請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97427完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃俊郎 | zh_TW |
| dc.contributor.advisor | JIUN-LANG HUANG | en |
| dc.contributor.author | 陳美全 | zh_TW |
| dc.contributor.author | Mei-Chuan Chen | en |
| dc.date.accessioned | 2025-06-05T16:13:33Z | - |
| dc.date.available | 2025-06-06 | - |
| dc.date.copyright | 2025-06-05 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-05-19 | - |
| dc.identifier.citation | [1] S. Searles, T. Askar, T. Hamilton, and O. Housty, "Method for training DRAM controller timing delays." U.S. Patent 7,924,637, 2011.
[2] G. Ying, Z. Qian, X. Zhang, Y. Zhan, “Method and apparatus for high bandwidth memory read and write data path training.” U.S. Patent 10,067,689, 2018. [3] G. Ying, Z. Qian, L. Huo, Y. Zhan, “Methods and systems for implementing high bandwidth memory command address bus training.” U.S. Patent 10,203,875, 2019. [4] S. Venkataraman, P. Garapally, “Per-bit de-skew mechanism for a memory interface controller.” U.S. Patent 8,081,527, 2011. [5] V. Pasca, L. Anghel et al., “Configurable Thru-Silicon-Via Interconnect Built-in Self-Test and Diagnosis” 2011 12th Latin American Test Workshop (LATW) Zhan, “Methods and systems for implementing high bandwidth memory command address bus training.” U.S. Patent 10,203,875, 2019. [6] Po-Jen Yen. “Improved Efficiency Crosstalk Test and Repair Solution for Inter-Die Interconnects.” Master’s thesis, National Taiwan University, 2024. [7] Intel Corporation, "Intel® MAX® 10 General Purpose I/O User Guide," Intel Corp., 2022. [8] Texas Instruments, "Keystone Architecture DDR3 Memory Controller User's Guide," Texas Instruments Inc., 2015. [9] N. Weste, D. Harris, CMOS VLSI Design A Circuits and Systems Perspective, pp.213, 2011 4th . [10] M. Takahashi, M. Hashimoto, and H. Onodera, “Crosstalk noise estimation for generic RC trees,” in Proc. ICCD, 2001, pp. 110–116. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97427 | - |
| dc.description.abstract | 記憶體資料傳輸速率的不斷提升,高頻高速訊號所面臨的干擾問題越來越嚴重,尤以 Crosstalk(串擾)所造成的時序錯誤與符號邊界壓縮最為關鍵。傳統的記憶體訓練方法──Read/Write Centering──在進行 DQ 與 DQS 間的時序校準時,並未考慮鄰近訊號線的干擾,容易在實際操作中出現誤判,進而降低資料擷取的準確性與可靠性。
本研究提出一種「具 Crosstalk 感知能力的 Read/Write Centering 方法」,將最壞情境下的串擾影響納入訓練過程之中,透過分別執行 Speed-up 與 Slow-down Pattern 模擬,分析 BER(Bit Error Rate)分布並判斷可容許的 Timing Margin,進而推算出在 Crosstalk 條件下仍能穩定運作的最佳延遲設定值。為減少訓練時間,本研究亦導入群組化並行訓練的設計,有效降低訓練負擔。 本研究以 130 nm 製程、三條互連線構成的記憶體架構作為模擬平台,考慮不同的耦合電容值與三維時序偏移條件,總計模擬 1000 組隨機實例。結果顯示,與傳統 Read/Write Centering 相比,所提方法在 DQ2 通道上可提升 44.7% 的預測準確率,並有效減少 False Positive 與 False Negative 的發生,大幅提升整體校準的可信度與穩定性。由此可證明,所提方法不僅具備實務應用潛力,亦為未來高頻記憶體訓練流程提供一可擴展且具彈性的解決方案。 | zh_TW |
| dc.description.abstract | As modern memory systems continue to push data transfer speeds beyond multi-gigabit rates, signal integrity challenges such as crosstalk, skew, and timing jitter have become increasingly significant. Among these, crosstalk-induced distortions—particularly those that compress symbol widths or introduce asymmetric phase shifts—pose a serious threat to timing calibration accuracy. Conventional memory training techniques, such as Read/Write Centering, primarily focus on aligning data (DQ) and strobe (DQS) signals based on error-free regions, but typically overlook crosstalk interference from neighboring signals.
In this thesis, we propose a Crosstalk-Aware Read/Write Centering method that actively incorporates worst-case crosstalk scenarios into the memory training process. The method leverages bit error rate (BER) profiling under both speed-up and slow-down crosstalk patterns to evaluate timing margin degradation, and subsequently identifies robust delay settings that ensure successful data sampling even under aggressive interference. A group-based calibration scheme is further introduced to accelerate training and reduce overall computational cost. The proposed approach is validated using a 130nm process model and a three-wire interconnect configuration, simulating over 1000 instances with varied skew and coupling capacitance values. Experimental results show a 44.7% improvement in prediction accuracy for DQ2 compared to conventional methods, and a significant reduction in false positive and false negative classifications. These findings confirm that the proposed method not only enhances the robustness of DDR timing calibration under crosstalk but also provides a scalable and flexible foundation for future high-speed memory interface designs. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-06-05T16:13:33Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-06-05T16:13:33Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 i
摘要 ii Abstract iii Contents v List of Figures vii Chapter 1 Introduction 1 1.1 Overview of Memory I/O Specifications 1 1.2 Importance of Memory Training 1 1.3 The Role of Read/Write Centering in Enhancing Signal Integrity under Crosstalk 2 1.4 Related Work 3 1.5 Motivation 4 1.6 Contribution 5 1.7 Organization of Thesis 6 Chapter 2 Preliminaries 8 2.1 Overview of DDR Interface and Training 8 2.2 Key Timing Concepts and Signal Integrity Issues 11 2.2.1 Symbol and Unit Interval 11 2.2.2 Timing Margin 12 2.2.3 Crosstalk and Intrinsic Skew 13 2.3 DDR Training Categories and Calibration Flow 14 2.3.1 One-to-One Timing Adjustment 15 2.3.2 Many-to-One Timing Adjustment 15 2.4 Conventional Read/Write Centering 16 2.4.1 Calibration Flow 16 2.4.2 Limitations of Conventional Centering 18 2.5 Crosstalk Fault Models 19 2.5.1 Maximum Aggressor Fault (MAF) Model 19 2.5.2 𝐾ᵗʰ Aggressor Fault (KAF) Model 20 2.6 Training Sequence for DQ Calibration 21 Chapter 3 Proposed Crosstalk-Aware Read/Write Centering Method 23 3.1 Overview of the Proposed Method 23 3.2 Initial Centering without Crosstalk 25 3.3 Crosstalk-Aware Calibration under Worst-Case Patterns 27 3.4 Simultaneous Multi-DQ Training 31 3.5 Implementation Considerations and Limitation 33 Chapter 4 Experimental Results 36 4.1 Experiment Objective 36 4.2 Experimental Setup 36 4.2.1 3-Wire Crosstalk RC Model 37 4.2.2 Input Stimulus and Pattern Design 38 4.3 Experimental Results 41 4.3.1 Overall Accuracy and Pass Rate Results 41 4.3.2 TP/TN/FP/FN Case Analysis 42 4.3.3 Scatter Plot and Margin Distribution 52 4.3.4 Special Case Studies 53 Chapter 5 Conclusion and Future Work 59 5.1 Conclusion 59 5.2 Future Work 60 References 62 | - |
| dc.language.iso | en | - |
| dc.subject | Crosstalk | zh_TW |
| dc.subject | Read/Write Centering | zh_TW |
| dc.subject | 時序校準 | zh_TW |
| dc.subject | 位元錯誤率 (BER) | zh_TW |
| dc.subject | 資料對齊 | zh_TW |
| dc.subject | 延遲補償 | zh_TW |
| dc.subject | 記憶體訓練 | zh_TW |
| dc.subject | Delay Compensation | en |
| dc.subject | Memory Training | en |
| dc.subject | Crosstalk | en |
| dc.subject | Read/Write Centering | en |
| dc.subject | Timing Calibration | en |
| dc.subject | Bit Error Rate (BER) | en |
| dc.subject | Data Alignment | en |
| dc.title | 考慮串擾效應之記憶體讀寫時序校準機制 | zh_TW |
| dc.title | Crosstalk-Aware Read/Write Centering for Memory Training | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 黃炫倫;呂學坤;張益興 | zh_TW |
| dc.contributor.oralexamcommittee | HSUAN-LUN HUANG;HSUEH-KUN LU;YI-HSING CHANG | en |
| dc.subject.keyword | 記憶體訓練,Crosstalk,Read/Write Centering,時序校準,位元錯誤率 (BER),資料對齊,延遲補償, | zh_TW |
| dc.subject.keyword | Memory Training,Crosstalk,Read/Write Centering,Timing Calibration,Bit Error Rate (BER),Data Alignment,Delay Compensation, | en |
| dc.relation.page | 62 | - |
| dc.identifier.doi | 10.6342/NTU202500944 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-05-20 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 電子工程學研究所 | - |
| dc.date.embargo-lift | 2030-05-18 | - |
| 顯示於系所單位: | 電子工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 此日期後於網路公開 2030-05-18 | 2.98 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
