Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97276
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳凱風zh_TW
dc.contributor.advisorKai-Feng Chenen
dc.contributor.author徐振華zh_TW
dc.contributor.authorChen-Hua Hsuen
dc.date.accessioned2025-04-02T16:15:12Z-
dc.date.available2025-04-03-
dc.date.copyright2025-04-02-
dc.date.issued2025-
dc.date.submitted2025-03-25-
dc.identifier.citation[1] Lyndon Evans and Philip Bryant. “LHC Machine”. In: Journal of Instrumentation3.08 (2008), S08001. DOI: 10.1088/1748-0221/3/08/S08001.
[2] The Atlas Collaboration et al. “The ATLAS Experiment at the CERN Large HadronCollider”. en. In: Journal of Instrumentation 3.08 (Aug. 2008), S08003–S08003. ISSN:1748-0221. DOI: 10.1088/1748-0221/3/08/S08003.
[3] The CMS Collaboration et al. “The CMS experiment at the CERN LHC”. In:Journal of Instrumentation 3.08 (2008), S08004. DOI: 10.1088/1748- 0221/3/08/S08004.
[4] G Apollinari et al. High Luminosity Large Hadron Collider HL-LHC. en. 2015. DOI:10.5170/CERN-2015-005.1.
[5] S. Agostinelli et al. “Geant4—a simulation toolkit”. In: Nuclear Instruments andMethods in Physics Research Section A: Accelerators,Spectrometers, Detectors and Associated Equipment 506.3 (2003), pp. 250–303. ISSN: 0168-9002. DOI: https : //doi.org/10.1016/S0168-9002(03)01368-8.
[6] Y. Song and S. Ermon. “Score-Based Generative Modeling through Stochastic Differential Equations”. In: arXiv preprint arXiv:2011.13456 (2020).
[7] V. Mikuni and B. Nachman. “CaloScore: A Conditional Generative Model for Calorimeter Shower Simulation”. In: arXiv preprint arXiv:2106.00792 (2021).
[8] I. Goodfellow et al. “Generative Adversarial Networks”. In: arXiv preprint arXiv:1406.2661(2014).
[9] D. P. Kingma and M. Welling. “Auto-Encoding Variational Bayes”. In: arXiv preprint arXiv:1312.6114 (2013).
[10] L. Dinh, J. Sohl-Dickstein, and S. Bengio. “Density Estimation Using Real NVP”. In: arXiv preprint arXiv:1605.08803 (2016).
[11] M. Paganini, L. de Oliveira, and B. Nachman. “CaloGAN: Simulating 3D High Energy Particle Showers in Multi-Layer Electromagnetic Calorimeters with Generative Adversarial Networks”. In: Physical Review D 97.1 (2018), p. 014021. DOI:10.1103/PhysRevD.97.014021.
[12] ATLAS Collaboration. Fast Calorimeter Simulation with Generative Adversarial Networks. Tech. rep. ATL-SOFT-PUB-2018-001, 2018.
[13] S. Verheyen and B. Krislock. “CaloFlow: Fast and Accurate Generation of Calorimeter Showers with Normalizing Flows”. In: arXiv preprint arXiv:2106.05285 (2021).doi:10.6342/NTU20250079090
[14] S. Verheyen and B. Krislock. “CaloFlow II: Even Faster and Still Accurate Generation of Calorimeter Showers with Normalizing Flows”. In: arXiv preprint arXiv:2107.13684(2021).
[15] CMS Collaboration. The CMS High Granularity Calorimeter for HL-LHC Upgrade.Tech. rep. CERN-LHCC-2017-023, 2017.
[16] CMS Collaboration. “Design and Performance of the CMS Beam Radiation, Instrumentation, and Luminosity Detectors”. In: Journal of Instrumentation 13.10 (2018), P10034.
[17] Forthommel. English: Map of the CERN accelerator complex. May 2011.
[18] Linear accelerator 4. en. Dec. 2024.
[19] The Proton Synchrotron Booster. en. Dec. 2024.
[20] The Proton Synchrotron. en. Dec. 2024.
[21] The Super Proton Synchrotron. en. Dec. 2024.
[22] Pulling together: Superconducting electromagnets. en. Dec. 2024.
[23] The Large Hadron Collider. en. Dec. 2024.
[24] A Hervé. “The CMS detector magnet”. In: IEEE Trans. Appl. Supercond. 10.1(2000), pp. 389–94. DOI: 10.1109/77.828255.
[25] M.C Fouz. “The CMS Muon detectors”. In: 2007 IEEE Nuclear Science SymposiumConference Record. Vol. 3. 2007, pp. 1885–1890. DOI: 10.1109/NSSMIC.2007.4436524.
[26] CMS Collaboration. The Tracker Technical Design Report. Tech. rep. CERN/LHCC98-006. CERN, 1998.
[27] Silicon Pixels | CMS Experiment.
[28] Silicon Strips | CMS Experiment.
[29] CMS Collaboration. The Electromagnetic Calorimeter Technical Design Report. Tech.rep. CERN/LHCC 97-033. CERN, 1997.
[30] CMS Collaboration. The Preshower Detector Technical Design Report. Tech. rep.CERN/LHCC 99-033. CERN, 1999.
[31] Rosalinde Pots. “Investigation of new technologies to improve light collection from scintillating crystals for fast timing”. PhD thesis. May 2022. DOI: 10.18154/ RWTH-2022-04865.
[32] CMS Collaboration. The Hadronic Calorimeter Technical Design Report. Tech. rep.CERN/LHCC 96-041. CERN, 1997. doi:10.6342/NTU20250079091
[33] CMS Collaboration. “Forward Hadron Calorimeter Design and Performance”. In: CERN-PH-EP/2006-002 (2006).
[34] CMS Collaboration. Outer Hadron Calorimeter Technical Performance Report. Tech. rep. CERN/LHCC 98-030. CERN, 1998.
[35] Candan Isik. “Phase 1 upgrade of the CMS Hadron Barrel Calorimeter”. In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 1042 (2022), p. 167389. ISSN: 0168-9002.DOI: https://doi.org/10.1016/j.nima.2022.167389.
[36] CMS Collaboration. The Hadronic Calorimeter Technical Design Report. CERN/LHCC 96-041. 1996.
[37] CMS Collaboration. The Muon Technical Design Report. Tech. rep. CERN/LHCC97-032. CERN, 1997.
[38] ChristopherStephen. The CMS Muon Detector. 2025.
[39] CMS Collaboration. The Muon Technical Design Report. CERN/LHCC 97-032.1997.
[40] CMS Collaboration. The Trigger and Data Acquisition Technical Design Report. Tech.rep. CERN/LHCC 2000-038. CERN, 2000.
[41] CMS Collaboration. The Technical Design Report for the High-Granularity Calorimeter for the Phase-2 Upgrade of the CMS Experiment. Tech. rep. CERN-LHCC-2017-023. CERN, 2017.
[42] Hubert Gerwig. “Engineering challenges in mechanics and electronics in the world’s first particle-flow calorimeter at a hadron collider: The CMS high-granularity calorimeter”. In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 1044 (2022), p. 167493. ISSN: 0168-9002. DOI: https://doi.org/10.1016/j.nima.2022.167493.
[43] Nural Akchurin et al. “First beam tests of prototype silicon modules for the CMS High Granularity Endcap Calorimeter”. In: Journal of Instrumentation 13 (Oct.2018), P10023–P10023. DOI: 10.1088/1748-0221/13/10/P10023.
[44] S. Agostinelli et al. “Geant4: A Simulation Toolkit”. In: Nuclear Instruments and Methods in Physics Research A 506.3 (2003), pp. 250–303.
[45] celeritas-project/hgcal: A Geant4 simulation of the 2018 CMS HGCAL test-beam for geant-val.
[46] S. Agostinelli et al. “Geant4—a simulation toolkit”. In: Nuclear Instruments and Methods in Physics Research A 506.3 (2003), pp. 250–303. DOI: 10.1016/S0168-9002(03)01368-8.
[47] Geant4 Collaboration. Geant4 User Documentation. Available at: https://geant4-userdoc.web.cern.ch. 2024. doi:10.6342/NTU20250079092
[48] J. Allison et al. “Recent developments in Geant4”. In: Nuclear Instruments and Methods in Physics Research A 835 (2016), pp. 186–225. DOI: 10.1016/j.nima.2016.06.125.
[49] CaloChallenge/homepage. original-date: 2022-01-27T14:46:13Z. Dec. 2024.
[50] Yang Song and Stefano Ermon. Generative Modeling by Estimating Gradients of the Data Distribution. arXiv:1907.05600. Oct. 2020.
[51] Jonathan Ho, Ajay Jain, and Pieter Abbeel. “Denoising Diffusion Probabilistic Models”. In: Advances in Neural Information Processing Systems. Ed. by H. Larochelle et al. Vol. 33. Curran Associates, Inc., 2020, pp. 6840–6851.
[52] Jascha SohlDickstein et al. “Deep Unsupervised Learning using Nonequilibrium Thermodynamics”. In: CoRR abs/1503.03585 (2015).
[53] Introduction to Generative Diffusion Models (Part 1): DDPM = Demolition + Construction - Scientific Spaces.
[54] Pascal Vincent. “A connection between score matching and denoising autoencoders”. In: Neural Computation 23.7 (2011), pp. 1661–1674. DOI: 10 . 1162 /NECO_a_00142.
[55] Matthew Tancik et al. Fourier Features Let Networks Learn High Frequency Functions in Low Dimensional Domains. en. arXiv:2006.10739 [cs]. June 2020.
[56] Benno Kach, Isabell Melzer-Pellmann, and Dirk Krücker. Pay Attention To Mean Fields For Point Cloud Generation. en. arXiv:2408.04997 [hep-ex]. Aug. 2024.
[57] PyTorch-Ignite Contributors. FID — PyTorch-Ignite v0.5.1 Documentation. en.
[58] PyTorch. en.
[59] Yilun Xu et al. Restart Sampling for Improving Generative Processes. 2023.
[60] Luciano Maiani. The GIM Mechanism: origin, predictions and recent uses. arXiv:1303.6154[hep-ph]. Mar. 2013. DOI: 10.48550/arXiv.1303.6154.
[61] FCNCHistory < LHCPhysics < TWiki.
[62] Table of Contents. en-US
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97276-
dc.description.abstract隨著對撞機的不斷擴建和升級,物理學家面臨著越來越複雜的實驗需求,這導致對計算資源的需求急劇增加。現有的計算能力將難以持續支撐Geant4軟體完成精確且大規模的全套物理計算模擬,因此,尋求一種更加高效、快速的模擬方法已成為當前的研究重點。在此論文中,我們提出了使用擴散模型作為核心演算法,並結合transformer模型,嘗試模擬粒子能量在探測器內部的空間分佈。這一方法不僅能夠顯著加速模擬過程,還保持了與Geant4模擬結果相似的精度。本研究的最大特色在於其能夠生成與Geant4預測高度一致的三維能量分佈圖,而不僅僅是如同大多數類似研究所展示的在一維空間上的能量分佈。

除此之外,我也探討了頂夸克味變中性希格斯耦合(TopFCNH)的搜尋作為一個副專案。這種耦合在標準模型中被高度抑制,但在各種新物理理論中可以被顯著增強。通過分析CMS實驗中的雙光子衰變通道,本研究為探測罕見的頂夸克過程做出了貢獻。
zh_TW
dc.description.abstractAs particle colliders continue to expand and upgrade, physicists face increasingly complex experimental demands, which in turn have led to a sharp rise in the need for computational resources. The current computational power will struggle to support full-scale and precise simulations using Geant4 software, especially as the scale of experiments grows. Therefore, finding a more efficient and fast simulation method has become a pressing priority in current research. In this thesis, we propose using a diffusion model as the core algorithm, coupled with a transformer model, to simulate the spatial distribution of particle energy within the detector. This approach not only significantly accelerates the simulation process but also maintains a level of accuracy comparable to Geant4 simulations. The key feature of this research lies in its ability to generate three-dimensional energy distributions that closely match those predicted by Geant4, rather than the one-dimensional energy distributions typical of most similar studies.
Besides this machine learning-based simulation project, I also explore the search for top quark flavor-changing neutral Higgs (TopFCNH) interactions as a side project. These interactions are highly suppressed in the Standard Model but can be significantly enhanced in various new physics scenarios. By analyzing the H to r r decay channel at s = 13.6 TeV within the CMS experiment, this study contributes to the ongoing effort to probe rare top quark processes.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-04-02T16:15:12Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-04-02T16:15:12Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsCommittee Approval i
感謝的話 iii
中文摘要 v
Abstract vii
Contents ix
List of Figures xiii
List of Tables xv
1 Introduction 1
1.1 Motivation 1
1.1.1 The Role of Simulation in High-Energy Physics 1
1.1.2 Generative Models for Fast Simulation 2
1.1.3 Score-Based Generative Models for Simulation 3
1.2 Challenges 4
2 Detector 5
2.1 The Large Hadron Collider (LHC) 5
2.1.1 Key Components of the LHC 6
2.1.2 Technological Challenges 7
2.2 The Compact Muon Solenoid (CMS) 7
2.3 Silicon Tracker 8
2.3.1 Silicon Pixel Detector 8
2.3.2 Silicon Strip Tracker 9
2.3.3 Material Choices and Performance 9
2.4 Electromagnetic Calorimeter (ECAL) 10
2.4.1 The ECAL Barrel (EB) 11
2.4.2 The ECAL Endcap (EE) 11
2.4.3 The Preshower Detector 11
2.4.4 Material Choices and Performance 12
2.5 Hadronic Calorimeter (HCAL) 13
2.5.1 The HCAL Barrel (HB) 13
2.5.2 The HCAL Endcap (HE) 13
2.5.3 The HCAL Forward (HF) 14
2.5.4 The HCAL Outer (HO) 14
2.5.5 Material Choices and Their Impact 15
2.5.6 Performance 16
2.6 Muon Detector 16
2.6.1 Muon Chambers: Drift Tubes (DT) 16
2.6.2 Muon Chambers: Cathode Strip Chambers (CSC) 16
2.6.3 Resistive Plate Chambers (RPC) 17
2.6.4 Material Choices and Performance 17
2.6.5 Trigger and Reconstruction 18
2.6.6 Level-1 Trigger 18
2.6.7 High-Level Trigger (HLT) 18
2.7 The High-Granularity Calorimeter (HGCal) 18
2.7.1 Structure and Components 19
2.7.2 Design and Innovations 19
2.7.3 Performance and Applications 20
2.8 Conclusion 21
3 Dataset 23
3.1 Geant4 Simulation 23
3.1.1 Physics Processes 23
3.1.2 Physics Processes 23
3.1.3 Geometry and Materials 23
3.1.4 Applications in HGCal Development 24
3.1.5 Challenges of Geant4 25
3.2 The Fast Calorimeter Simulation Challenge (CaloChallenge) 26
3.2.1 Objectives 26
3.2.2 Datasets 26
3.2.3 Data Format 28
3.2.4 Evaluation Metrics 28
3.2.5 Community Engagement 28
4 Algorithm 29
4.1 Score-based Diffusion Model 29
4.1.1 Denoising Score Matching with Langevin Dynamics (SMLD) 29
4.1.2 Denoising Diffusion Probabilistic Model (DDPM) 30
4.2 Forward Process 31
4.3 Backward Process 32
4.4 Loss Function for Score-Based Models 34
4.5 VE, VP SDEs 36
4.5.1 Continuos Forward Process 36
4.5.2 Continuos Backward Process - PC Sampler 38
5 Model Structure 41
5.1 Transformer 42
5.1.1 Introduction 42
5.1.2 The Evolution from RNNs to Transformers 43
5.1.3 Self-Attention Mechanism 44
5.1.4 Types and Structure of Transformer Architectures 45
5.1.5 Choosing an Encoder-Only Model for Detector Simulation 46
5.2 Our Model Structure 46
5.2.1 Gaussian Fourier Projection for Temporal Encoding 47
5.2.2 Mean-Field Attention in Detector Simulation 47
5.3 Conclusion 47
6 Strategies and Results 49
6.1 Data Preprocessing 49
6.1.1 Bucketing 49
6.1.2 Preprocessor 50
6.2 Metrics 54
6.2.1 FID Score 54
6.2.2 Classifier 55
6.3 VE and VP Studies 56
6.4 σmax and σmin Studies 58
6.4.1 The Role of σmax and σmin 59
6.4.2 Conclusions 59
6.5 Overall Parameter Sweeping 59
6.6 Centralization 62
6.7 Conditioning Issue 64
6.7.1 Incident energy 64
6.7.2 Time 66
6.8 Conclusion 67
7 Future Goals 71
7.1 Further Acceleration of the Model 71
7.2 Layer Relationship Learning and Tracking 71
A Figures 73
A.1 Best Result for Full Dataset 73
A.2 Best Result for Single Bucket Data 74
A.3 Result for using different Preprocessor 75
A.4 Result for using different SDE settings 77
B TopFCNH 81
B.1 Introduction 81
B.2 Background 81
B.3 Analysis Tool 83
B.4 Workflow 85
B.4.1 Data-MC Samples Comparison & Top Reconstruction 85
B.4.2 Signal-Background Separation & Signal Region Optimization 85
B.4.3 Statistical Analysis 86
B.4.4 Summary of the Workflow 87
B.5 Gridpack Generation 87
B.6 Current Status 88
Bibliography 89
-
dc.language.isoen-
dc.subject擴散模型zh_TW
dc.subjectTransformerzh_TW
dc.subject快速模擬zh_TW
dc.subjectHGCalzh_TW
dc.subject頂夸克zh_TW
dc.subjectCaloChallengezh_TW
dc.subjectBSM Physicsen
dc.subjectFast Simulationen
dc.subjectDiffusion Modelen
dc.subjectTransformeren
dc.subjectCaloChallengeen
dc.subjectHGCalen
dc.subjectTop Quarken
dc.subjectFlavor-Changing Neutral Higgsen
dc.title通過基於評分的擴散模型實現快速HGCal探測器模擬 在雙光子衰變通道中搜尋頂夸克味變中性希格斯耦合zh_TW
dc.titleFast HGCal Detector Simulation via Score-Based Diffusion Models Searching for Top Quark Flavor Changing Neutral Higgs Couplings in H → γγ Decay Channel at √s = 13.6 TeV within CMS Experimenten
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee呂榮祥;裴思達;高英哲;程之寧zh_TW
dc.contributor.oralexamcommitteeRong-Shyang Lu;Stathes Paganis;Ying-Jer Kao;Miranda Chengen
dc.subject.keyword快速模擬,擴散模型,Transformer,CaloChallenge,HGCal,頂夸克,zh_TW
dc.subject.keywordFast Simulation,Diffusion Model,Transformer,CaloChallenge,HGCal,Top Quark,Flavor-Changing Neutral Higgs,BSM Physics,en
dc.relation.page92-
dc.identifier.doi10.6342/NTU202500790-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-03-26-
dc.contributor.author-college理學院-
dc.contributor.author-dept物理學系-
dc.date.embargo-lift2025-04-03-
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf15.13 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved