visualization technique: a literature review for augmented reality and its application, limitation & future direction," Visual information communication, 311-337 (2009).
4. W. N. Charman, "The eye in focus: accommodation and presbyopia," Clinical and experimental optometry 91, 207-225 (2008).
5. E.-L. Hsiang, Z. Yang, Q. Yang, P.-C. Lai, C.-L. Lin, and S.-T. Wu, "AR/VR light engines: perspectives and challenges," Advances in Optics and Photonics 14, 783-861 (2022).
6. S. A. Cholewiak, Z. Başgöze, O. Cakmakci, D. M. Hoffman, and E. A. Cooper, "A perceptual eyebox for near-eye displays," Opt. Express 28, 38008-38028 (2020).
7. B. C. Kress, "Optical architectures for augmented-, virtual-, and mixed-reality headsets," (No Title) (2020).
8. J.-m. Cho, Y.-d. Kim, S. H. Jung, H. Shin, and T. Kim, "78‐4: Screen door effect mitigation and its quantitative evaluation in VR display," in SID symposium digest of technical papers(Wiley Online Library2017), pp. 1154-1156.
9. J. Nguyen, C. Smith, Z. Magoz, and J. Sears, "Screen door effect reduction using mechanical shifting for virtual reality displays," in Optical architectures for displays and sensing in augmented, virtual, and mixed reality (AR, VR, MR)(SPIE2020), pp. 200-210.
10. X. Wang, and H. Hua, "Depth-enhanced head-mounted light field displays based on integral imaging," Opt. Lett. 46, 985-988 (2021).
11. A. Maimone, A. Georgiou, and J. S. Kollin, "Holographic near-eye displays for virtual and augmented reality," ACM Trans. Graphics 36, 1-16 (2017).
12. S.-B. Kim, and J.-H. Park, "Optical see-through Maxwellian near-to-eye display with an enlarged eyebox," Opt. Lett. 43, 767-770 (2018).
13. H. Chen, G. Tan, and S.-T. Wu, "Ambient contrast ratio of LCDs and OLED displays," Opt. Express 25, 33643-33656 (2017).
14. C. Chang, K. Bang, G. Wetzstein, B. Lee, and L. Gao, "Toward the next-generation VR/AR optics: a review of holographic near-eye displays from a human-centric perspective," Optica 7, 1563-1578 (2020).
15. K. Pulli, "11‐2: Invited paper: Meta 2: Immersive optical‐see‐through augmented reality," in SID Symposium Digest of Technical Papers(Wiley Online Library2017), pp. 132-133.
16. C.-C. Wu, K.-T. Shih, J.-W. Huang, and H. H. Chen, "A novel birdbath eyepiece for light field AR glasses," in Optical Architectures for Displays and Sensing in Augmented, Virtual, and Mixed Reality (AR, VR, MR) IV(SPIE2023), pp. 116-123.
17. G. Westheimer, "The maxwellian view," Vision research 6, 669-682 (1966).
18. J. Xiong, Y. Li, K. Li, and S.-T. Wu, "Aberration-free pupil steerable Maxwellian display for augmented reality with cholesteric liquid crystal holographic lenses," Opt. Lett. 46, 1760-1763 (2021).
19. C. Jang, K. Bang, G. Li, and B. Lee, "Holographic near-eye display with expanded eye-box," ACM Trans. Graphics 37, 1-14 (2018).
20. D. Cheng, Y. Wang, H. Hua, and M. Talha, "Design of an optical see-through head-mounted display with a low f-number and large field of view using a freeform prism," Applied optics 48, 2655-2668 (2009).
21. C. Jang, K. Bang, M. Chae, B. Lee, and D. Lanman, "Waveguide holography for 3D augmented reality glasses," Nat. Commun. 15, 66 (2024).
22. J. Zhang, S. Liu, W. Zhang, S. Jiang, D. Ma, L. Xu, M. Yang, Q. Jiao, and X. Tan, "Design of waveguide with double layer diffractive optical elements for augmented reality displays," Sci. Rep. 14, 24310 (2024).
23. H.-Y. Wu, C.-W. Shin, and N. Kim, "Full-Color Holographic Optical Elements for Augmented Reality," Holographic Materials and Applications, 39 (2019).
24. J. Xiong, E.-L. Hsiang, Z. He, T. Zhan, and S.-T. Wu, "Augmented reality and virtual reality displays: emerging technologies and future perspectives," Light Sci. Appl. 10, 216 (2021).
25. Y. Guo, X. Ma, M. Pu, X. Li, Z. Zhao, and X. Luo, "High‐efficiency and wide‐angle beam steering based on catenary optical fields in ultrathin metalens," Adv. Opt. Mater. 6, 1800592 (2018).
26. W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, "A broadband achromatic metalens for focusing and imaging in the visible," Nature nanotechnology 13, 220-226 (2018).
27. D. Wintz, P. Genevet, A. Ambrosio, A. Woolf, and F. Capasso, "Holographic metalens for switchable focusing of surface plasmons," Nano letters 15, 3585-3589 (2015).
28. X. Zang, H. Ding, Y. Intaravanne, L. Chen, Y. Peng, J. Xie, Q. Ke, A. V. Balakin, A. P. Shkurinov, and X. Chen, "A multi‐foci metalens with polarization‐rotated focal points," Laser Photonics Rev. 13, 1900182 (2019).
29. S. Banerji, M. Meem, A. Majumder, F. G. Vasquez, B. Sensale-Rodriguez, and R. Menon, "Imaging with flat optics: metalenses or diffractive lenses?," Optica 6, 805-810 (2019).
30. W. Yang, J. Zhou, D. P. Tsai, and S. Xiao, "Advanced manufacturing of dielectric meta-devices," Photonics Insights 3, R04-R04 (2024).
31. J.-S. Park, S. Zhang, A. She, W. T. Chen, P. Lin, K. M. Yousef, J.-X. Cheng, and F. Capasso, "All-glass, large metalens at visible wavelength using deep-ultraviolet projection lithography," Nano letters 19, 8673-8682 (2019).
32. Z.-B. Fan, Y.-F. Cheng, Z.-M. Chen, X. Liu, W.-L. Lu, S.-H. Li, S.-J. Jiang, Z. Qin, and J.-W. Dong, "Integral imaging near-eye 3D display using a nanoimprint metalens array," eLight 4, 3 (2024).
33. W.-L. Hsu, Y.-C. Chen, S. P. Yeh, Q.-C. Zeng, Y.-W. Huang, and C.-M. Wang, "Review of metasurfaces and metadevices: advantages of different materials and fabrications," Nanomaterials 12, 1973 (2022).
34. W. C. Miao, F. H. Hsiao, Y. Sheng, T. Y. Lee, Y. H. Hong, C. W. Tsai, H. L. Chen, Z. Liu, C. L. Lin, and R. J. Chung, "Microdisplays: mini‐LED, micro‐OLED, and micro‐LED," Adv. Opt. Mater. 12, 2300112 (2024).
35. Z. Gao, H. Ning, R. Yao, W. Xu, W. Zou, C. Guo, D. Luo, H. Xu, and J. Xiao, "Mini-LED backlight technology progress for liquid crystal display," Crystals 12, 313 (2022).
36. J. Yu, F. Xu, T. Tao, B. Liu, B. Wang, Y. Sang, S. Liang, Y. Chen, M. Feng, and Z. Zhuang, "Gallium nitride blue/green micro-LEDs for high brightness and transparency display," IEEE Electron Device Letters 44, 281-284 (2022).
37. P. S. Martin, R. Screenivasan, and T. Sherwood, "Micro-LED for AR applications," in Light-Emitting Devices, Materials, and Applications XXVIII(SPIE2024), p. 1290602.
38. T. Wu, C.-W. Sher, Y. Lin, C.-F. Lee, S. Liang, Y. Lu, S.-W. Huang Chen, W. Guo, H.-C. Kuo, and Z. Chen, "Mini-LED and micro-LED: promising candidates for the next generation display technology," Appl. Sci. 8, 1557 (2018).
39. Y. Huang, E.-L. Hsiang, M.-Y. Deng, and S.-T. Wu, "Mini-LED, Micro-LED and OLED displays: present status and future perspectives," Light Sci. Appl. 9, 105 (2020).
40. Z. Wang, X. Shan, X. Cui, and P. Tian, "Characteristics and techniques of GaN-based micro-LEDs for application in next-generation display," J. Semicond. 41, 041606 (2020).
41. C.-C. Lin, Y.-R. Wu, H.-C. Kuo, M. S. Wong, S. P. DenBaars, S. Nakamura, A. Pandey, Z. Mi, P. Tian, and K. Ohkawa, "The micro-LED roadmap: status quo and prospects," JPhys photonics 5, 042502 (2023).
42. Y. Zhao, J. Liang, Q. Zeng, Y. Li, P. Li, K. Fan, W. Sun, J. Lv, Y. Qin, and Q. Wang, "2000 PPI silicon-based AlGaInP red micro-LED arrays fabricated via wafer bonding and epilayer lift-off," Opt. Express 29, 20217-20228 (2021).
43. Y. Li, K. Zhang, T. Zhi, T. Tao, C. Huang, J. Nie, T. Yang, Y. Zhou, Z. Huang, and Y. Lu, "3175 PPI active-matrix Micro-LED device array towards full high-definition light engine," Materials Science in Semiconductor Processing 188, 109178 (2025).
44. S.-H. Li, C.-P. Lin, Y.-H. Fang, W.-H. Kuo, M.-H. Wu, C.-L. Chao, R.-H. Horng, and G.-D. J. Su, "Performance analysis of GaN-based micro light-emitting diodes by laser lift-off process," Solid State Electronics Letters 1, 58-63 (2019).
45. J. Day, J. Li, D. Lie, C. Bradford, J. Lin, and H. Jiang, "III-Nitride full-scale high-resolution microdisplays," Appl. Phys. Lett. 99 (2011).
46. Y.-Z. Lin, C. Liu, J.-H. Zhang, Y.-K. Yuan, W. Cai, L. Zhou, M. Xu, L. Wang, W.-J. Wu, and J.-B. Peng, "Active-matrix micro-LED display driven by metal oxide TFTs using digital PWM method," IEEE Transactions on Electron Devices 68, 5656-5661 (2021).
47. C.-J. Chen, H.-C. Chen, J.-H. Liao, C.-J. Yu, and M.-C. Wu, "Fabrication and characterization of active-matrix $960\times540 $ blue GaN-based micro-LED display," IEEE Journal of Quantum Electronics 55, 1-6 (2019).
48. Z. J. Liu, W. C. Chong, K. M. Wong, K. H. Tam, and K. M. Lau, "A novel BLU-free full-color LED projector using LED on silicon micro-displays," IEEE Photonics Technology Letters 25, 2267-2270 (2013).
49. X. Ji, F. Wang, H. Zhou, K. Wang, L. Yin, and J. Zhang, "3400 PPI active-matrix monolithic blue and green micro-LED display," IEEE Transactions on Electron Devices 70, 4689-4693 (2023).
50. J. Chen, Q. Zhao, B. Yu, and U. Lemmer, "A review on quantum dot‐based color conversion layers for mini/micro‐LED displays: packaging, light management, and pixelation," Adv. Opt. Mater. 12, 2300873 (2024).
51. H.-V. Han, H.-Y. Lin, C.-C. Lin, W.-C. Chong, J.-R. Li, K.-J. Chen, P. Yu, T.-M. Chen, H.-M. Chen, and K.-M. Lau, "Resonant-enhanced full-color emission of quantum-dot-based micro LED display technology," Opt. Express 23, 32504-32515 (2015).
52. L. Hu, J. Choi, S. Hwangbo, D.-H. Kwon, B. Jang, S. Ji, J.-H. Kim, S.-K. Han, and J.-H. Ahn, "Flexible micro-LED display and its application in Gbps multi-channel visible light communication," NPJ Flexible Electronics 6, 100 (2022).
53. S. Samoilova, A. Gupta, R. Blum, and I. Landau, "NewSight Reality Inc.(NSR) novel transparent optical module for augmented reality eyewear," in Digital Optical Technologies 2019(SPIE2019), pp. 38-44.
54. B. H. Chen, P. C. Wu, V.-C. Su, Y.-C. Lai, C. H. Chu, I. C. Lee, J.-W. Chen, Y. H. Chen, Y.-C. Lan, and C.-H. Kuan, "GaN metalens for pixel-level full-color routing at visible light," Nano letters 17, 6345-6352 (2017).
55. S. Berry, S. Redmond, P. Robinson, T. Thorsen, M. Rothschild, and E. S. Boyden, "Fluidic microoptics with adjustable focusing and beam steering for single cell optogenetics," Opt. Express 25, 16825-16839 (2017).
56. F. Yang, M. Y. Shalaginov, H.-I. Lin, S. An, A. Agarwal, H. Zhang, C. Rivero-Baleine, T. Gu, and J. Hu, "Wide field-of-view metalens: a tutorial," Adv. Photonics 5, 033001-033001 (2023).
57. Z. Liu, D. Wang, H. Gao, M. Li, H. Zhou, and C. Zhang, "Metasurface-enabled augmented reality display: a review," Adv. Photonics 5, 034001-034001 (2023).
58. Q. Yang, Z. Yang, Y. F. Lan, and S. T. Wu, "Low‐diffraction transparent micro light‐emitting diode displays with optimized pixel structure," Journal of the Society for Information Display 30, 395-403 (2022).
59. M.-H. Chen, W.-N. Chou, V.-C. Su, C.-H. Kuan, and H. Y. Lin, "High-performance gallium nitride dielectric metalenses for imaging in the visible," Sci. Rep. 11, 6500 (2021).
60. L. Zhang, C. Wang, Y. Wei, Y. Lin, Y. Han, and Y. Deng, "High-efficiency achromatic metalens topologically optimized in the visible," Nanomaterials 13, 890 (2023).
61. A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, "Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays," Nat. Commun. 6, 7069 (2015).
62. E. Sakalauskas, H. Behmenburg, C. Hums, P. Schley, G. Rossbach, C. Giesen, M. Heuken, H. Kalisch, R. Jansen, and J. Bläsing, "Dielectric function and optical properties of Al-rich AlInN alloys pseudomorphically grown on GaN," Journal of Physics D: Applied Physics 43, 365102 (2010).
63. T. Shen, G. Gao, and H. Morkoc, "Recent developments in ohmic contacts for III–V compound semiconductors," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena 10, 2113-2132 (1992).
64. Y. Koide, H. Ishikawa, S. Kobayashi, S. Yamasaki, S. Nagai, J. Umezaki, M. Koike, and M. Murakami, "Dependence of electrical properties on work functions of metals contacting to p-type GaN," Applied surface science 117, 373-379 (1997).
65. Y. Yang, F. Xiong, H. Lin, S. Li, W. Yang, and X. Luo, "Evaluation of Ti/Al/Ni/Au ohmic contact to n-AlGaN with different Ti/Al thickness for deep ultraviolet light emitting diode," Solid-State Electronics 208, 108752 (2023).
66. Y.-C. Lin, S.-J. Chang, Y.-K. Su, T.-Y. Tsai, C. Chang, S.-C. Shei, C. Kuo, and S. Chen, "InGaN/GaN light emitting diodes with Ni/Au, Ni/ITO and ITO p-type contacts," Solid-State Electronics 47, 849-853 (2003).
67. W. C. Chong, W. K. Cho, Z. J. Liu, C. H. Wang, and K. M. Lau, "1700 pixels per inch (PPI) passive-matrix micro-LED display powered by ASIC," in 2014 IEEE compound semiconductor integrated circuit symposium (CSICS)(IEEE2014), pp. 1-4.
68. P.-Y. L. Lee, S. H. Li, T. Y. Hung, Y.-W. Yang, S.-H. Li, J.-J. Sun, C.-W. D. Lin, C.-W. Lu, Y.-H. Fang, and W.-H. Kuo, "A 10-bit 1280× 720 micro-LED display driver with 2-transistor pixel circuits and current-mode pulse width modulation," IEEE Solid-State Circuits Letters 5, 134-137 (2022).
69. H. Choi, C. Jeon, and M. Dawson, "Tapered sidewall dry etching process for GaN and its applications in device fabrication," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena 23, 99-102 (2005).
70. C.-L. Tsai, and C.-T. Yen, "SU-8 planarized InGaN light-emitting diodes with multipixel emission geometry for visible light communications," IEEE Photonics Journal 7, 1-9 (2014).
71. Y.-R. Chen, S.-J. Chang, and T.-J. Hsueh, "A co-planarized common cathode Micro-LED display that is produced using planarization and a copper process," IEEE Electron Device Letters (2024).
72. B. Melanson, M. Seitz, and J. Zhang, "Demonstration of trench isolated monolithic GaN μLED displays enabled by photoresist planarization," IEEE Photonics Journal 15, 1-8 (2023).
73. D. Rawal, B. Sehgal, R. Muralidharan, H. Malik, and A. Dasgupta, "Effect of BCl3 concentration and process pressure on the GaN mesa sidewalls in BCl3/Cl2 based inductively coupled plasma etching," Vacuum 86, 1844-1849 (2012).
74. S. Zhou, B. Cao, and S. Liu, "Dry etching characteristics of GaN using Cl2/BCl3 inductively coupled plasmas," Applied Surface Science 257, 905-910 (2010).
75. N. Okamoto, A. Takahashi, Y. Minoura, Y. Kumazaki, S. Ozaki, T. Ohki, N. Hara, and K. Watanabe, "Deep GaN through-substrate via etching using Cl2/BCl3 inductively coupled plasma," Journal of Vacuum Science & Technology A 38 (2020).
76. M. Usman, M. Munsif, U. Mushtaq, A.-R. Anwar, and N. Muhammad, "Green gap in GaN-based light-emitting diodes: in perspective," Critical Reviews in Solid State and Materials Sciences 46, 450-467 (2021).
77. L. T. Sharpe, A. Stockman, W. Jagla, and H. Jägle, "A luminous efficiency function, V*(λ), for daylight adaptation," Journal of vision 5, 3-3 (2005).
78. K. Li, C. Feng, and H. Choi, "Analysis of micro-lens integrated flip-chip InGaN light-emitting diodes by confocal microscopy," Appl. Phys. Lett. 104 (2014).
79. S. Zhang, S. Chen, L. Zhang, R. Zhang, Y. Gong, J. Kang, C. Chai, L. Zhao, C. Wang, and Z. Yuan, "Design and optimization of a collimating lens for ultra-small µ LED displays using FDTD simulation," Opt. Express 32, 46021-46032 (2024).
80. E. Chen, Z. Yao, Z. Fan, W. Lai, T. Liang, Q. Yan, T. Guo, and C. P. Chen, "Collimated LED array with mushroom-cap encapsulation for near-eye display projection engine," IEEE J. Sel. Top. Quantum Electron. (2024).
81. L. Wei, and S. i. Inoue, "Highly Collimated Light Emission of Deep‐Ultraviolet Light‐Emitting Diodes Using Fresnel Zone Plate Nanodiffraction Patterns," physica status solidi (a) 221, 2400081 (2024).
82. L. Meylan, and S. Susstrunk, "High dynamic range image rendering with a retinex-based adaptive filter," IEEE Transactions on image processing 15, 2820-2830 (2006).
83. P. Ledda, L. P. Santos, and A. Chalmers, "A local model of eye adaptation for high dynamic range images," in Proceedings of the 3rd international conference on Computer graphics, virtual reality, visualisation and interaction in Africa(2004), pp. 151-160.
84. L. Eisen, M. Meyklyar, M. Golub, A. A. Friesem, I. Gurwich, and V. Weiss, "Planar configuration for image projection," Applied optics 45, 4005-4011 (2006).
85. H. Boo, Y. S. Lee, H. Yang, B. Matthews, T. G. Lee, and C. W. Wong, "Metasurface wavefront control for high-performance user-natural augmented reality waveguide glasses," Sci. Rep. 12, 5832 (2022).
86. G. Biwa, A. Aoyagi, M. Doi, K. Tomoda, A. Yasuda, and H. Kadota, "Technologies for the Crystal LED display system," Journal of the Society for Information Display 29, 435-445 (2021).
87. R. S. Cok, M. Meitl, R. Rotzoll, G. Melnik, A. Fecioru, A. J. Trindade, B. Raymond, S. Bonafede, D. Gomez, and T. Moore, "Inorganic light‐emitting diode displays using micro‐transfer printing," Journal of the Society for Information Display 25, 589-609 (2017).
88. M. Kilpeläinen, and J. Häkkinen, "An effective method for measuring text legibility in XR devices reveals clear differences between three devices," Frontiers in Virtual Reality 4, 1243387 (2023)
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97483-
dc.description.abstract隨著人工智慧與高速通訊技術的迅速發展,擴增實境頭戴式顯示器正逐漸成為下一世代顯示平台,促進深化的人機互動。然而,現今擴增實境裝置仍面臨光學系統體積龐大、光效率低下的挑戰。為此,本研究提出一種直接近眼式透視擴增實境系統,僅透過整合微型發光二極體顯示器與超穎透鏡即可產生擴增影像,無須額外光學元件。微型發光二極體陣列所發出的發散光經由超薄厚度超穎透鏡準直後直接進入人眼並在無窮遠處形成虛像,同時維持通道結構之間的環境透視功能。
針對高密度被動矩陣微型發光二極體中金屬爬升所導致的開路問題,本研究優化感應耦合電漿乾蝕刻製程,製作具有傾斜側壁的氮化鎵結構,有效提升微型發光二極體陣列的製程可靠度。為了進一步突破像素間距限制,本研究提出多通道影像穿插技術將四個光軸錯位的通道整合為單一高解析影像,將像素間距由12 微米降至等效6微米以提升像素密度。實驗結果驗證影像成像品質完整性,並與理論預測之視角與每度像素數高度一致。此外,本研究亦針對系統的透視特性與由雜散光引起之影像失真進行分析,提供未來系統優化方向。
本系統藉由六軸高精度定位平台進行整合,有效完成顯示面板與超穎透鏡之精準對位,並成功實現投影虛像於現實環境中。超過20%的光學效率遠優於普遍低於1 %的傳統波導式擴增實境系統表現,同時仍能維持適合穿戴式應用的超薄外型尺寸。透過持續地製程與系統優化,本架構具備未來擴展至全彩顯示與微型驅動電路整合的潛力,為新世代近眼顯示技術提供創新可行的發展方向。
zh_TW
dc.description.abstractWith the rapid advancement of artificial intelligence and high-speed communication technologies, augmented reality (AR) head-mounted displays are emerging as next-generation display platforms, facilitating deeper human–digital interactions. However, current AR devices still face limitations such as bulky optical architectures and poor light efficiency. This study proposes a direct near-eye (DNE) see-through AR system, which integrates a micro-light-emitting diode (µLED) display and a metasurface-based collimating lens to form virtual images without the need for additional optical components. Divergent light emitted from the µLED array is collimated by a compact metalens and projected directly into the human eye, forming a virtual image at optical infinity while preserving environmental visibility between display channels.
To address the issue of metal climbing, which leads to open-circuit failures in fine-pitch passive-matrix (PM) µLEDs, the inductively coupled plasma etching process is optimized to produce oblique GaN sidewalls, significantly enhancing the fabrication reliability of high-density µLED arrays. To further overcome the pixel pitch constraints imposed by monolithic PM µLED displays, a multi-channel interleaved imaging architecture is developed. Four spatially offset channels are combined to form a high-resolution composite image, effectively reducing the pixel pitch from 12 µm to 6 µm and increasing pixel density. Experimental validation confirms the fidelity of image formation, a system-level optical efficiency exceeding 20%, and strong agreement between measured and theoretical values for field of view and pixels per degree. Furthermore, the system’s see-through characteristics and stray-light-induced artifacts are analyzed, providing valuable insights for future performance optimization.
The system is integrated using a high-precision six-axis positioning stage to ensure accurate alignment between the micro-display panel and the metalens array, enabling the successful projection of augmented images into real-world environments. Experimental results demonstrate that the system achieves an optical efficiency exceeding 20%, significantly surpassing that of conventional waveguide-based AR systems, which typically exhibit efficiencies below 1%, while simultaneously maintaining an ultra-compact form factor suitable for wearable applications. With continued optimization of fabrication processes and system integration, the proposed platform holds strong potential for future extension toward full-color operation and integration with micro-scale driver circuits, offering a promising pathway for next-generation near-eye display technologies.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-06-18T16:20:46Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-06-18T16:20:46Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iii
ABSTRACT iv
CONTENTS vi
LIST OF FIGURES ix
LIST OF TABLES xv
Chapter 1 Introduction 1
1.1 Augmented Reality Displays 1
1.2 Human-Centric Considerations in AR Displays 2
1.3 Representative AR System Architectures 8
1.3.1 Challenges and Tradeoffs 10
1.4 Metalenses 11
1.5 Micro Light-Emitting Diodes 13
1.5.1 Microdisplays for AR Applications 15
1.6 Motivation 18
Chapter 2 System Architecture and Optical Components 21
2.1 Direct Near-Eye See-Through System 21
2.1.1 Multi-Channel System and Interleaved Imaging 22
2.1.2 Key Design Considerations 27
2.1.3 System Tradeoffs and Limitations 29
2.2 Metalens Modeling and Implementation 30
2.2.1 Metalens Simulation 31
2.2.2 Metalens Fabrication 35
Chapter 3 µLED Light Engine for the Proposed AR System 37
3.1 Emission Mechanisms of LEDs 38
3.2 Fundamental Processes of GaN-based LEDs 39
3.3 Driving Strategy 43
3.4 Optimized Structures 47
3.4.1 Profile Optimization Using Oblique-Sidewall GaN Structures 48
3.4.2 Electrical Isolation Enhancement via Common n-GaN Configuration 50
3.4.3 Crosstalk Suppression through Integration of Black Matrix 51
3.5 Detailed Fabrication Process of the PM µLED Arrays. 53
Chapter 4 Experimental Results and System Demonstration 57
4.1 Fabrication and Characterization of Metalenses 57
4.1.1 GaN-Based Metalens for 532 nm Operation 58
4.1.2 TiO₂-Based Metalens for 450 nm Operation 61
4.2 Fabrication and Characterization of the µLEDs 62
4.3 System Integration 65
4.3.1 Frame-Adhesive Bonding 66
4.3.2 Six-Axis Alignment System 67
4.3.3 See-Through Performance Analysis 69
4.4 Imaging Results and System Performance Analysis 73
4.4.1 Augmented Imaging Formation for Single and Multiple Channels 73
4.4.2 Measured Optical and Imaging Performance 79
4.4.3 Analysis of Stray-Light-Induced Imaging Artifacts 83
Chapter 5 Future Works 87
Chapter 6 Conclusion 92
REFERENCES 94
-
dc.language.isoen-
dc.subject被動矩陣驅動zh_TW
dc.subject擴增實境系統zh_TW
dc.subject微型發光二極體zh_TW
dc.subject超穎透鏡zh_TW
dc.subject近眼式顯示器zh_TW
dc.subject多通道成像zh_TW
dc.subject影像穿插zh_TW
dc.subjectnear-eye displayen
dc.subjectmulti-channel imagingen
dc.subjectinterleaved imageen
dc.subjectpassive-matrix drivingen
dc.subjectmetalensen
dc.subjectaugmented reality systemen
dc.subjectmicro-light-emitting diodeen
dc.title整合超穎透鏡與微型發光二極體之直接近眼式擴增實境系統開發zh_TW
dc.titleDevelopment of Direct Near-Eye Augmented Reality System with Metalens-Integrated Micro-LEDsen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree博士-
dc.contributor.oralexamcommittee黃定洧;林建中;樊俊遠;方彥翔zh_TW
dc.contributor.oralexamcommitteeDing-Wei Huang;Chien-Chung Lin;Chun-Yuan Fan;Yen-Hsiang Fangen
dc.subject.keyword擴增實境系統,微型發光二極體,超穎透鏡,近眼式顯示器,多通道成像,影像穿插,被動矩陣驅動,zh_TW
dc.subject.keywordaugmented reality system,micro-light-emitting diode,metalens,near-eye display,multi-channel imaging,interleaved image,passive-matrix driving,en
dc.relation.page100-
dc.identifier.doi10.6342/NTU202500971-
dc.rights.note未授權-
dc.date.accepted2025-05-28-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept光電工程學研究所-
dc.date.embargo-liftN/A-
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
5.53 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved