請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97458完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 呂良鴻 | zh_TW |
| dc.contributor.advisor | Liang-Hung Lu | en |
| dc.contributor.author | 連紹崴 | zh_TW |
| dc.contributor.author | Shao-Wei Lien | en |
| dc.date.accessioned | 2025-06-18T16:14:01Z | - |
| dc.date.available | 2025-06-19 | - |
| dc.date.copyright | 2025-06-18 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-06-12 | - |
| dc.identifier.citation | [1] K. Gharibdoust, A. Tajalli and Y. Leblebici, “Hybrid NRZ/Multi-Tone Serial Data Transceiver for Multi-Drop Memory Interfaces,” IEEE Journal of Solid-State Circuits, vol. 50, no. 12, pp. 3133–3144, 2015.
[2] H. -J. Chi et al., “A Single-Loop SS-LMS Algorithm With Single-Ended Integrating DFE Receiver for Multi-Drop DRAM Interface,” IEEE Journal of Solid-State Circuits, vol. 46, no. 9, pp. 2053–2063, 2011. [3] Y. Zhao, R. Gruenheid, G. Bauch, T. Reuschel and C. Schuster, “Redundant and Non-Redundant Spectrum Shaping Schemes for Reflection-Limited Chip-to-Chip Communication,” SCC 2017; 11th International ITG Conference on Systems, Communications and Coding, pp. 1–6, 2017. [4] F. G. Jenks, P. D. Morgan and C. S. Warren, “Use of Four-Level Phase Modulation for Digital Mobile Radio,” IEEE Transactions on Electromagnetic Compatibility, vol. EMC-14, no. 4, pp. 113–128, 1972. [5] H. -W. Lim et al., “A 5.8-Gb/s Adaptive Integrating Duobinary DFE Receiver for Multi-Drop Memory Interface,” IEEE Journal of Solid-State Circuits, vol. 52, no. 6, pp. 1563–1575, 2017. [6] S. Lee et al., “A 7.8 Gb/s/pin, 1.96 pJ/b Transceiver With Phase-Difference-Modulation Signaling for Highly Reflective Interconnects,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 67, no. 6, pp. 2114–2127, 2020. [7] F. Aryanfar and A. Amirkhany, “A Low-Cost Resonance Mitigation Technique for Multidrop Memory Interfaces,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 57, no. 5, pp. 339–342, 2010. [8] S. -J. Huang, Y. -C. Yeh, H. Wang, P. -N. Chen and J. Lee, “W-Band BPSK and QPSK Transceivers With Costas-Loop Carrier Recovery in 65-nm CMOS Technology,” IEEE Journal of Solid-State Circuits, vol. 46, no. 12, pp. 3033–3046, 2011. [9] W. -H. Cho et al., “A 5.4-mW 4-Gb/s 5-Band QPSK Transceiver for Frequency-Division Multiplexing Memory Interface,” IEEE Custom Integrated Circuits Conference, pp. 1–4, 2015. [10] G. Kim, T. Barailler, C. Cao, K. Gharibdoust and Y. Leblebici, “Design and Modeling of Serial Data Transceiver Architecture by Employing Multi-Tone Single-Sideband Signaling Scheme,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 64, no. 12, pp. 3192–3201, 2017. [11] M. Jalalifar and G. -S. Byun, “A 14.4Gb/s/pin 230fJ/b/pin/mm Multi-level RFInterconnect for Global Network-on-Chip Communication,” IEEE Asian Solid-State Circuits Conference, pp. 97–100, 2016. [12] S. -W. Tam, E. Socher, A. Wong and M. -C. F. Chang, “A Simultaneous Tri-Band On-Chip RF-Interconnect for Future Network-on-Chip,” Symposium on VLSI Circuits, pp. 90–91, 2009. [13] G. -S. Byun, Y. Kim, J. Kim, S. -W. Tam and M. -C. F. Chang, “An Energy-Efficient and High-Speed Mobile Memory I/O Interface Using Simultaneous Bi-Directional Dual (Base+RF)-Band Signaling,” IEEE Journal of Solid-State Circuits, vol. 47, no. 1, pp. 117–130, 2012. [14] Y. -P. Lin, P. -J. Peng, C. -C. Lu, P. -T. Shen, Y. -C. Jao and P. -H. Hsieh, “A 2.16pJ/b 112Gb/s PAM-4 Transceiver With Time-Interleaved 2b/3b ADCs and Unbalanced Baud-Rate CDR for XSR Applications in 28nm CMOS,” IEEE International Solid-State Circuits Conference, pp. 136–138, 2024. [15] G. Kim, K. Gharibdoust, A. Tajalli and Y. Leblebici, “A Digital Spectrum Shaping Signaling Serial-Data Transceiver With Crosstalk and ISI Reduction Property in Multidrop Interfaces,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 63, no. 12, pp. 1126–1130, 2016. [16] Y. Du et al., “A 16-Gb/s 14.7-mW Tri-Band Cognitive Serial Link Transmitter With Forwarded Clock to Enable PAM-16/256-QAM and Channel Response Detection,” IEEE Journal of Solid-State Circuits, vol. 52, no. 4, pp. 1111–1122, 2017. [17] K. Gharibdoust, A. Tajalli and Y. Leblebici, “A 4×9 Gb/s 1 pJ/b Hybrid NRZ/Multi-Tone I/O With Crosstalk and ISI Reduction for Dense Interconnects,” IEEE Journal of Solid-State Circuits, vol. 51, no. 4, pp. 992–1002, 2016. [18] K. Gharibdoust, A. Tajalli and Y. Leblebici, “A 4×9 Gb/s 1 pJ/b NRZ/Multi-Tone Serial-Data Transceiver With Crosstalk Reduction Architecture for Multi-Drop Memory Interfaces in 40nm CMOS,” Symposium on VLSI Circuits, pp. C180–C181, 2015. [19] K. Gharibdoust, A. Tajalli and Y. Leblebici, “A 7.5mW 7.5Gb/s Mixed NRZ/Multi-Tone Serial-Data Transceiver for Multi-Drop Memory Interfaces in 40nm CMOS,” IEEE International Solid-State Circuits Conference - Digest of Technical Papers, pp. 1–3, 2015. [20] W. -Y. Shin et al., “A 4.8Gb/s Impedance-Matched Bidirectional Multi-Drop Transceiver for High-Capacity Memory Interface,” IEEE International Solid-State Circuits Conference, pp. 494–496, 2011. [21] J. Lee, M. -S. Chen and H. -D. Wang, “Design and Comparison of Three 20-Gb/s Backplane Transceivers for Duobinary, PAM4, and NRZ Data,” IEEE Journal of Solid-State Circuits, vol. 43, no. 9, pp. 2120–2133, 2008. [22] K. Yamaguchi et al., “12 Gb/s Duobinary Signaling With /spl times/2 Oversampled Edge Equalization,” IEEE International Solid-State Circuits Conference - Digest of Technical Papers, vol. 1, pp. 70–585, 2005. [23] M. Zhou, M. R. Yuce and W. Liu, “A Non-Coherent DPSK Data Receiver With Interference Cancellation for Dual-Band Transcutaneous Telemetries,” IEEE Journal of Solid-State Circuits, vol. 43, no. 9, pp. 2003–2012, 2008. [24] P. Quinlan et al., “A Multimode 0.3-200-kb/s Transceiver for the 433/868/915-MHz Bands in 0.25-/spl mu/m CMOS,” IEEE Journal of Solid-State Circuits, vol. 39, no. 12, pp. 2297–2310, 2004. [25] R. Ho et al., “High-Speed and Low-Energy Capacitively-Driven On-Chip Wires,” IEEE International Solid-State Circuits Conference - Digest of Technical Papers, pp. 412–612, 2007. [26] E. A. M. Klumperink, S. M. Louwsma, G. J. M. Wienk and B. Nauta, “A CMOS Switched Transconductor Mixer,” IEEE Journal of Solid-State Circuits, vol. 39, no. 8, pp. 1231–1240, 2004. [27] S. Kim, J. Sim, H. Park, Y. Choi, J. Choi and C. Kim, “A 15-Gb/s Single-Ended NRZ Receiver Using Self-Referenced Technique With 1-Tap Latched DFE for DRAM Interfaces,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 70, no. 1, pp. 101–105, 2023. [28] H. Kang et al., “A 13-Gb/s Single-Ended NRZ Receiver With 1-Sample Per 2-UI Using Data Edge Sampling for Memory Interfaces,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 71, no. 7, pp. 3328–3332, 2024. [29] J. Choi et al., “A 16-Gb/s NRZ Receiver With 0.0019-pJ/bit/dB 1-Tap Charge-Redistribution DFE,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 70, no. 3, pp. 904–908, 2023. [30] W. -j. Choe, B. -j. Lee, J. Kim, D. -k. Jeong and G. Kim, “A 3-mW, 270-Mbps, Clock-Edge Modulated Serial Link for Mobile Displays,” IEEE Asian Solid-State Circuits Conference, pp. 45–48, 2005. [31] J. Lee, M. -S. Chen and H. -D. Wang, “Design and Comparison of Three 20-Gb/s Backplane Transceivers for Duobinary, PAM4, and NRZ Data,” IEEE Journal of Solid-State Circuits, vol. 43, no. 9, pp. 2120–2133, 2008. [32] J. Lee, M. -S. Chen and H. -D. Wang, “A 20Gb/s Duobinary Transceiver in 90nm CMOS,” IEEE International Solid-State Circuits Conference - Digest of Technical Papers, pp. 102–599, 2008. [33] B. Razavi, Design of Analog CMOS Integrated Circuits. New York: McGraw-Hill, 2016. [34] Simon Haykin, Michael Moher, Communication Systems. New York: Wiley, 2010. [35] Alan V. Oppenheim, Alan S. Willsky, S. Hamid, Signals & Systems. New Jersey: Prentice Hall, 1996. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97458 | - |
| dc.description.abstract | 現代記憶體介面多採用點對點傳輸以支援高速資料傳輸需求,但也伴隨接腳數量與功耗增加等挑戰。相較之下,多點(multi-drop)記憶體通道具備成本與擴充性優勢,然而其頻寬與訊號完整性問題使設計變得更加困難。
本研究提出一種基於QPSK調變的收發器架構,從電路上取代了接收端濾波器中的大電容元件,以降低硬體複雜度與晶片面積。該架構目標運作於1.5 GHz時脈與總計1.5 Gbps資料速率,應用於高效率記憶體介面,以兼顧接收端簡化與頻譜效率提升。雖然實作版本尚未於預定操作條件下成功驗證,但於降頻操作下已完成功能正確性測試,顯示其在簡化接收器設計方面的可行性。 所提出的收發機架構以TSMC 0.18 μm CMOS製程實現,在1 GHz時脈與總計1 Gbps的資料速率下,成功完成QPSK訊號的傳送與解調,整體功耗為14.62 mW。其中接收端功耗僅為3.02 mW,晶片面積為0.0051 mm2。 此成果可為未來高整合度、多通道記憶體系統提供設計參考,並具潛力透過後續電路優化實現更高速之操作目標。 | zh_TW |
| dc.description.abstract | Modern memory interfaces typically adopt point-to-point topologies to support high data rates, but this approach leads to increased pin count and power consumption. In contrast, multi-drop memory channels offer advantages in cost and scalability; however, their bandwidth and signal integrity issues complicate the design significantly.
This work proposes a QPSK-based transceiver architecture that replaces large capacitors in the receiver's filter circuit, thereby reducing hardware complexity and chip area. This architecture aims to operate at a 1.5 GHz clock frequency with a aggregrate data rate of 1.5 Gbps, targeting high-efficiency memory interfaces to balance receiver simplification and spectral efficiency enhancement. Although the implemented version has not yet been successfully verified under the intended operating conditions, its behavioral accuracy has been confirmed under reduced clock frequency operation, demonstrating its feasibility in simplifying receiver design. The proposed transceiver was implemented in TSMC 0.18 μm CMOS and successfully transmitted and demodulated QPSK signals at 1 GHz clock and 1 Gbps aggregrate data rate, with a power consumption of 14.62 mW. The receiver core consumes only 3.02 mW and occupies 0.0051 mm2 of silicon area. The results provide valuable insights for the development of future high-density, multi-channel memory systems, and the design shows promise for future enhancement toward higher-speed operation. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-06-18T16:14:01Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-06-18T16:14:01Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 iii 摘要 v Abstract vii Contents ix List of Figures xiii List of Tables xvii Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Thesis Organization 3 Chapter 2 Background 5 2.1 Introduction to Digital Modulation Techniques 5 2.1.1 Fundamentals of Digital Modulation 5 2.1.2 Concept and Application of Constellation Diagrams 7 2.2 Different Types of Digital Modulation 10 2.2.1 Amplitude-Shift Keying (ASK) 10 2.2.2 Frequency-Shift Keying (FSK) 11 2.2.3 Phase-Shift Keying (PSK) 13 2.3 Design Goal 15 Chapter 3 QPSK Transmission 19 3.1 Limitations of Existing Architecture 19 3.2 Improvements 23 3.2.1 Precoder Design 23 3.2.2 Optimized Receiver Architecture for Area Reduction 29 3.3 System Architecture 33 3.3.1 Transmitter 33 3.3.1.1 Precoder 33 3.3.1.2 PSK Modulator and Output Driver 33 3.3.2 Receiver 35 3.3.2.1 Comparator and Phase Detector 35 3.3.2.2 1-Bit Delay 37 3.3.2.3 XORs and Decoder 38 3.4 Measurement 42 3.4.1 Measurement Environment 43 3.4.2 Measurement Result 44 3.4.2.1 Bit Error Rate 44 3.4.2.2 Power 45 3.5 Discussion and Summary 47 3.5.1 Discussion 47 3.5.2 Summary 48 Chapter 4 QPSK Transmission with PCB Channel 49 4.1 System Architecture 49 4.1.1 Transmitter 49 4.1.1.1 Precoder 50 4.1.1.2 Clock Control 50 4.1.1.3 Clock Switch 50 4.1.1.4 Output Driver 51 4.1.2 Receiver 53 4.2 PCB Design 54 4.3 Measurement 59 4.3.1 Measurement Environment 60 4.3.2 Measurement Result 61 4.3.2.1 PCB Channel Response 61 4.3.2.2 Waveform and Eye Diagram 61 4.3.2.3 Bit Error Rate 63 4.3.2.4 Spectrum 65 4.3.2.5 Bathtub Curve 67 4.3.2.6 Power 68 4.4 Discussion and Summary 70 4.4.1 Discussion 70 4.4.1.1 Circuit Operation 70 4.4.1.2 PCB Channel Response 71 4.4.2 Summary 73 Chapter 5 Conclusion 75 References 77 | - |
| dc.language.iso | en | - |
| dc.subject | 點對點通道 | zh_TW |
| dc.subject | 多重分接通道 | zh_TW |
| dc.subject | 緊湊面積 | zh_TW |
| dc.subject | 低功耗 | zh_TW |
| dc.subject | 正交相移鍵移調變 | zh_TW |
| dc.subject | multi-drop channel | en |
| dc.subject | QPSK | en |
| dc.subject | low power | en |
| dc.subject | compact area | en |
| dc.subject | point-to-point channel | en |
| dc.title | 一種以CMOS製程實現的緊湊無電容QPSK收發機 | zh_TW |
| dc.title | A CMOS Compact Capacitor-less QPSK Transceiver | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 林宗賢;陳巍仁 | zh_TW |
| dc.contributor.oralexamcommittee | Tsung-Hsien Lin;Wei-Zen Chen | en |
| dc.subject.keyword | 正交相移鍵移調變,低功耗,緊湊面積,點對點通道,多重分接通道, | zh_TW |
| dc.subject.keyword | QPSK,low power,compact area,point-to-point channel,multi-drop channel, | en |
| dc.relation.page | 80 | - |
| dc.identifier.doi | 10.6342/NTU202501061 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-06-12 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 電子工程學研究所 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 電子工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 46.93 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
