請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97427| 標題: | 考慮串擾效應之記憶體讀寫時序校準機制 Crosstalk-Aware Read/Write Centering for Memory Training |
| 作者: | 陳美全 Mei-Chuan Chen |
| 指導教授: | 黃俊郎 JIUN-LANG HUANG |
| 關鍵字: | 記憶體訓練,Crosstalk,Read/Write Centering,時序校準,位元錯誤率 (BER),資料對齊,延遲補償, Memory Training,Crosstalk,Read/Write Centering,Timing Calibration,Bit Error Rate (BER),Data Alignment,Delay Compensation, |
| 出版年 : | 2025 |
| 學位: | 碩士 |
| 摘要: | 記憶體資料傳輸速率的不斷提升,高頻高速訊號所面臨的干擾問題越來越嚴重,尤以 Crosstalk(串擾)所造成的時序錯誤與符號邊界壓縮最為關鍵。傳統的記憶體訓練方法──Read/Write Centering──在進行 DQ 與 DQS 間的時序校準時,並未考慮鄰近訊號線的干擾,容易在實際操作中出現誤判,進而降低資料擷取的準確性與可靠性。
本研究提出一種「具 Crosstalk 感知能力的 Read/Write Centering 方法」,將最壞情境下的串擾影響納入訓練過程之中,透過分別執行 Speed-up 與 Slow-down Pattern 模擬,分析 BER(Bit Error Rate)分布並判斷可容許的 Timing Margin,進而推算出在 Crosstalk 條件下仍能穩定運作的最佳延遲設定值。為減少訓練時間,本研究亦導入群組化並行訓練的設計,有效降低訓練負擔。 本研究以 130 nm 製程、三條互連線構成的記憶體架構作為模擬平台,考慮不同的耦合電容值與三維時序偏移條件,總計模擬 1000 組隨機實例。結果顯示,與傳統 Read/Write Centering 相比,所提方法在 DQ2 通道上可提升 44.7% 的預測準確率,並有效減少 False Positive 與 False Negative 的發生,大幅提升整體校準的可信度與穩定性。由此可證明,所提方法不僅具備實務應用潛力,亦為未來高頻記憶體訓練流程提供一可擴展且具彈性的解決方案。 As modern memory systems continue to push data transfer speeds beyond multi-gigabit rates, signal integrity challenges such as crosstalk, skew, and timing jitter have become increasingly significant. Among these, crosstalk-induced distortions—particularly those that compress symbol widths or introduce asymmetric phase shifts—pose a serious threat to timing calibration accuracy. Conventional memory training techniques, such as Read/Write Centering, primarily focus on aligning data (DQ) and strobe (DQS) signals based on error-free regions, but typically overlook crosstalk interference from neighboring signals. In this thesis, we propose a Crosstalk-Aware Read/Write Centering method that actively incorporates worst-case crosstalk scenarios into the memory training process. The method leverages bit error rate (BER) profiling under both speed-up and slow-down crosstalk patterns to evaluate timing margin degradation, and subsequently identifies robust delay settings that ensure successful data sampling even under aggressive interference. A group-based calibration scheme is further introduced to accelerate training and reduce overall computational cost. The proposed approach is validated using a 130nm process model and a three-wire interconnect configuration, simulating over 1000 instances with varied skew and coupling capacitance values. Experimental results show a 44.7% improvement in prediction accuracy for DQ2 compared to conventional methods, and a significant reduction in false positive and false negative classifications. These findings confirm that the proposed method not only enhances the robustness of DDR timing calibration under crosstalk but also provides a scalable and flexible foundation for future high-speed memory interface designs. |
| URI: | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97427 |
| DOI: | 10.6342/NTU202500944 |
| 全文授權: | 同意授權(全球公開) |
| 電子全文公開日期: | 2030-05-18 |
| 顯示於系所單位: | 電子工程學研究所 |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 此日期後於網路公開 2030-05-18 | 2.98 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
