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中文摘要

隨著對撞機的不斷擴建和升級，物理學家面臨著越來越複雜的實驗需求，這導

致對計算資源的需求急劇增加。現有的計算能力將難以持續支撐Geant4軟體完成精
確且大規模的全套物理計算模擬，因此，尋求一種更加高效、快速的模擬方法已成

為當前的研究重點。在此論文中，我們提出了使用擴散模型作為核心演算法，並結

合transformer模型，嘗試模擬粒子能量在探測器內部的空間分佈。這一方法不僅能夠
顯著加速模擬過程，還保持了與Geant4模擬結果相似的精度。本研究的最大特色在於
其能夠生成與Geant4預測高度一致的三維能量分佈圖，而不僅僅是如同大多數類似研
究所展示的在一維空間上的能量分佈。

除此之外，我也探討了頂夸克味變中性希格斯耦合（TopFCNH）的搜尋作為一個
副專案。這種耦合在標準模型中被高度抑制，但在各種新物理理論中可以被顯著增

強。通過分析CMS實驗中的雙光子衰變通道，本研究為探測罕見的頂夸克過程做出了
貢獻。

關鍵詞：快速模擬、擴散模型、Transformer、CaloChallenge、HGCal、頂夸克。
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Abstract

As particle colliders continue to expand and upgrade, physicists face increasingly
complex experimental demands, which in turn have led to a sharp rise in the need
for computational resources. The current computational power will struggle to sup-
port full-scale and precise simulations using Geant4 software, especially as the scale
of experiments grows. Therefore, finding a more efficient and fast simulation method
has become a pressing priority in current research. In this thesis, we propose using a
diffusion model as the core algorithm, coupled with a transformer model, to simulate
the spatial distribution of particle energy within the detector. This approach not only
significantly accelerates the simulation process but also maintains a level of accuracy
comparable to Geant4 simulations. The key feature of this research lies in its ability to
generate three-dimensional energy distributions that closely match those predicted by
Geant4, rather than the one-dimensional energy distributions typical of most similar
studies.

Besides this machine learning-based simulation project, I also explore the search for
top quark flavor-changing neutral Higgs (TopFCNH) interactions as a side project.
These interactions are highly suppressed in the Standard Model but can be signifi-
cantly enhanced in various new physics scenarios. By analyzing the H → γγ decay
channel at

√
s = 13.6 TeV within the CMS experiment, this study contributes to the

ongoing effort to probe rare top quark processes.

Keywords: Fast Simulation, Diffusion Model, Transformer, CaloChallenge, HGCal,
Top Quark, Flavor-Changing Neutral Higgs, BSM Physics.
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Chapter 1

Introduction

1.1 Motivation

The upcoming High Luminosity phase of the Large Hadron Collider (LHC) [1] presents
unprecedented opportunities to explore new physics in ATLAS [2] and CMS [3]. The
increased luminosity enables the collection of vast experimental data, with Run 3
nearly doubling the luminosity of Run 2 [4].

At higher collision rates, the LHC will generate approximately 1 billion proton-
proton (p-p) collisions per second, captured by detectors with nearly 100 million read-
out channels. With just 25 nanoseconds between successive proton bunches, new col-
lisions occur before previous interactions fully exit the detector. This immense data
volume provides rich opportunities for discovery but also introduces significant chal-
lenges in data processing, storage, and simulation.

1.1.1 The Role of Simulation in High-Energy Physics

Simulation plays a critical role in high-energy physics, allowing researchers to com-
pare experimental data with theoretical predictions. Every study must first validate
that observed data aligns with background expectations and signals, ensuring a clear
understanding of each channel’s contributions. However, traditional simulation meth-
ods face computational bottlenecks, particularly as data rates increase. Accelerating
simulation without sacrificing accuracy is essential for timely and reliable analysis.

Monte Carlo-based methods, such as those implemented in Geant4 [5], have long
been the standard for simulating particle interactions and detector responses. These
simulations provide high precision but are computationally expensive and struggle to
keep pace with increasing data rates. As detector complexity grows, the time required
for full simulations rises, making it increasingly difficult to scale traditional techniques
to modern experimental demands.

A significant portion of high-energy physics computing resources is devoted to
simulating particle propagation in dense materials, particularly within calorimeters,
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which measure deposited energy. Simulating electromagnetic and nuclear interactions
in these dense environments is particularly challenging, requiring extensive computa-
tional power. Given the constraints on computing budgets, full Geant4 simulations are
impractical for all events, leading to the development of fast simulation techniques.
These methods replace detailed physics-based models with simplified parameterized
approaches, which, while efficient, often fail to capture high-dimensional correlations
and complex particle interactions.

FIGURE 1.1: The importance of simulation. Credit: Joshuha Thomas-Wilsker

1.1.2 Generative Models for Fast Simulation

To address these challenges, generative models—particularly diffusion models—have
emerged as promising alternatives for accelerating simulation while maintaining ac-
curacy. Instead of replacing Geant4 entirely, the goal is to find an optimal balance
between speed and precision, as illustrated in Figure 1.2. Recent works, such as Yang
et al.’s score-based models [6] and diffusion-based calorimeter simulations [7], have
significantly reduced computation time while preserving fidelity. Building on these
advances, our project introduces a novel model that generates 3D point clouds rep-
resenting energy distributions across spatial coordinates in a single step. Unlike pre-
vious models, which often focus on one-dimensional projections (e.g., energy vs. z-
coordinate), our approach captures full 3D distributions in a single forward pass, en-
abling rapid and comprehensive simulations suited to high-luminosity experiments.

Deep learning offers a compelling alternative to traditional parametric models,
with generative techniques such as Generative Adversarial Networks (GANs) [8],
Variational Autoencoders (VAEs) [9], and Normalizing Flows (NFs) [10] increasingly
adopted for fast detector simulations. GANs, for example, have demonstrated con-
siderable success in generating calorimeter showers [11] and are now integrated into
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the ATLAS fast simulation framework [12]. However, they present optimization chal-
lenges and can suffer from mode collapse, where the generator fails to fully capture
data diversity. NFs, while offering stable training and accurate density estimation,
remain computationally expensive for high-dimensional data, limiting their feasibil-
ity for complex detector simulations. Additionally, their rigid model structure further
constrains adaptability [13, 14].

1.1.3 Score-Based Generative Models for Simulation

This work explores score-based generative models [6], which learn the gradient of
the data density rather than the density itself. This approach allows for more flex-
ible network architectures without requiring Jacobian computation during training,
enabling the use of bottleneck layers to reduce trainable parameters and improve scal-
ability. Recent advancements in score-based models have demonstrated their poten-
tial in calorimeter simulation, achieving a balance between high-dimensional fidelity
and computational efficiency—making them suitable for ultra-fine calorimeters and
complex datasets [15, 16].

By leveraging score-based models, our project aims to address both the compu-
tational challenges of high-luminosity LHC experiments and the limitations of tradi-
tional fast simulation methods. Our approach enhances accuracy by capturing full 3D
spatial distributions while significantly reducing simulation time, offering a scalable
and reliable solution for next-generation collider experiments.

FIGURE 1.2: The balance between accuracy and speed in simulation. Credit: Joshuha Thomas-
Wilsker
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1.2 Challenges

Generating a 3D point cloud to accurately model energy deposition across spatial co-
ordinates presents several key challenges. Traditional approaches primarily focus on
one-dimensional projections, modeling energy as a function of a single spatial dimen-
sion. While effective for simplified representations, these methods fail to capture the
full complexity of particle interactions. Our model, in contrast, aims to reconstruct the
complete three-dimensional energy distribution in a single forward pass, requiring a
delicate balance between high-dimensional fidelity and computational efficiency.

To achieve this, we integrate advanced architectural components, including Gaus-
sian Fourier Projection for time encoding and mean-field attention mechanisms with
a class token, along with conditional guidance based on incident energy. These fea-
tures enable precise control over both positional and energy distributions, addressing
the intricate dependencies within the 3D spatial domain. However, training a model
to learn the complex correlations between spatial coordinates, energy deposition, and
incident energy introduces significant computational challenges. Ensuring that the
model generalizes well across various particle types and energies, while maintaining
efficiency, remains a non-trivial task.

The high-dimensional nature of this generative task demands careful conditioning
to reflect realistic energy variations across spatial coordinates. Our approach requires
the model to dynamically adjust its predictions based on incident energy, detector
response, and local correlations. This complexity leads to a tradeoff: increasing fidelity
often incurs substantial computational costs. Optimizing the architecture to maintain
accuracy while reducing inference time is a key focus of our work.

Despite these challenges, our optimized approach achieves up to a 500-fold speedup
over traditional Geant4-based simulations, offering a scalable alternative suited for
next-generation collider experiments. By leveraging modern generative techniques,
we not only enhance simulation efficiency but also improve the resolution and real-
ism of synthetic data.

In summary, our model represents a step forward in 3D point cloud generation for
high-energy physics simulations. By bridging the gap between scalability and fidelity,
we address the computational limitations of conventional methods while enabling
high-precision modeling of energy deposition patterns. These advancements pave the
way for more efficient and realistic simulations, crucial for meeting the demands of
high-luminosity experiments and future discoveries in particle physics.
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Chapter 2

Detector

2.1 The Large Hadron Collider (LHC)

Although the Standard Model of particle physics has been remarkably successful up to
the TeV scale, several fundamental questions remain unanswered. The Large Hadron
Collider (LHC) at CERN is the most powerful particle accelerator ever built, designed
to explore energy scales above the TeV range. It consists of a 27-kilometer ring of su-
perconducting magnets and accelerating structures, enabling proton-proton collisions
at an unprecedented energy of 13 TeV (with a design energy of 14 TeV). The primary
goal of the LHC is to investigate electroweak symmetry breaking, for which the Higgs
mechanism is presumed to be responsible, and to search for new physics beyond the
Standard Model.

FIGURE 2.1: Schematic of the LHC
[17]

The LHC features a high collision rate with a 25 ns bunch spacing, producing up to
109 interactions per second. The facility includes key experimental sites such as CMS,
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ATLAS, LHCb, and ALICE, each optimized for specific research objectives. The injec-
tion system consists of the Proton Synchrotron (PS) and the Super Proton Synchrotron
(SPS), ensuring high beam luminosity and energy.

2.1.1 Key Components of the LHC

Injector Chain

The LHC relies on a sequence of pre-accelerators to prepare the particle beams:

• Linear Accelerator (Linac4): Replaced Linac2 and accelerates negative hydro-
gen ions (H−) to 160 MeV before injection into the Proton Synchrotron Booster
(PSB) [18].

• Proton Synchrotron Booster (PSB): Strips electrons from H− ions to produce
protons and accelerates them to 2 GeV [19].

• Proton Synchrotron (PS): Further increases the beam energy to 26 GeV [20].

• Super Proton Synchrotron (SPS): Boosts the energy of protons to 450 GeV before
injection into the LHC [21].

Each stage ensures that the beam achieves the required energy, intensity, and quality,
culminating in proton-proton collisions at 13.6 TeV in Run 3.

Main Ring

The LHC ring consists of two counter-rotating beam pipes, maintained under ultra-
high vacuum conditions to minimize interactions with residual gas.

• Superconducting Magnets: Approximately 1,232 dipole magnets steer the beams
around the circular path, while quadrupole magnets focus them to maintain sta-
bility [22].

• Cryogenics: The superconducting magnets operate at 1.9 Kelvin (-271 ), achieved
using liquid helium cooling systems [23].

Experimental Sites

The LHC includes four main experiments, strategically placed along the ring:

• CMS (Compact Muon Solenoid): Optimized for studying high-energy colli-
sions, precision measurements, and new physics.

• ATLAS (A Toroidal LHC Apparatus): A general-purpose detector designed for
a broad range of physics exploration.
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• ALICE (A Large Ion Collider Experiment): Specializes in heavy-ion collisions
and studies of the quark-gluon plasma.

• LHCb (LHC Beauty Experiment): Dedicated to investigating matter-antimatter
asymmetry by analyzing b-hadron decays.

Collimation and Beam Dumps

The LHC is equipped with a sophisticated collimation system to remove stray parti-
cles and protect sensitive components. Beam dumps allow controlled termination of
particle beams after experiments or in emergency situations.

Collision Points

Particles are brought to collision points within the detectors, achieving a luminosity
of 1034 cm−2s−1. These conditions enable the study of rare processes, such as Higgs
boson production.

2.1.2 Technological Challenges

• Radiation Damage: Extensive shielding is required to protect equipment and
personnel from high radiation levels.

• Alignment Precision: The alignment of LHC components must be maintained
within micrometer precision to ensure proper beam steering.

• Data Volume: Experiments generate petabytes of data annually, requiring ad-
vanced computational infrastructure for storage and analysis.

The LHC represents the pinnacle of human engineering and scientific collaboration,
involving thousands of scientists and engineers worldwide.

2.2 The Compact Muon Solenoid (CMS)

CMS is a general-purpose detector optimized for high-precision measurements and
searches for rare physics events. Its design focuses on:

• Precise tracking of charged particles.

• High-resolution electromagnetic and hadronic calorimetry.

• Efficient muon identification and momentum resolution.

• Robust missing transverse energy measurement.

The CMS detector features a 4 Tesla superconducting solenoid with a 6-meter di-
ameter and 12.5-meter length, providing a strong magnetic field essential for accurate
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FIGURE 2.2: Exploded view of the CMS detector, showing its main components.

momentum measurements of charged particles. The solenoid is enclosed in a 10,000-
tonne iron return yoke, which serves to contain the magnetic field and houses the
muon detection system [24]. The CMS muon spectrometer consists of gaseous detec-
tors embedded within the iron return yoke of the superconducting solenoid [25].

To better illustrate the CMS detector, the figure below presents a cross-sectional
schematic showcasing its key components: the Silicon Tracker, Electromagnetic Calorime-
ter (ECAL), Hadron Calorimeter (HCAL), and Superconducting Solenoid. Next, this
chapter will delve into the design and performance of the Silicon Tracker, ECAL,
HCAL, Muon detector subsystems.

2.3 Silicon Tracker

The tracker system in the CMS detector is designed to reconstruct the trajectories of
charged particles produced in high-energy collisions with unparalleled precision. This
subsystem plays a vital role in measuring particle momentum, identifying particle
types, and reconstructing primary and secondary vertices.

2.3.1 Silicon Pixel Detector

The innermost layer of the tracker is the silicon pixel detector, which provides high-
resolution tracking near the interaction point. It consists of three barrel layers and
two endcap disks on either side, covering a pseudorapidity range of |η| < 2.5 [26].
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FIGURE 2.3: Cross-sectional schematic of the CMS detector.

The pixel detector is constructed using silicon sensors segmented into millions of tiny
pixels, each measuring 100× 150 µm2.

The pixel detector is designed to withstand intense radiation levels and high par-
ticle flux near the beamline. Its fine granularity ensures excellent spatial resolution,
which is essential for identifying displaced vertices from the decays of short-lived
particles such as B-mesons and τ leptons [27].

2.3.2 Silicon Strip Tracker

Surrounding the pixel detector is the silicon strip tracker, which extends tracking cov-
erage to larger radii and provides additional layers for trajectory reconstruction. The
strip tracker is divided into the Tracker Inner Barrel (TIB), Tracker Outer Barrel (TOB),
Tracker Endcaps (TEC), and Tracker Inner Disks (TID). These components collectively
cover a radial distance of 20 to 110 cm from the beamline [26].

The silicon strips are oriented in parallel arrays, with each strip measuring several
centimeters in length and a few hundred microns in width. By combining signals
from multiple layers, the strip tracker achieves precise momentum measurements and
improves the robustness of trajectory reconstruction [28].

2.3.3 Material Choices and Performance

The tracker is constructed entirely from silicon sensors, chosen for their excellent res-
olution and radiation hardness. Key considerations in its design include:
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• Lightweight support structures: Minimize material interactions that can scatter
particles and degrade tracking performance.

• Radiation-tolerant electronics: Ensure reliable operation in the high-radiation
environment of the LHC.

• High granularity: Allows for precise reconstruction of particle trajectories even
in the presence of multiple simultaneous collisions (pile-up).

The tracker achieves a transverse momentum resolution of approximately ∆pT /pT =

1% for particles with pT around 100 GeV/c. This precision enables detailed studies of
particle properties, including invariant mass reconstruction and decay vertex identifi-
cation [26].

FIGURE 2.4: Cross-sectional schematic of the CMS tracker, showing the pixel and strip com-
ponents.

The tracker is designed to withstand high radiation levels and provides a momen-
tum resolution of ∆pT /pT ≈ 1% for particles with pT ∼ 100 GeV/c. The low-mass
design minimizes material interactions, reducing the impact on photon and electron
measurements. Cooling systems maintain stable operation despite the intense radia-
tion environment.

2.4 Electromagnetic Calorimeter (ECAL)

The Electromagnetic Calorimeter (ECAL) in the CMS detector is a crucial subsystem
designed to measure the energy of electrons and photons with high precision. The
ECAL achieves this by utilizing scintillating lead tungstate (PbWO4) crystals as the
active medium, coupled with photodetectors to convert scintillation light into elec-
trical signals. Its design, divided into the Barrel (EB), Endcap (EE), and Preshower
Detector (ES), ensures optimal performance across a wide range of pseudorapidity. In
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this research, since our dataset focuses primarily on photons and electrons, the ECAL
is the main region of interest.

2.4.1 The ECAL Barrel (EB)

The ECAL Barrel covers the central pseudorapidity region, |η| < 1.479, and consists of
approximately 61,200 PbWO4 crystals. These crystals are characterized by their high
density, fast scintillation time, and radiation hardness [29]. Lead tungstate is chosen
due to its high density and short radiation length, allowing electromagnetic showers
to develop within a compact volume. This compactness ensures that the ECAL can
achieve high resolution while fitting within the spatial constraints of the CMS detector.

Each crystal is aligned quasi-projectively towards the interaction point, ensuring
minimal gaps in coverage and precise angular resolution. The scintillation light pro-
duced in the crystals is detected by avalanche photodiodes (APDs) in the barrel region,
which offer excellent sensitivity and radiation resistance [29].

2.4.2 The ECAL Endcap (EE)

The ECAL Endcap extends the ECAL coverage to higher pseudorapidities, from |η| =
1.479 to |η| = 3.0. The endcap region consists of approximately 14,600 PbWO4 crystals,
arranged in a geometry optimized for forward physics studies [29]. Due to the higher
radiation levels and particle flux in this region, the photodetectors used are vacuum
phototriodes (VPTs), which are more robust against radiation damage compared to
APDs.

The high-radiation environment in the endcap region necessitates additional cool-
ing and monitoring systems to maintain the performance of the crystals and photode-
tectors. The EE plays a critical role in measuring photons and electrons produced at
small angles relative to the beamline, ensuring comprehensive detector coverage [29].

2.4.3 The Preshower Detector

The preshower detector is located in front of the ECAL Endcaps and is designed to
enhance discrimination between photons and neutral pions (π0). It consists of two
layers of lead absorbers interleaved with silicon strip sensors [30]. The lead layers
initiate electromagnetic showers, while the silicon sensors measure the spatial distri-
bution of the resulting particles.

This design allows the preshower detector to effectively distinguish between single
photons and π0 decays, which produce two closely spaced photons. This capability is
crucial for improving the ECAL’s ability to identify isolated photons in a high-particle-
density environment [30].
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FIGURE 2.5: Structure of the ECAL showing barrel and endcap regions.
[31]

2.4.4 Material Choices and Performance

The choice of materials for the ECAL and its preshower detector is driven by their
unique properties:

• High density and short radiation length (PbWO4): These properties allow elec-
tromagnetic showers to be contained within a compact volume, ensuring precise
energy measurements.

• Fast scintillation time (PbWO4): PbWO4 crystals have a decay time of approxi-
mately 25 ns, matching the LHC’s bunch crossing interval [29].

• Radiation hardness (PbWO4): PbWO4 is resistant to radiation damage, which
is essential for maintaining detector performance over extended periods of op-
eration.

• Preshower detection (Silicon sensors): Instead of using PbWO4,the preshower
detector uses layers of silicon sensors interleaved with lead to induce and detect
electromagnetic showers. This enhances photon identification and discrimina-
tion.

The ECAL achieves an excellent energy resolution, parameterized as:

σE
E

=
S√
E
⊕ N

E
⊕ C,

where S is the stochastic term, N represents the noise, and C is the constant term [29].
This resolution allows the ECAL to distinguish between different particle species and
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measure their energies with high precision, making it indispensable for studies of
Higgs boson decays, rare processes, and new physics searches.

2.5 Hadronic Calorimeter (HCAL)

The HCAL measures hadronic energy, complementing the ECAL in reconstructing jets
and missing transverse energy. It employs a sampling design with brass absorbers and
plastic scintillators.

The Hadronic Calorimeter (HCAL) in the CMS detector is an essential component
designed to measure the energy of hadrons produced in high-energy collisions. The
HCAL achieves this through a carefully engineered combination of absorber and ac-
tive materials, divided into distinct regions optimized for different pseudorapidity
ranges. These regions include the HCAL Barrel (HB), HCAL Endcap (HE), HCAL
Forward (HF), and HCAL Outer (HO). The selection of materials and their specific
configurations in each section is driven by the requirements of energy containment,
radiation hardness, and detector efficiency.

2.5.1 The HCAL Barrel (HB)

The HCAL Barrel is the central component of the HCAL, covering the region close to
the interaction point with a pseudorapidity range of |η| < 1.3. The HB is constructed
using brass as the absorber material and plastic scintillators as the active medium.
Brass is chosen due to its high density and structural stability, which allow it to effi-
ciently stop high-energy hadrons and initiate hadronic showers. [32] The dense nature
of brass ensures that the hadronic showers are contained within a compact volume,
which is critical for the limited space available in the detector.

The active medium in the HB consists of plastic scintillator tiles, which emit light
when traversed by charged particles generated in the hadronic showers. This scintil-
lation light is collected by photodetectors, such as silicon photomultipliers, and con-
verted into an electrical signal proportional to the energy deposited in the calorimeter.
The use of plastic scintillators ensures a fast response time, high light yield, and excel-
lent linearity, all of which contribute to the precision of energy measurements.

2.5.2 The HCAL Endcap (HE)

The HCAL Endcap extends the coverage of the HCAL to higher pseudorapidities,
from |η| = 1.3 to |η| = 3.0. Similar to the HB, the HE uses brass as the absorber ma-
terial and plastic scintillators as the active medium. However, the endcap is designed
to handle particles with higher momenta, which require increased thickness of the
absorber layers to fully contain the hadronic showers.
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The higher density and thickness of the brass absorbers in the HE ensure that the
energy of the hadronic showers is completely absorbed, even for particles at extreme
angles. The endcap region is critical for capturing the energy of forward jets and
particles produced at small angles relative to the beamline, ensuring no significant
gaps in the detector’s acceptance. [32]

2.5.3 The HCAL Forward (HF)

The HCAL Forward is specifically designed to handle the extreme forward region,
covering 3.0 < |η| < 5.0. This region experiences the highest particle flux and ra-
diation levels, necessitating the use of radiation-hard materials such as steel for the
absorbers and quartz fibers for the active medium. Steel is chosen for its durability
and ability to withstand the intense radiation environment in the forward region. It
also provides the density required to stop high-energy hadrons effectively.

The active medium in the HF consists of quartz fibers, which generate Cherenkov
light when traversed by relativistic charged particles produced in the hadronic show-
ers. Cherenkov light is collected by specialized photodetectors, providing a robust
signal in an environment where plastic scintillators would suffer significant degrada-
tion. This combination of materials ensures that the HF maintains its performance
over long periods of operation, even in the harshest conditions.

The HF plays a crucial role in studying forward physics phenomena, including
parton distribution functions and diffractive events. Its design also contributes to the
accurate measurement of missing transverse energy (Emiss

T ) by reducing the likelihood
of undetected particles escaping. [33]

2.5.4 The HCAL Outer (HO)

The HCAL Outer is located outside the superconducting solenoid and complements
the energy measurements of the HB. The HO uses the steel return yoke of the solenoid
as its absorber, with additional layers of plastic scintillators serving as the active medium.
The primary purpose of the HO is to act as a "tail catcher," capturing energy from
high-energy particles that pass through the HB and the solenoid without being fully
absorbed.

Using the steel return yoke as an integral part of the calorimeter minimizes the
overall size and weight of the detector while maintaining its energy containment ca-
pabilities. The additional scintillator layers ensure that any residual energy from pen-
etrating particles is measured, providing a complete picture of the event’s energy bal-
ance. [34]
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2.5.5 Material Choices and Their Impact

The material choices for the HCAL are optimized to balance density, radiation hard-
ness, and signal quality, ensuring effective energy containment and long-term perfor-
mance across different detector regions.

• HCAL Barrel (HB) and Endcap (HE) - Brass and Plastic Scintillators: HB and
HE use brass as the absorber for efficient hadron stopping and shower initiation,
with plastic scintillators as the active medium for fast, high-yield light collection.
HE employs thicker brass layers to handle higher-momentum particles at larger
pseudorapidities.

• HCAL Outer (HO) - Steel and Plastic Scintillators: HO repurposes the steel
return yoke of the solenoid as an absorber, with plastic scintillators capturing
residual hadronic energy, improving energy containment and jet resolution.

• HCAL Forward (HF) - Steel and Quartz Fibers: HF, operating in a high-radiation
environment, uses steel for absorption and quartz fibers to generate Cherenkov
light for robust, radiation-resistant detection.

The strategic selection of these materials across the HCAL regions ensures opti-
mal energy measurement, jet reconstruction, and missing transverse energy (Emiss

T )
calculations. By tailoring the material composition to each pseudorapidity range, the
HCAL effectively captures hadronic energy while withstanding the challenging con-
ditions of high-energy collisions in the CMS detector.

FIGURE 2.6: Schematic of the HCAL with barrel, endcap, and forward sections.
[35]
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2.5.6 Performance

The HCAL provides energy resolution of: [36]
σE
E

=
S√
E
⊕ C.

The combination of ECAL and HCAL ensures accurate jet energy reconstruction and
Emiss

T measurements, critical for new physics searches.

2.6 Muon Detector

The muon detector in the CMS experiment is a crucial subsystem designed to identify
and measure the momentum of muons, which are often key signatures in high-energy
collisions. The muon system provides the outermost layer of the CMS detector, ensur-
ing precise muon tracking and efficient triggering across a wide range of pseudora-
pidity.

2.6.1 Muon Chambers: Drift Tubes (DT)

Drift tubes are the primary technology used in the barrel region of the CMS detector,
covering |η| < 1.2. They consist of gas-filled chambers with wires running along their
length. When a muon passes through the chamber, it ionizes the gas, and the resulting
electrons drift toward the central wire under the influence of an electric field [37].

The time taken by the electrons to reach the wire allows for precise measurements
of the muon’s position. The DTs are arranged in layers, providing redundancy and
improving spatial resolution. The use of drift tubes in the barrel region ensures robust
performance in areas with lower radiation exposure and relatively uniform magnetic
fields.

2.6.2 Muon Chambers: Cathode Strip Chambers (CSC)

Cathode strip chambers are employed in the endcap regions, where the pseudorapid-
ity ranges from 1.2 < |η| < 2.4. The CSCs are designed to operate in areas with higher
radiation levels and non-uniform magnetic fields. They consist of multi-layered gas
chambers with cathode strips and anode wires arranged perpendicularly [37].

When a muon traverses a CSC, it ionizes the gas, and the resulting charge is col-
lected on the strips and wires. The perpendicular arrangement allows for precise two-
dimensional position measurements. This design ensures high efficiency and excellent
spatial resolution in the endcap regions, where particle flux and radiation are more in-
tense [37].
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2.6.3 Resistive Plate Chambers (RPC)

Resistive plate chambers are used in both the barrel and endcap regions, providing
fast timing information and additional redundancy for triggering. RPCs consist of
parallel resistive plates separated by a thin gas layer. When a muon passes through
the gas, it creates an avalanche of electrons, resulting in a detectable signal [37].

The fast response time of RPCs makes them ideal for the Level-1 trigger system,
which is responsible for selecting events of interest in real time. Their simple design
and robust performance contribute significantly to the overall efficiency of the muon
detector.

2.6.4 Material Choices and Performance

The materials and technologies used in the muon detector are carefully chosen to meet
the demands of high-energy particle physics experiments:

• Gas-filled chambers: Used in DTs and CSCs for their ability to provide precise
spatial measurements and operate in high-radiation environments.

• Resistive materials: Employed in RPCs to ensure fast timing and robust perfor-
mance under high particle flux.

• Redundant layering: Multiple layers of chambers improve tracking resolution
and ensure reliability in detecting muons.

The muon system achieves a momentum resolution of ∆p/p ∼ 10% at 1 TeV/c, en-
abling precise measurements of high-momentum muons [37]. This capability is critical
for identifying rare processes, such as those involving heavy bosons or new particles.

FIGURE 2.7: CMS Muon System layout, showing DTs, CSCs, and RPCs.
[38]

The muon system achieves momentum resolution of ∆p/p ∼ 10% at 1 TeV/c, con-
tributing significantly to global track reconstruction. [39]
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2.6.5 Trigger and Reconstruction

The CMS trigger system is essential for managing the vast amount of data generated
by the detector, selecting only the most relevant events for further analysis. The trigger
operates in two levels: the Level-1 Trigger and the High-Level Trigger (HLT).

2.6.6 Level-1 Trigger

The Level-1 Trigger is a hardware-based system designed to process data in real time
and reduce the event rate from 40 MHz to approximately 100 kHz [40]. It uses cus-
tom electronics located close to the detector to analyze data from the calorimeters and
muon chambers. This system identifies candidate particles such as muons, electrons,
and jets, and makes decisions within microseconds.

The Level-1 Trigger ensures that only events with significant physics potential, such
as those involving high-energy muons or missing transverse energy, are passed on to
the next stage [40].

2.6.7 High-Level Trigger (HLT)

The High-Level Trigger is a software-based system that further reduces the event rate
from 100 kHz to approximately 1 kHz, suitable for storage and offline analysis [40].
The HLT uses a computing farm to reconstruct full events in real time, applying more
sophisticated algorithms to refine the selection criteria.

This stage enables detailed analysis of particle trajectories and energy deposits, en-
suring that only the most promising events are retained for later study. The combina-
tion of the Level-1 Trigger and HLT allows CMS to efficiently manage the enormous
data flow while preserving the ability to capture rare and significant physics phenom-
ena.

2.7 The High-Granularity Calorimeter (HGCal)

The High-Granularity Calorimeter (HGCal) is a significant upgrade to the Compact
Muon Solenoid (CMS) detector at the Large Hadron Collider (LHC). It is designed to
operate efficiently in the intense radiation environment of the High-Luminosity LHC
(HL-LHC). Replacing the endcap electromagnetic and hadronic calorimeters, the HG-
Cal features a highly granular sampling calorimeter, enabling precise energy measure-
ments and particle identification under challenging conditions.

However, the unprecedented granularity of the HGCal introduces substantial com-
putational challenges for traditional simulation methods, which struggle to efficiently
model the complex detector geometry and interactions. To address this, our research
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focuses on leveraging deep learning methods to improve simulation performance. By
integrating these advanced techniques, we aim to enable faster and more accurate sim-
ulations, making the study of high-granularity detectors both feasible and impactful.
This goal is crucial to unlocking the full potential of the HGCal and advancing our
understanding of fundamental physics.

2.7.1 Structure and Components

The HGCal comprises two main sections: the electromagnetic calorimeter (CE-E) and
the hadronic calorimeter (CE-H). Each section is constructed from a series of hexago-
nal sensor modules, arranged in layers and interleaved with absorber plates.

CE-E: Electromagnetic Section The CE-E is designed to measure the energy of elec-
tromagnetic particles such as photons and electrons. It uses silicon sensors as the
active material, chosen for their excellent resolution and radiation hardness. These
sensors are segmented into hexagonal cells, with each cell covering an area of approx-
imately 1 cm2. The absorber plates, made of lead, are optimized to initiate electromag-
netic showers within a compact volume [41].

CE-H: Hadronic Section The CE-H of the CMS High-Granularity Calorimeter (HG-
CAL) measures hadronic energy deposition and aids jet reconstruction at the HL-LHC.
It features a sampling calorimeter with stainless steel absorber plates interleaved with
silicon sensors in high-radiation areas and scintillator tiles with on-tile SiPMs in lower-
radiation regions.

To ensure stability, copper cooling plates with biphase CO2 coolant maintain oper-
ations at -35C, managing up to 125 kW of power dissipation. The 600-tonne structure
is engineered for high precision, incorporating low-power, high-dynamic-range elec-
tronics and titanium wedges for support.

With high-granularity readout, radiation-hard materials, and advanced cooling,
the CE-H delivers precise hadronic energy measurements, ensuring readiness for next-
generation HL-LHC physics. [42].

2.7.2 Design and Innovations

The HGCal introduces several innovations to meet the demands of the HL-LHC envi-
ronment:

• High Granularity: With over six million readout channels, the HGCal provides
unparalleled spatial resolution, allowing for detailed reconstruction of particle
showers.
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• Radiation Hardness: The use of radiation-tolerant silicon sensors ensures long-
term performance under intense radiation conditions.

• Timing Capability: The HGCal incorporates timing measurements with a pre-
cision of a few tens of picoseconds, enabling precise identification of collision
vertices and pile-up mitigation [41].

2.7.3 Performance and Applications

The high granularity and timing capabilities of the HGCal significantly enhance the
CMS detector’s performance in several areas:

• Particle Flow Reconstruction: The fine segmentation enables accurate separa-
tion of overlapping showers, improving the resolution of energy measurements
for jets and missing transverse energy.

• Pile-Up Mitigation: The timing information allows for the discrimination of
signals from different interaction vertices, reducing the impact of pile-up.

FIGURE 2.8: Schematic of the HGCal showing its layered structure and segmentation. (Image
credit: CMS Collaboration)

[43]

The HGCal represents a major technological advancement for calorimetry in high-
energy physics, providing the tools necessary to explore the physics potential of the
HL-LHC.
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2.8 Conclusion

The CMS detector integrates advanced subsystems, including the tracker, calorime-
ters, and muon chambers, to provide comprehensive coverage and high precision.
These capabilities enable CMS to explore the rich physics opportunities at the LHC.
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3.1 Geant4 Simulation

Geant4 is a powerful and widely used simulation toolkit for modeling particle interac-
tions with matter. It provides detailed simulations of detector geometry, material in-
teractions, and physics processes, enabling accurate predictions of detector responses.
In the CMS experiment, Geant4 plays a crucial role in validating experimental results
and designing detector upgrades such as the High-Granularity Calorimeter (HGCal).

3.1.1 Physics Processes

Geant4 provides a comprehensive suite of physics processes covering electromagnetic,
hadronic, and optical interactions. For the HGCal, electromagnetic processes such as
ionization, bremsstrahlung, and photon interactions are particularly important in the
CE-E section, while hadronic processes are crucial for modeling particle showers in
the CE-H [44].

3.1.2 Physics Processes

Geant4 includes a comprehensive suite of physics processes covering electromagnetic,
hadronic, and optical interactions. For the HGCal, electromagnetic processes such as
ionization, bremsstrahlung, and photon interactions are particularly important in the
CE-E section, while hadronic processes are crucial for modeling particle showers in
the CE-H [44].

3.1.3 Geometry and Materials

Geant4 enables users to define complex and highly detailed detector geometries with
exceptional precision and flexibility. Taking the High-Granularity Calorimeter (HG-
Cal) as an example, the arrangement of silicon sensors, scintillator tiles, and absorber
plates is accurately modeled in Geant4. Each component is defined in terms of its pre-
cise geometry and physical properties, including parameters such as density, radiation
length, and interaction cross-sections.
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Through Geant4, the HGCal geometry is meticulously constructed layer by layer.
Silicon sensors, segmented into hexagonal cells, simulate active regions where parti-
cles interact to generate measurable signals. Absorber materials like lead and steel are
defined to induce particle showers, while scintillator tiles are incorporated to detect
the resulting secondary particles. This level of detail ensures that simulations repli-
cate real-world interactions, providing reliable data for performance optimization and
physics studies.

3.1.4 Applications in HGCal Development

Geant4 has played a crucial role in optimizing the design of the HGCal. Through sim-
ulations of various configurations and material choices, researchers have fine-tuned
the detector to achieve optimal performance in terms of energy resolution, granularity,
and radiation tolerance. Additionally, these simulations aid in the development of re-
construction algorithms and calibration techniques specifically tailored to the unique
characteristics of the HGCal [44].

Below is a demonstration of a Geant4 simulation for the HGCal, illustrating the in-
teraction of a 20 GeV π+ particle within the detector. An interesting aspect of Geant4
visualizations is the use of distinct colors to represent different particle types and in-
teractions. In this simulation, charged particles are labeled in green, neutral particles
in red, and interactions within the calorimeter in blue.

FIGURE 3.1: Visualization of a Geant4 simulation for the HGCal, showing particle showers in
the calorimeter layers. (Image credit: Geant4 Collaboration)

[45]



doi:10.6342/NTU20250079025

3.1. Geant4 Simulation 25

3.1.5 Challenges of Geant4

While Geant4 is a powerful and widely used simulation toolkit, it presents several
challenges that impact its efficiency and usability in large-scale physics experiments.

• Computational Intensity:
Geant4 simulations require significant computational resources, particularly for
high-energy physics experiments involving dense materials and complex inter-
actions. The need to track billions of particles through detailed detector geome-
tries makes large-scale simulations computationally expensive [46].

• High Complexity:
The object-oriented design of Geant4 provides flexibility but also introduces a
steep learning curve. Users must understand multiple modules, including ge-
ometry definitions, physics processes, and tracking systems, which can slow
down the implementation of new simulations [47].

• Scaling Issues:
With increasing experimental data rates, such as those expected in the High-
Luminosity Large Hadron Collider (HL-LHC) phase, Geant4 faces challenges
in maintaining simulation accuracy while keeping computational costs manage-
able. Machine learning approaches, such as diffusion models, are being explored
as potential solutions to accelerate Geant4-like simulations while retaining high
fidelity.

• Validation and Maintenance:
Ensuring the accuracy of Geant4 requires continuous validation against experi-
mental data. Physics models must be regularly updated and optimized to re-
flect the latest theoretical and experimental findings. Additionally, software
maintenance and debugging add further complexity to large-scale implemen-
tations [48].

Despite these challenges, Geant4 remains an essential tool in particle physics and
detector simulations, with ongoing research focusing on improving its computational
efficiency and expanding its applicability to future high-energy physics experiments.

Geant4 remains an indispensable tool in the development and operation of the CMS
detector, enabling detailed studies of particle interactions and supporting advance-
ments in high-energy physics.
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3.2 The Fast Calorimeter Simulation Challenge (CaloChallenge)

The Fast Calorimeter Simulation Challenge, or CaloChallenge, is an initiative de-
signed to advance the development of fast, accurate, and efficient generative mod-
els for calorimeter shower simulations. This challenge bridges the gap between tra-
ditional simulation methods like GEANT4 and novel machine learning approaches,
providing datasets, benchmarks, and metrics for evaluation [49].

3.2.1 Objectives

CaloChallenge has the following primary goals:

• Encourage the development of generative models capable of fast and accurate
calorimeter shower simulation.

• Provide standardized datasets and metrics for consistent evaluation and bench-
marking.

• Foster collaboration across the high-energy physics and machine learning com-
munities.

3.2.2 Datasets

The CaloChallenge offers three distinct datasets, each increasing in complexity, to
evaluate model performance in diverse scenarios. The datasets are as follows:

Dataset 1: ATLAS GEANT4 Open Datasets

Dataset 1 is based on simulations using the ATLAS detector geometry. It includes
two single-particle shower types: photons and charged pions. The voxelized shower
information is derived from single particles produced at the calorimeter surface in the
η range of 0.2-0.25. The detector geometry consists of 5 layers for photons and 7 layers
for pions, with the number of radial and angular bins varying by layer and particle
type.

• Voxel structure:

– 368 voxels for photons

– 533 voxels for pions

• Incident energy levels: 15 discrete values, spanning 256 MeV to 4 TeV in powers
of two.

• Number of events: 10,000 per energy level, except at higher energies where lim-
ited statistics are available.
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This dataset serves as a baseline for evaluating generative models on relatively
simple detector geometries and energy distributions.

Dataset 2: Multi-Layer Geometry with Electrons

This dataset simulates electron showers in a concentric cylindrical calorimeter, which
consists of:

• 45 layers, each containing:

– Active material (silicon)

– Passive material (tungsten)

• Voxel segmentation:

– 9 radial bins × 16 angular bins per layer

– Total: 6,480 voxels (45 × 16 × 9)

• Incident energies: Sampled from a log-uniform distribution in the range 1 GeV
to 1 TeV.

• Number of events: 100,000

This dataset introduces high-granularity segmentation, challenging models to ac-
curately capture energy depositions across a complex detector geometry.

Dataset 3: High-Granularity Calorimeter Geometry

Dataset 3 extends the complexity of Dataset 2 by significantly increasing granularity:

• 45-layer calorimeter with active (silicon) and passive (tungsten) material.

• Higher voxel segmentation:

– 18 radial bins × 50 angular bins per layer

– Total: 40,500 voxels (45 × 50 × 18)

• Electron energies: Log-uniformly sampled between 1 GeV and 1 TeV.

• Number of events: 50,000

This dataset is specifically designed to evaluate the ability of generative models to
generalize and simulate realistic high-granularity calorimeters, such as those planned
for HL-LHC and future collider experiments.
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3.2.3 Data Format

Each dataset is stored as one or more HDF5 files created using Python’s h5py module
with gzip compression. The files include:

• incident_energies: An array of shape (num_events, 1) containing the in-
coming particle energies in MeV.

• showers: An array of shape (num_events, num_voxels) storing the energy
depositions (in MeV) for each voxel, flattened in a specific order.

The mapping of voxel indices to spatial coordinates follows the detector segmenta-
tion. Helper functions are provided for reshaping and handling the data.

3.2.4 Evaluation Metrics

CaloChallenge evaluates the generative models using multiple metrics, including:

• A binary classifier trained to distinguish between real GEANT4 samples and
model-generated samples.

• Chi-squared comparisons between histograms of high-level features, such as
layer energies and shower shapes.

• Speed and resource usage metrics, such as training time, generation time, and
memory footprint.

• Interpolation capabilities to test generalization across unseen particle energies.

3.2.5 Community Engagement

Participants are encouraged to share their findings and contribute to community dis-
cussions. The challenge concludes with a workshop to present results, compare ap-
proaches, and collaborate on a community paper documenting the outcomes. For
communication and updates, participants can join the ML4Jets Slack channel and the
Google Groups mailing list.

For further details, visit the official CaloChallenge GitHub repository: https://
github.com/CaloChallenge/homepage.

https://github.com/CaloChallenge/homepage
https://github.com/CaloChallenge/homepage
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4.1 Score-based Diffusion Model

Before diffusion models were introduced, generative models were primarily based
on Variational Autoencoders (VAEs) and Generative Adversarial Networks (GANs).
While VAEs are effective for compressing data, they struggle to generate high-quality,
diverse samples due to their reliance on sampling from a normal distribution in the
latent space. GANs, on the other hand, have demonstrated success in generating real-
istic samples but can be challenging to train and prone to mode collapse.

One drawback of Variational Autoencoders (VAEs) is the inclusion of the KL di-
vergence term in their loss function. While VAEs are effective for compressing data
(encoding), they struggle to generate high-quality, diverse samples. This limitation
stems from their reliance on sampling from a normal distribution in the latent space.
Although VAEs are trained to bring the posterior distribution close to a Gaussian, in
practice, the match is often not precise enough to ensure that samples drawn from this
distribution will be of high quality.

Therefore, an alternative approach, introduced in 2015, is the “diffusion model,”
which can be implemented using either score-matching or denoising techniques. Dif-
fusion models aim to generate synthetic data based on a set of independent, identically
distributed (i.i.d.) samples drawn from an unknown data distribution. The key con-
cept is to simulate new samples by either employing denoising Score Langevin Dy-
namics (SMLD) or implementing Denoising Diffusion Probabilistic Model (DDPM),
where a deep neural network approximates the score, or gradient, of the log-density
of the data distribution. Next we will discuss the two methods in detail.

4.1.1 Denoising Score Matching with Langevin Dynamics (SMLD)

Langevin Dynamics in generative modeling is a way to generate samples by simulat-
ing a process that gradually moves from random points in space toward areas with
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high probability density, where most of the real data is located. It does this by chang-
ing along the directions defined by the gradient of the probability distribution, called
the "score" in our context. At each step, a small amount of Gaussian noise is added
to introduce randomness, ensuring that each path taken is unique and prevents the
sampling process from getting "stuck" in local regions.

In simpler terms, think of Langevin Dynamics as a guided walk starting from a
random spot and following a path that gradually leads toward more typical or likely
values of the data (like images, text, etc.). The direction of each step is influenced by
both the data structure (moving toward areas where data is dense) and a bit of noise
to keep things varied, which helps to explore the whole space more effectively. This
makes Langevin Dynamics an effective sampling method for creating new data points
in generative modeling.

In this approach, we define a perturbation mechanism pσ(x̃|x) = N (x̃;x, σ2I),
which acts as a Gaussian kernel centered at x with variance σ2. This perturbation is
integrated over the data distribution pdata(x) to yield the broader distribution pσ(x̃) =∫
pdata(x)pσ(x̃|x) dx.

We consider a range of increasing noise scales, where σmin = σ1 < σ2 < · · · < σN =

σmax. Typically, σmin is chosen to be small enough that pσmin(x) ≈ pdata(x), captur-
ing the original data distribution, while σmax is set large enough so that pσmax(x) ≈
N (x; 0, σ2

maxI), resembling a Gaussian prior.

Following the work of Song and Ermon [50], we train a Noise Conditional Score
Network (NCSN), denoted sθ(x, σ), by minimizing a weighted sum of denoising score
matching objectives as follows:

θ∗ = argmin
θ

N∑
i=1

σ2
i Epdata(x) Epσi (x̃|x)

[
∥sθ(x̃, σi)−∇x̃ log pσi(x̃|x)∥22

]
. (4.1)

Given sufficient data and model capacity, the resulting score-based model s∗θ(x, σ)
estimates the gradient∇x log pσ(x) across noise scales σ ∈ {σi}Ni=1.

So the Langevin Dynamics process can be described as follows:

xi = xi−1 +
√

σ2
i − σ2

i−1zi−1, i = 1, 2, . . . , N (4.2)

4.1.2 Denoising Diffusion Probabilistic Model (DDPM)

Next, we are going to introduce the second method for diffusing models, the Denois-
ing Diffusion Probabilistic Model (DDPM) [51]. Unlike SMLD, DDPM incorporates a



doi:10.6342/NTU20250079031

4.2. Forward Process 31

scaling factor for x, which modifies the approach slightly. The basic idea is to define
the conditional probability distribution as follows: p(xi|xi−1) = N

(
xi;
√
1− βixi−1, βiI

)
.

Following Sohl-Dickstein et al. [52] and Ho et al. [51], let us consider a set of
positive noise scales 0 < β1, β2, . . . , βN < 1. For each data point x0 ∼ pdata(x),
we define a discrete Markov chain {x0, x1, . . . , xN}, with each transition given by
p(xi|xi−1) = N

(
xi;
√
1− βixi−1, βiI

)
. Consequently, we can write the marginal dis-

tribution pαi(xi|x0) = N
(
xi;
√
αix0, (1− αi)I

)
, where αi :=

∏i
j=1(1− βj).

As in SMLD, we also train it by minimizing the denoising score matching objective:

θ∗ = argmin
θ

N∑
i=1

(1− αi)Epdata(x) Epαi (x̃|x)
[
∥sθ(x̃, αi)−∇x̃ log pαi(x̃|x)∥22

]
. (4.3)

where again, 1− αi is just a weighting factor.

What’s more, we can define the perturbed data distribution as pαi(x̃) :=
∫
pdata(x)pαi(x̃|x)dx.

The noise scales are chosen so that xN approximates a standard normal distribution
N (0, I). So the simialr form as SMLD will be

xt−1 =
√

1− βtxt +
√

βtzt, t = N,N − 1, . . . , 1 (4.4)

where zt ∼ N (0, I) are standard normal samples. The final sample x0 is drawn
from the data distribution pdata(x). The process is repeated for each data point, and
the final samples are generated by running the Markov chain for T steps. The result-
ing samples are expected to approximate the data distribution pdata(x) when T → ∞
under suitable conditions.

4.2 Forward Process

So far, we have discussed two ways of simulating new samples from a given data
distribution. Although they look different, both methods are based on the same prin-
ciple: iteratively transforming a sample from a simple distribution (e.g., a Gaussian)
to a more complex one (e.g., the data distribution).

Based on the work of Yang Song [50], we can generalize this concept through what
is called the forward process in diffusion models.

Our goal is to construct a diffusion process xt indexed by a continuous time variable
t ∈ [0, T ], such that:

x0 ∼ p0 (4.5)
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for which we have a dataset of independent and identically distributed (i.i.d.) sam-
ples, and

xT ∼ pT (4.6)
for which we have a tractable form to generate samples efficiently. In other words, p0
is the data distribution and pT is the prior distribution.

This diffusion process can be modeled as the solution to an Itô stochastic differen-
tial equation (SDE):

dx = f(x, t) dt+ g(t) dw (4.7)
where:

• x is the state variable,

• f(x, t) is the drift coefficient,

• g(t) is the diffusion coefficient,

• w is a Wiener process (Brownian motion).

For later we can show that this has a slightly better result than orginal DDPM and
SMLD.

4.3 Backward Process

With the forward process established, we can now construct the backward process.
The aim of this process is to generate samples from the data distribution p0, given
samples from the prior distribution pT .

The continuous form of this process is defined by the following stochastic differen-
tial equation (SDE):

dx = ft(x) dt+ gt dw (4.8)

To direclty prove the reverse SDE formula in continuous form will be a little com-
plex. But we can get the same spirit from discrete form, as ∆t → 0, the continuous
equation above can be approximated by:

xt+∆t − xt = ft(xt)∆t+ gt
√
∆t ε, ε ∼ N (0, I) (4.9)

The discrete form of the stochastic differential equation (SDE) is especially valuable
for practical computer implementations. By breaking down the continuous process
into discrete steps, we can simulate both the diffusion and reverse processes incre-
mentally, allowing us to generate samples using numerical methods. This approach
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enables us to approximate continuous dynamics with a series of discrete updates,
making the computations more manageable and efficient.

In this way, using the SDE framework to describe diffusion models provides a clear
distinction between theoretical analysis and practical implementation. We can rely on
the mathematical properties of continuous SDEs for analysis, while in actual appli-
cations, we have the flexibility to choose any appropriate discretization method for
efficient numerical calculation.

In probabilistic terms, Equation (4.9) implies that the conditional probability is
given by

p(xt+∆t|xt) =N
(
xt+∆t;xt + ft(xt)∆t, g2t ∆t I

)
∝ exp

(
−∥xt+∆t − xt − ft(xt)∆t∥2

2g2t∆t

) (4.10)

Now since our goal is to use the forward process to derive the backward process,
which means obtaining p(xt|xt+∆t), we apply Bayes’ theorem, as shown in "A Discus-
sion on Generative Diffusion Models: DDPM = Bayesian + Denoising": [53]

p(xt|xt+∆t) =
p(xt+∆t|xt)p(xt)

p(xt+∆t)

= p(xt+∆t|xt) exp (log p(xt)− log p(xt+∆t))

∝ exp

(
−∥xt+∆t − xt − ft(xt)∆t∥2

2g2t∆t
+ log p(xt)− log p(xt+∆t)

) (4.11)

It is not difficult to see that when ∆t is sufficiently small, p(xt+∆t|xt) will be sig-
nificantly non-zero only when xt+∆t is close to xt. Conversely, only in this case will
p(xt|xt+∆t) be significantly non-zero. Therefore, we only need to conduct an approx-
imate analysis for situations where xt+∆t is close to xt. For this, we can use a Taylor
expansion:

log p(xt+∆t) ≈ log p(xt) + (xt+∆t − xt) · ∇xt log p(xt) + ∆t
∂

∂t
log p(xt) (4.12)

It is important not to neglect the term ∂
∂t , because p(xt) is a function of both t and xt,

while p(xt+∆t) is a function of t+∆t and xt+∆t. Thus, p(xt) must include an additional
time derivative. Substituting this into Equation (4.11) allows us to derive:

p(xt|xt+∆t) ∝ exp

(
−
∥xt+∆t − xt −

[
ft(xt)− g2t∇xt log p(xt)

]
∆t∥2

2g2t∆t
+O(∆t)

)
(4.13)

As ∆t→ 0, the term O(∆t) becomes negligible, thus:
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p(xt|xt+∆t) ∝ exp

(
−
∥xt+∆t − xt −

[
ft(xt)− g2t∇xt log p(xt)

]
∆t∥2

2g2t∆t

)
(4.14)

Finally, the above formula indicates that the reverse process also contains a deter-
ministic part and a stochastic part. The deterministic part consists of ft(xt)−g2t∇xt log p(xt),
while the stochastic part is gt

√
∆tε.

Thus, our reverse process is defined as:
xt−∆t = xt −

[
ft(xt)− g2t∇xt log p(xt)

]
∆t+ gt

√
∆tε (4.15)

We can use the picture below to illustrate the forward and backward processes in a
diffusion model:

FIGURE 4.1: Forward and Backward Processes in Diffusion Models (The picture is from Song
and Ermon (2019))

4.4 Loss Function for Score-Based Models

After deriving the backward process, the final step is to compute∇x log pdata(x), which
is where machine learning plays a crucial role. A neural network can be used to ap-
proximate this score function—the gradient of the log-density of the data distribution.
To train the network, we minimize the following loss function:

L =
1

2
Epdata(x)

[
∥sθ(x, t)−∇x log pdata(x)∥22

]
. (4.16)

Since the true score function is not tractable, an alternative approach known as
Denoising Score Matching (DSM) [54] is used. DSM does not estimate the score of
the clean data directly but instead estimates the score of a perturbed version of the
data. This is achieved by corrupting the original data with Gaussian noise:

pσ(x̃|x) = N (x, σ2I), (4.17)
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where x̃ represents the perturbed data. The perturbed data distribution is then
given by:

pσ(x̃) =

∫
pdata(x)pσ(x̃|x)dx. (4.18)

To train a model to estimate the score function, we minimize the following objec-
tive:

L =
1

2
Epσ(x̃|x)pdata(x)

[
∥sθ(x̃)−∇x̃ log pσ(x̃|x)∥22

]
. (4.19)

Using the Gaussian perturbation kernel, we can compute the score function analyt-
ically:

∇x̃ log pσ(x̃|x) =
x− x̃

σ2
. (4.20)

Since (x− x̃) ∼ N (0, σ2), this follows:

x− x̃

σ2
∼ N (0, σ2)

σ2
= N (0,

1

σ2
). (4.21)

Thus, we can rewrite the expectation term as:

N (0, 1) = σ · ∇x̃ log pσ(x̃|x). (4.22)

This leads to a practical loss function:

L =
1

2
E
[
∥σ · sθ(x̃, t)−N (0, 1)∥22

]
. (4.23)

In implementation, this loss function simplifies to:

L = (σ · s(x, t)− torch.normal(0, 1))2. (4.24)

The advantage of this approach is that it enables efficient computation without re-
quiring knowledge of the full data distribution, making it a practical choice for train-
ing score-based generative models.
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4.5 VE, VP SDEs

4.5.1 Continuos Forward Process

After we established the general form of the forward and backward processes, we
can now go back to see how to apply them on SMLD (VE mthoed) and DDPM (VP
method).

So in this section, we try to present detailed derivations demonstrating that the
noise perturbations in SMLD (Score-based generative modeling via Langevin Dynam-
ics) and DDPM (Denoising Diffusion Probabilistic Models) are discretizations of the
Variance Exploding (VE) and Variance Preserving (VP) Stochastic Differential Equa-
tions (SDEs), respectively.

First, when utilizing a total of N noise scales, each perturbation kernel pσi(x|x0) for
SMLD can be derived from the following Markov chain:

xi = xi−1 +
√

σ2
i − σ2

i−1zi−1, i = 1, 2, . . . , N, (4.25)

where zi−1 ∼ N (0, I) and x0 ∼ pdata. Here, we introduce σ0 = 0 for simplicity.
As N → ∞, the Markov chain {xi}Ni=1 converges to a continuous stochastic process
{x(t)}1t=0, and {σi}Ni=1 becomes a function σ(t), while zi transitions to z(t). We denote
the continuous time variable as t ∈ [0, 1] instead of the integer index i ∈ {1, 2, . . . , N}.
Let x( i

N ) = xi, σ( i
N ) = σi, z( i

N ) = zi, for i = 1, 2, . . . , N . Rewriting Equation 4.31 with
∆t = 1

N gives:

x(t+∆t) = x(t) +
√
σ2(t+∆t)− σ2(t)z(t) ≈ x(t) +

√
dσ2(t)

dt
∆tz(t), (4.26)

where the approximation holds as ∆t → 0. In the limit of ∆t → 0, we obtain the VE
SDE:

dx =

√
dσ2(t)

dt
dw. (4.27)

Furthermore, we usually let σ sequence to be a geometric sequence. We have σ( i
N ) =

σi = σmin(
σmax
σmin

)
i−1
N−1 for i ranges from 1 to N. If N →∞

The corresponding VE SDE is

dx = σmin

(
σmax

σmin

)t
√
2 log

(
σmax

σmin

)
dw, t ∈ (0, 1). (4.28)
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For the perturbation kernels pαi(x|x0) used in DDPM, the discrete Markov chain is
given by:

xi =
√

1− βixi−1 +
√
1− βizi−1, i = 1, 2, . . . , N (4.29)

where zi−1 ∼ N (0, I). To obtain the limit of this Markov chain as N → ∞, we define
an auxiliary set of noise scales {β̄i}Ni=1 and rewrite Equation 4.31 as follows:

xi =

√
1− β̄ixi−1 +

√
1− β̄izi−1, i = 1, 2, . . . , N (4.30)

As N → ∞, the noise scales {β̄i}Ni=1 converge to a function β(t) indexed by t ∈ [0, 1].
Let {β̄i}N = β and {xi}N = x and {zi}N = z. Rewriting Equation 4.32 gives:

x(t+∆t) =
√

1− β(t+∆t)x(t) +
√
1− β(t+∆t)z(t)

≈ x(t)− 1

2
β(t+∆t)∆tx(t) +

√
β(t+∆t)∆tz(t)

≈ x(t)− 1

2
β(t)∆tx(t) +

√
β(t)∆tz(t)

(4.31)

where the approximation holds as ∆t → 0. Therefore, in the limit of ∆t → 0, we
obtain the VP SDE:

dx = −1

2
β(t)x dt+

√
β(t) dw. (4.32)

As in DDPM, β is typically an arithmetic sequence where βi = βmin + t(βmax − βmin)

for t ranges from 0 to 1 if N →∞. This will then give us the VP SDE as

dx = −1

2
(βmin + t(βmax − βmin))x dt+

√
βmin + t(βmax − βmin) dw, t ∈ (0, 1).

(4.33)

In conclusion, the contents above indicate that

For SMLD (Variance Exploding SDE - VE):

• f(x, t) = 0

• g(t) = σmin

(
σmax
σmin

)t√
2 log

(
σmax
σmin

)
For DDPM (Variance Preserving SDE - VP):

• f(x, t) = −1
2β(t)x

• g(t) =
√
β(t)
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4.5.2 Continuos Backward Process - PC Sampler

Here we can of course use the f(x, t) and g(t) to do the reverse process as equation
(4.15) shows. However, here we possess additional insights that can enhance our solu-
tion methods. Specifically, with our score-based model sθ∗(x, t) ≈ ∇x log pt(x), we can
utilize score-based Markov Chain Monte Carlo (MCMC) techniques to sample directly
from the distribution pt and refine the outputs of a numerical SDE solver.

At each time step, the numerical SDE solver provides an initial estimate for the
sample at the next time step, functioning as a "predictor." Subsequently, the score-
based MCMC method adjusts the estimated sample’s marginal distribution, acting as
a "corrector." This approach is reminiscent of Predictor-Corrector methods. We simi-
larly refer to our hybrid sampling algorithms as Predictor-Corrector (PC) samplers.

The PC samplers extend the original sampling methodologies of SMLD and DDPM:
the SMLD method employs an identity function as the predictor and utilizes annealed
Langevin dynamics as the corrector. In contrast, the DDPM method adopts ancestral
sampling as the predictor and the identity function as the corrector.

Algorithm 1 PC sampling (VE SDE)

1: xN ∼ N (0, σ2
maxI)

2: for i = N − 1 to 0 do
3: x′

i = xi − g2(t)s∗θ (xi, σi)∆t

4: z ∼ N (0, I)

5: xi = x′
i + g(t)

√
∆tz

6: for j = 1 to M do
7: z ∼ N (0, I)

8: xi ← xi + ϵis
∗
θ (xi, σi) +

√
2ϵiz

9: end for
10: end for
11: return x0

Algorithm 2 PC sampling (VP SDE)

1: xN ∼ N (0, I)

2: for i = N − 1 to 0 do
3: x′

i = (f(x, t)− g2(t) ∗ s∗θ (xi+1, i+ 1))∆t

4: z ∼ N (0, I)

5: xi = x′
i + g(t)

√
∆tz

6: for j = 1 to M do
7: z ∼ N (0, I)



doi:10.6342/NTU20250079039

4.5. VE, VP SDEs 39

8: xi ← xi + ϵis
∗
θ (xi, i) +

√
2ϵiz

9: end for
10: end for
11: return x0

where ϵ is defined as

ϵ = 2r2
∥z∥22
∥sθ∥22

(4.34)

and r is a hyperparameter that controls the step size of the Langevin dynamics.
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Chapter 5

Model Structure

In the previous chapter, we introduced the foundational algorithms employed in this
research project. This chapter delves into the structure of our custom Transformer-
based model, designed to predict the "score" or gradient in detector simulations. Built
upon the Transformer architecture—a cutting-edge model in deep learning—our model
incorporates several modifications to enhance its applicability in high-energy physics
detector simulations.

We chose the Transformer architecture not only for its power and versatility but
also for its unique suitability for data with rotational invariance. In our research, each
input consists of multiple showers, each shower containing several hits, and each hit
represented by four features, as introduced in Chapter 3. This structure makes our
data rotationally invariant, meaning that the relationships within the data remain
consistent even if the order of hits within a shower or the showers within an input
are rearranged. Transformers are particularly well-suited for handling such proper-
ties. Their self-attention mechanism enables them to learn and capture relationships
between data points in a way that is invariant to transformations like rotation. This
flexibility is especially advantageous for our detector simulations, where capturing
invariant relationships is crucial for making accurate predictions.

We will begin by exploring the evolution of Transformers from Recurrent Neural
Networks (RNNs), highlighting how Transformer architectures overcame the limita-
tions of sequential models. Following this, we will examine the core components of the
Transformer model, including its different architectural types (encoder-only, decoder-
only, and encoder-decoder models) and the self-attention mechanism, which lies at
the heart of the Transformer’s ability to model long-range dependencies.

After establishing an understanding of the original Transformer architecture, we



doi:10.6342/NTU20250079042

42 Chapter 5. Model Structure

will discuss the custom modifications introduced in our model to optimize it for de-
tector simulations. Key innovations include the Gaussian Fourier Projection for en-
coding temporal information, which allows the model to capture high-frequency de-
pendencies by transforming time and incident energy into sinusoidal features. Addi-
tionally, we introduce a specialized mean-field attention mechanism, a variant of self-
attention tailored to efficiently aggregate global context. Mean-field attention lever-
ages a class token to summarize information across the sequence, reducing computa-
tional complexity while retaining essential global information.

Furthermore, our model incorporates residual network structures and layer nor-
malization to stabilize and expedite the training process. We will explain how these
modifications, along with our encoder-only architecture, facilitate efficient informa-
tion flow, enabling the model to focus on capturing the relationships within the data
rather than generating sequences. We also employ Weights & Biases (wandb) for
parameter tuning, using its sweep functionality to systematically explore hyperpa-
rameters such as the number of encoder blocks, attention heads, and dropout rates to
achieve optimal performance.

In summary, this chapter provides a comprehensive overview of our custom Trans-
former model, from its foundational components to the innovative adjustments that
make it well-suited for high-energy physics applications. Through these design choices,
our model efficiently captures both local and global dependencies, thereby enhancing
the accuracy and fidelity of detector simulations.

5.1 Transformer
5.1.1 Introduction

Transformer models have revolutionized deep learning by enabling efficient and scal-
able processing of sequential and structured data. Originally introduced for natural
language processing, Transformers have since demonstrated remarkable versatility
across various domains, including computer vision, time-series analysis, and scien-
tific computing. Unlike traditional sequence models such as Recurrent Neural Net-
works (RNNs), which process data sequentially, Transformers utilize a self-attention
mechanism that allows for parallel computation and long-range dependencies.

In high-energy physics, where data from particle detectors is vast, multidimen-
sional, and often exhibits complex dependencies, Transformers provide significant
advantages in both accuracy and efficiency. Their ability to capture intricate relation-
ships between detector hits without being constrained by sequential processing makes
them particularly suitable for simulations of particle showers, energy depositions, and
collision dynamics. In the next section, we will explore the evolution from RNNs to
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Transformers, highlighting the limitations of sequential models and how Transform-
ers address these challenges.

5.1.2 The Evolution from RNNs to Transformers

Figure 5.1 illustrates the fundamental differences in how RNNs and Transformers pro-
cess sequential data. In the RNN model (A), the sequence is processed step by step,
meaning that each input token x0 is first passed into an RNN unit, which updates its
internal state before moving to the next token x1. At each step, the model relies on
the hidden state from the previous timestep, which acts as a summary of all prior in-
puts. This recurrent dependency means that information flows sequentially through
the network, making it impossible to process all tokens simultaneously. Instead, the
model must first process x0, then x1, followed by x2, and so on until xt.

This sequential nature introduces several challenges. First, it creates a bottleneck in
computation, as each step must wait for the previous step to finish before proceeding.
This makes training slow and inefficient, especially for long sequences. Second, as
the sequence length increases, information from earlier tokens may become difficult
to retain, leading to what is known as the vanishing gradient problem. Since each
update relies on a chain of transformations through multiple time steps, the influence
of initial inputs weakens over time, making it difficult for RNNs to capture long-range
dependencies effectively.

In contrast, the Transformer model (B) processes the entire sequence at once, lever-
aging a self-attention mechanism that allows every token to directly interact with all
others. Instead of passing information step by step as in RNNs, the Transformer con-
structs global dependencies in a single operation, meaning that each token xt can im-
mediately access information from any other token, regardless of its position in the
sequence. This parallel computation greatly accelerates training and removes the re-
liance on sequential updates.

For high-energy physics simulations, this difference is particularly relevant. Each
input sequence in our case represents multiple showers, where each shower contains
numerous hits with various energy levels and spatial coordinates. Unlike natural lan-
guage, where word order matters, detector data does not follow a strict sequential pat-
tern. An RNN would impose an artificial structure on the data, potentially obscuring
meaningful relationships. Transformers, by contrast, can naturally capture interac-
tions between all hits in a shower, ensuring that the model fully exploits the complex
dependencies inherent in high-energy physics simulations. This ability to efficiently
model both local and global relationships is one of the primary reasons Transformers
have become the preferred choice over RNNs in modern deep-learning applications.
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(A) RNN Model (B) Transformer Model

FIGURE 5.1: Comparison of RNN and Transformer architectures.

5.1.3 Self-Attention Mechanism

Self-attention is the core mechanism that allows Transformers to process and under-
stand relationships within a sequence efficiently. Unlike traditional models that rely
on sequential computations, self-attention allows each token in an input sequence to
consider every other token simultaneously. This mechanism is particularly well-suited
for high-energy physics applications, where complex dependencies exist between de-
tector hits, and the order in which data is collected does not necessarily dictate mean-
ingful relationships.

At its essence, the attention mechanism determines how much focus each token
should place on other tokens when computing its representation. This is achieved
by transforming each input into three vectors: a query (Q), a key (K), and a value
(V ). The query represents what a token is looking for in other tokens, the key encodes
what information each token contains, and the value carries the actual content that
gets passed forward. The attention scores are computed by measuring the similarity
between queries and keys, which determines how much influence one token should
have on another.

The scaled dot-product attention mechanism follows the equation:

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V (5.1)

where dk is the dimension of the key vectors, used as a scaling factor to stabilize
gradients.

For detector simulations, this mechanism provides a significant advantage. Un-
like models that process data sequentially, Transformers can immediately establish
long-range dependencies, capturing interactions between hits that may be spatially
distant but physically correlated. This ability to dynamically adjust attention across
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the dataset ensures that important features are preserved, leading to more accurate
and efficient simulations.

Figure 5.4a provides a visualization of this process, illustrating how input tokens
are transformed and passed through attention layers. While the details of the compu-
tation involve matrix multiplications and scaling factors, the key idea remains straight-
forward: each token learns to selectively focus on the most relevant information,
allowing the model to capture both local and global dependencies simultaneously.
This capability is what makes Transformers particularly powerful, not only in natu-
ral language processing but also in scientific applications where capturing intricate
relationships is essential.

5.1.4 Types and Structure of Transformer Architectures

The original Transformer architecture, as introduced by Vaswani et al., consists of both
an encoder and a decoder. The encoder processes the input sequence, while the de-
coder generates the output sequence. This setup is particularly effective for tasks like
machine translation. However, in practice, different applications benefit from using
only the encoder or decoder.

FIGURE 5.2: The structure of the original Transformer model. Adapted from "Attention is All
You Need," with additional annotations.
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The three main types of Transformer architectures are as follows:

• Encoder-only Models: Encoder-only models, such as BERT, create contextual
embeddings by attending to all tokens bidirectionally. These models are ideal
for tasks requiring sequence understanding, like classification.

• Decoder-only Models: Decoder-only models, like GPT, are designed for unidi-
rectional generation. Each token attends only to previous tokens, making these
models suitable for tasks like language modeling.

• Encoder-Decoder Models: The original Transformer model combines both an
encoder and a decoder, making it effective for sequence-to-sequence tasks such
as machine translation. Examples include BART and T5.

5.1.5 Choosing an Encoder-Only Model for Detector Simulation

In the context of detector simulation, our objective is to generate a high-quality rep-
resentation of input data, such as particle collisions. Given that our datasets exhibit
rotational symmetry, an encoder-only model is the optimal choice, as it efficiently ex-
tracts and encodes essential features without introducing the additional complexity
of a generative decoder. By focusing solely on representation learning, the encoder
architecture ensures that the model captures the intricate relationships within the data
while maintaining computational efficiency.

5.2 Our Model Structure

Our model architecture builds upon the Transformer framework, with specific modi-
fications to optimize performance in detector simulations, as shown in Figure 5.3.

FIGURE 5.3: Custom Transformer model structure for detector simulations.

We incorporate Gaussian Fourier Projections [55] to effectively encode temporal
information, dense layers to transform conditional variables, and mean-field atten-
tion [56] to efficiently aggregate global context. These architectural choices enable our
model to capture complex dependencies, thereby enhancing the fidelity and accuracy
of simulation outcomes.
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5.2.1 Gaussian Fourier Projection for Temporal Encoding

The Gaussian Fourier Projection component encodes temporal information using Gaus-
sian random features. This technique allows the model to incorporate high-frequency
time-dependent information, in our case time and incident energy, which is crucial for
capturing the dynamics of particle interactions within detectors.

In our model, we apply a Fourier feature mapping γ to featurize input coordinates
before passing them through a coordinate-based multilayer perceptron (MLP). This
approach improves both convergence speed and generalization.

The mapping function γ transforms input points v ∈ [0, 1)d onto the surface of a
higher-dimensional hypersphere using sinusoidal functions:

γ(v) =



a1 sin(2πb
T
1 v)

a1 sin(2πb
T
mv)

...
am cos(2πbT

1 v)

am cos(2πbT
mv)


(5.2)

where ai and bi are parameters that control the scaling and frequency of each sinu-
soid. We set a = 1 for all cases and experiment with different values of b to identify
optimal performance. The results are presented in subsequent sections.

5.2.2 Mean-Field Attention in Detector Simulation

Our model utilizes a variation of self-attention called mean-field attention. Unlike
traditional self-attention, mean-field attention employs a class token to aggregate in-
formation from all tokens, creating a global summary. This reduces computational
complexity while preserving essential global context.

Mean-field attention allows the class token to encapsulate the sequence’s essential
features by attending to each token once. This mechanism is computationally efficient
and well-suited for high-energy physics applications, where capturing global proper-
ties of particle collisions is more important than individual token interactions. Fig-
ure 5.4 provides a comparison between self-attention and mean-field attention mech-
anisms.

5.3 Conclusion

Our custom Transformer model leverages specialized architectural choices to optimize
performance in high-energy physics simulations. Key modifications include Gaussian
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(A) Self-Attention Mechanism (B) Mean-Field Attention Mechanism

FIGURE 5.4: Comparison of self-attention and mean-field attention mechanisms.

Fourier projections for encoding time and incident energy, and mean-field attention
for capturing global context beyond immediate shower information. The addition of a
class token enables the model to represent both local and global dependencies, making
it particularly suitable for scenarios with strong temporal and energetic relationships.

The mean-field attention mechanism enhances computational efficiency by reduc-
ing complexity while preserving essential global information. Parameter tuning plays
a crucial role in achieving optimal performance, as we demonstrate with our use of
wandb. By employing an encoder-only model, we capture inter-token relationships
within the data, making our approach well-suited for high-energy physics applica-
tions.
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Chapter 6

Strategies and Results

6.1 Data Preprocessing

6.1.1 Bucketing

Before we explain why we need bucketing, we can first explain the structure of our
data. When one particle interacts with the detector, it will produce a series of hits,
which we call one shower. So in one shower, we have several hits, while one hit means
one point in the detector labeled by the energy. One hit has several features, such as
the hit energy, x, y and z coordinates. What’s more, we will send several showers
make it to be one batch to our model. So the structure of our data is actually a 3D
tensor, where the first dimension is the number of showers, the second dimension is
the number of hits in one shower, and the third dimension is the number of features
in one hit.

In chapter 5, we have discussed that our model is a transformer-based model.
While transformer implement the self-attention mechanism, it requires the length of
the sequence to be fixed in each batches. However, the number of hits in each event
varies, which makes it difficult to feed the data into the transformer. To address this
issue, we would need to pad the sequences to a fixed length. What’s more, the length
of the data can vary from 1 to 5500, which means that the padding will be very large.
This will lead to a waste of memory and computation. To solve this problem, we
employed a bucketing strategy to group events with similar numbers of hits into the
same bucket. This allowed us to pad the sequences within each bucket to a fixed
length, making it easier to feed the data into the transformer. Based on the principle
of similar memory usage, we divided the data into 45 buckets, each containing events
with a similar number of hits. This bucketing strategy significantly improved the ef-
ficiency of the model and reduced the computational burden. Another advantage of
bucketing is that we can first train the model on a smaller bucket to see if the model
can learn the data well. If the model can learn the data well, we can then train the
model on a larger bucket. This allows us to gradually increase the complexity of the
data and ensure that the model can handle the data effectively.
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6.1.2 Preprocessor

Preprocessing is a crucial step in preparing data for machine learning. Raw data often
contains missing values, outliers, and features on different scales, which can nega-
tively impact model performance. Effective preprocessing cleans and standardizes
the data, ensuring consistency and enabling accurate predictions. It also helps models
learn specific relationships between features more effectively.

A key role of preprocessing is improving data quality. Techniques like imputation,
normalization, and outlier removal address missing or noisy values, allowing mod-
els to focus on meaningful patterns rather than irrelevant or erroneous information.
Preprocessing also standardizes feature scales, ensuring equal contributions to mod-
els, which is especially critical for distance-based algorithms like neural networks or
support vector machines.

Additionally, preprocessing optimizes computational efficiency by simplifying data
complexity through methods like dimensionality reduction or sampling. This is vi-
tal for large-scale datasets, enabling faster and more resource-efficient training while
preserving essential information. Overall, preprocessing is foundational for reliable,
robust machine learning systems.

One important point to note is that we chose to use the x,y coordinate system in-
stead of the cylindrical coordinate system. The primary reason for this choice is the
discontinuity at θ = 0 and θ = 2π, which is unphysical and can introduce challenges
during training. Although the cylindrical coordinate system aligns better with the de-
tector structure and may simplify learning the relationship between radius and energy,
we opted for the x,y coordinate system to ensure continuity and avoid such complica-
tions.

From the reasons above, we employ three different data preprocessing techniques
for detector hit information: RobustScaler, QuantileTransformer, and Exponential
Transformation. While the the comparison between three methods focus on trans-
forming the x and y coordinates, the energy and z coordinate are processed using the
same methodology across all three approaches. This consistent treatment of energy
and z coordinates allows for a direct comparison of the methods and highlights the
benefits of the different transformations applied to x and y.

Energy Transformation

The energy transformation applies a logit-based rescaling, ensuring numerical sta-
bility and normalization. Given the raw hit energy e, the transformation is defined as:
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e′ = log

(
1 + (1− 2× 10−6) e

Eincident

1− e
Eincident

)
(6.1)

where Eincident is the incident particle energy. This formulation ensures stability
while preserving the ratio of the deposited energy to the incident energy. The advan-
tages of this approach include:

• Prevents numerical instability: The small offset ensures that divisions by zero
do not occur.

• Incident Related Logit Transformation: The transformation densifies the distri-
bution of energy values and reduces variance between different incident energy
levels.

z-Coordinate Transformation

The z-coordinate transformation applies a linear rescaling:

z′ =
z − zmin

zmax − zmin
(6.2)

ensuring values remain within a fixed range while preserving spatial relationships.
Benefits include:

• Normalization improves model stability: A fixed range enhances model gener-
alization.

• Outlier Cut Easier: Knowing detector boundaries (zmax, zmin), we can discard
predictions outside (0, 1).

Above are the preprocessing methods for energy and z. Next, we introduce pre-
processing methods for x and y.

• RobustScaler on x and y

The RobustScaler removes the median and scales data using the interquartile
range (IQR), making it robust to outliers. The transformation is:

x′ =
x−Median

IQR

where IQR = Q3 − Q1 represents the range between the 75th and 25th per-
centiles. This transformation is particularly effective in datasets with extreme
values. Advantages include:
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– Resistant to Outliers: Using the median and IQR minimizes the influence
of extreme values.

– Preservation of Relative Distances: The transformation retains the original
distribution while normalizing the scale.

– Effective for Skewed Data: Works well on data with heavy tails or asym-
metric distributions.

FIGURE 6.1: RobustScaler

• QuantileTransformer on x and y

As for QuantileTransformer, it is a non-linear transformation that maps data
to a uniform or normal distribution. Here I choose the normal one. It applies
a non-linear transformation using the empirical cumulative distribution func-
tion (ECDF) to reshape the feature’s distribution. This ensures that each feature
closely resembles the desired target distribution.

This method is particularly useful when the data distribution has heavy tails or
abrupt changes, as our x and y coordinates do. By transforming the data to a
normal distribution, the QuantileTransformer can help the model learn the
underlying patterns more effectively. This is especially beneficial for our data,
as it can improve the model’s ability to capture the relationship between energy
and radius. The advantages of the QuantileTransformer include:
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– Uniform-to-Normal Mapping: Converts arbitrary distributions into a nor-
mal distribution, aiding model interpretability.

– Outlier Robustness: Reduces the influence of extreme values using empir-
ical percentiles.

– Smooth Data Representation: Reshapes skewed or heavy-tailed distribu-
tions into a well-behaved normal form.

FIGURE 6.2: QuantileTransformer

• Exponential Transformation

The Exponential Transformation follows a sigmoid-based scaling:

x′, y′ =
1

1 + e−0.07·(x,y) (6.3)

which maps original x, y coordinates into a compressed range, preventing ex-
treme values from dominating. Advantages include:

– Soft bounding of values: Ensures large deviations do not dominate the
scale.

– Improved gradient stability: The sigmoid function provides smooth gra-
dients, improving model training.
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– Consistent mapping: Unlike statistics-based transformations, this method
applies a continuous function, making it robust for out-of-distribution in-
puts.

FIGURE 6.3: Exponential Transformation

The figures 6.1, 6.2, and 6.3 show the distribution of data after applying different
preprocessing methods. More figures can be found in Appendix A.

From these results, we see that the QuantileTransformer performs best for x

and y because it transforms data into a normal distribution, allowing the model to
better capture spatial patterns and the relationship between energy and radius.

6.2 Metrics
6.2.1 FID Score

To evaluate the performance of our model, we employed the Fréchet Inception Dis-
tance (FID) score as a key metric. The FID score is widely used to assess the quality
of generated samples by measuring the distance between the feature representations
of real and generated images using the InceptionV3 model [57]. A lower FID score
indicates that the generated samples are closer to the real samples in terms of their
statistical distribution. We utilized the PyTorch library’s implementation of the FID
score [58] for our calculations. The FID score is calculated as follows:
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For two multivariate Gaussian distributions with means µreal and µgen and covari-
ance matrices Σreal and Σgen, the FID score is given by:

FID = ||µreal − µgen||2 + Tr(Σreal +Σgen − 2(ΣrealΣgen)
1/2), (6.4)

In order to measure what’s the performance on each dimension, we also calculate
the FID score on each dimension. Then the FID score on each dimension is calculated
as follows:

FIDdim = ||µreal − µgen||2 + Tr(σreal + σgen − 2(σrealσgen)
1/2), (6.5)

One important point to note is that sometimes the FID score is not enough to eval-
uate the performance of the model. For example, if the FID score is low, it means that
the generated samples are close to the real samples in terms of their statistical distri-
bution. However, the generated samples may not capture the underlying physics of
the data, for example, the shape of the data may not be the gaussian distribution. In
this case, the FID score may not be a good metric to evaluate the performance of the
model. So when we evaluate the performance of the model, we still need to rely on
other metrics and observation.

6.2.2 Classifier

As mentioned earlier, the FID score alone is insufficient for evaluating the performance
of the model. To complement it, we employ classifiers to assess the model’s ability to
generate realistic samples. These classifiers are binary, designed to distinguish be-
tween real and generated samples. The structure of the classifiers is primarily based
on deep neural networks (DNNs). The input features for the classifiers can range from
high-level features, such as energy distributions across layers or θ bins, to low-level
features like the energy values in each voxel. Regardless of the input, real samples
are labeled as 1, and generated samples are labeled as 0. The loss function used is the
Binary Cross-Entropy Loss (BCEWithLogitsLoss).

However, our classifiers consistently achieve very high performance, with an AUC
of 99–100%. This indicates that it is relatively easy for the classifier to distinguish be-
tween real and generated samples. This issue is not unique to our study; many papers
report similar findings, even when their models achieve low FID scores and realis-
tic data shapes. One plausible explanation is that generated samples tend to exhibit
higher continuity, while real data has inherent discreteness due to the limitations of
the detector. This mismatch in continuity could make it easier for classifiers to identify
generated samples.
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6.3 VE and VP Studies

As mentioned before, there are two main ways to add the noise into the data, which are
Variance Exploding (VE) and Variance Preserving (VP). In this section, we will discuss
the performance of the model trained with these two methods. First, we can observe
the standard deviation times the noise we add in, which is the change of every step.
We can see that it is more steep and the value is bigger for VE method. This means
that the VE method has more power to push the data to the random noise, which is
the initial state of the sampling space. That is why we guess the VE method will have
a better performance than the VP method.

FIGURE 6.4: Comparison of VE and VP methods for both σmax = 1, σmin = 0.0001

From Figure 6.4, it may not be obvious that the value of VE is larger, but later if we
see Figure 6.5 and 6.6 when σmax = 5, σmax = 10, we can see that the value of VE is
larger than VP.(0.3 vs 0.075) This is consistent with our guess that the VE method will
have a better performance than the VP method.

FIGURE 6.5: Comparison of VE and VP methods for both σmax = 5, σmin = 0.0001

Next, we can further compare the actual distribution change after adding the noise.
We can see that the distribution of the data after adding the noise in the VE method is
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FIGURE 6.6: Comparison of VE and VP methods for both σmax = 10, σmin = 0.0001

more close to the random noise than the VP method. This is consistent with our guess
that the VE method will have a better performance than the VP method.

FIGURE 6.7: The distribution of the data after adding the noise using VE method.

FIGURE 6.8: The distribution of the data after adding the noise using VP method.

From Figure 6.7 and 6.8, we can observe two points. Firstly, the VE method requires
more steps to effectively disrupt the original data distribution, allowing the reverse
process to provide the model with additional opportunities to capture the true distri-
bution, which is advantageous. Secondly, the distribution of data subjected to noise
through the VE method appears closer to random noise than that of the VP method.
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This observation supports our hypothesis that the VE method is likely to outperform
the VP method.

We also compared the FID scores of models trained with the VE and VP methods.
The results showed that the VE method resulted in a lower FID score compared to the
VP method. This suggests that the VE method is more effective at pushing the model
toward generating random samples that better represent the initial sampling space.

FID 10 5 1 0.5

VE 0.0312440 0.0349802 0.0224611 0.0190552

VP 0.0058973 10.533640 104.77893 0.0107441

FID_e 10 5 1 0.5

VE 0.0334921 0.0059905 0.0158524 0.0195042

VP 0.0356144 8.2458230 84.672020 0.0225893

FID_x 10 5 1 0.5

VE 0.0001294 0.0001524 0.0001418 0.0001736

VP 0.0001456 2.1163020 114.35691 0.0001689

FID_z 10 5 1 0.5

VE 0.0007689 0.0006219 0.0007465 0.0012151

VP 0.0015260 1.7053030 27.805210 0.0011892

TABLE 6.1: FID, FID_e, FID_x, and FID_z values for different SDE, σmax, and σmin.

In conclusion, the VE method outperformed the VP method in terms of FID score.
We guess this is because it has more power to push our data to random noise, which is
the initial state of sampling space. So our model know how to do the reverse process
at the beginning in VE method. For example, if we see the standard deviation of both
VE and VP methods, one can find out VE has the steeper slope than VP, which means
it has the power to push the data to the random noise.

6.4 σmax and σmin Studies

Among all fo the parameters, the σmax may be the most important one. In the context
of diffusion models, the parameters σmax and σmin play a crucial role in determining
the noise levels introduced during the forward and backward processes. These pa-
rameters define the range of noise scales, influencing both the quality of the generated
samples and the training stability of the model. This section explores the impact of



doi:10.6342/NTU20250079059

6.5. Overall Parameter Sweeping 59

σmax and σmin on model performance and provides insights into selecting optimal
values for these parameters.

6.4.1 The Role of σmax and σmin

The parameter σmin represents the minimum noise level in the forward process and
also used as the step size of σ series. In this case as you can imagine, σmin is typi-
cally set close to zero. However, based on our abservation, σmin won’t actually affect
too mcuh on the performance of our model. Conversely, σmax deos. It defines the
maximum noise level and is set high enough to approximate a standard normal distri-
bution. And it also determines the power to change our data distribution during the
training. These noise levels influence the progression of the diffusion process, as the
model learns to reverse the added noise during training.

Larger σmax ensures sufficient diversity in the data during the forward process,
helping the model generalize better. Yet, if σmax is too large, it can result in exces-
sively noisy samples, making it challenging for the model to learn the reverse process
effectively.

And we can further check the sweep in Figure 6.11 and 6.12. One can see that the
performance of the model is better when σmax is larger. This actually fit with our
prediction as the reasons above.

6.4.2 Conclusions

As shown in the results, the choice of σmax and σmin significantly impacts the perfor-
mance of the model. Larger σmax values can improve the diversity of the data and
enhance the model’s generalization ability. However, setting σmax too high can lead
to noisy samples and hinder the model’s learning process. On the other hand, σmin

has a less pronounced effect on model performance, as it primarily serves as the step
size for the noise levels. And based on our data scale, we choose σmin to be 0.0003,
and σmax to be 5.0 in VE.

6.5 Overall Parameter Sweeping

Besides, the parameters mentioned above there are also a lot of other parameters that
can affect the performance of the model or the memory allocation. Thus, we con-
ducted a parameter sweeping study using wandb. We experimented with various
learning rates, batch sizes, and hidden dimensions. Our findings indicated that the
best-performing parameter configuration was:

• Learning rate: 0.0003
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(A) VP with σmax = 20 (B) VP with σmax = 10

(C) VP with σmax = 5 (D) VP with σmax = 1

FIGURE 6.9: The result of different σmax in VP.
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(A) VE with σmax = 20 (B) VE with σmax = 10

(C) VE with σmax = 5 (D) VE with σmax = 1

FIGURE 6.10: The result of different σmax in VE.
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FIGURE 6.11: The result of different σmax and σmin in VE.

FIGURE 6.12: The result of fig 6.11, but grouped by σmax in VE.

• Batch size: 128

• Embedding dimension: 96

• Hidden dimension: 96

• Number of Attention Heads: 8

• Number of Encoder Blocks : 16

• Dropout rate: 0.2

• Sampler Step: 100

• Correction Step: 25

• SDE : VE

• Sigma Max: 5.0

• Sigma Min: 0.0003

6.6 Centralization

After visualizing 2D or 3D plots revealed that the model failed to capture the relation-
ship between energy and radius. A key observation was that the model could not learn
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FIGURE 6.13: Visualization of parameter sweeping results.

that higher energy values should be concentrated near the center (smaller radii). Con-
sequently, while the 1D plots were satisfactory, the generated samples lacked proper
centralization.

To address this, we first tried to transform our data into spherical coordinate and
introduce a correlation term between energy and theta in the loss function to try to
suppress relation between energy and theta, hoping our model can thus learn more
about the relation between energy and radius.

The new loss function is defined as:
L = LOriginal + λLcor2 , (6.6)

where LMSE is the mean squared error loss, Lcor is the correlation loss, and λ is a
weighting factor for the correlation loss. The correlation loss is defined as:

Lcor =
1

σxσy

N∑
i=1

(xi − x̄)(yi − ȳ), (6.7)

where x and y are the variables of interest, and x̄ and ȳ are their respective means.

The reason why we don’t apply the correlation term between energy and radius is
that the relation between them is by experienced, although everyone would expect the
result, it’s not solid, we don’t want to bias our model, or you can say we don’t want to
tell the answer of the relation to our model.

However, although the correlation term was added to the loss function and it in-
deed suppressed the relation between energy and theta, the centralization of the gen-
erated samples did not improve significantly. This suggests that the correlation term
alone is not sufficient to address the centralization issue.

After that, one time when we tried to use QuantileTransformer to preprocess the
data, we found that the centralization of the data is improved. This is because the
QuantileTransformer can transform the data to follow a uniform or a normal distribu-
tion. This can help the model to learn the data better, especailly the x,y distribution.
This also makes it is able to learn the relation between energy and radius better.

The result compared to the original one is shown in Figure 6.14.
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(A) The energy in each voxel with original transfor-
mation.

(B) The energy in each voxel with Quan-
tileTransformer transformation.

FIGURE 6.14: The Comparison Picture after using QuantileTransformer.

6.7 Conditioning Issue

6.7.1 Incident energy

With the optimal settings, our model was able to generate the basic shapes of both
the energy and spatial distributions. However, the model often produced an exces-
sive number of hits (nhits) at higher energy levels, leading to overestimation. This
issue was not observed when training on single-bucket data, indicating that the model
struggles to differentiate between data from different buckets. This suggests that our
conditional variables are not functioning effectively. As you can see the result of en-
ergy deposit of single bucket data and all bucket data, the model can generate the data
well in single bucket data, but it failed to generate the data well in all bucket data. This
is because the model can’t learn the condition well.

To address this issue, we first need to make sure if our conditional variables aren’t
really working. So we tried to add the incident energy as the conditional variables and
not. The result is shown below:

They are basically the same, indicating that the conditional variables are not work-
ing. Next, we also tried to concatenate the incident energy with the input data instead
of adding them and the result is shown Figure 6.17.

As you can see, the result is totally a disaster. To be honest, we still don’t know why
this happened. And that is also one of the things we need to figure out in the future.
We will probably try to use fewer hits and focus on one or two dimensions to find out
the reason.
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(A) The energy deposit of single bucket data. (B) The energy deposit of five bucket data.

FIGURE 6.15: The result of energy deposit of single bucket data and all bucket data.

(A) The energy deposit without incident en-
ergy. (B) The energy deposit with incident energy.

FIGURE 6.16: The result of energy deposit with and without incident energy.
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FIGURE 6.17: The result of energy deposit with incident energy concatenated with the input
data.

6.7.2 Time

We also attempted to incorporate time as a conditional variable in our model. How-
ever, the results differ from those observed with incident energy. Even without ex-
plicitly using time as a condition, the output layer implicitly incorporates its effect by
dividing by the standard deviation of the stochastic differential equation (SDE), which
is time-dependent. Despite this, the inclusion of time as a conditional variable does
not appear to enhance the model’s performance.

The plot of loss versus time reveals consistent behavior across epochs, showing that
the shape of this plot remains virtually unchanged. Notably, the loss value at t = 0 is
almost identical to the initial loss, indicating that the time condition fails to improve
the model’s capacity to learn the data effectively.

Time close to t = 0 represents the critical phase where the model transitions to-
ward generating real data, whereas near t = 1, the model predominantly learns the
structure of Gaussian noise. This suggests that the model’s learning mechanism may
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inherently prioritize earlier time steps, making additional time conditioning redun-
dant or ineffective.

(A) (B)

FIGURE 6.18: The left figure shows the loss at epoch 0, which is quite normal it’s still caotic.
The right figure actually represent the loss after 10 epochs.

From the Figure 6.18, We can see that the loss value near t equals to 0 is always
aorund 1, which is as same as it is at the initial state. This means that our model learns
nothing in that region. And the region stands for our model to predict the real data.
That’s may be the reason why our model can’t learn the real shape of the data well. It
only learns the approximate shape of the data from time is above 0.4.

6.8 Conclusion

In this work, we explored various data preprocessing techniques and model config-
urations to improve the performance of our transformer-based generative model for
detector hit data. We implemented multiple strategies to optimize the data represen-
tation and ensure efficient learning.

First, we introduced a bucketing strategy to handle the variability in sequence
lengths, significantly reducing memory overhead while improving computational ef-
ficiency. This allowed us to maintain a structured approach to feeding data into the
transformer, ensuring stable training dynamics.

For preprocessing, we applied three distinct transformations—RobustScaler, Quan-
tileTransformer, and Exponential Transformation—to normalize the hit coordinate
data while ensuring robustness to outliers. We observed that QuantileTransformer
provided the best performance, as it effectively reshaped the data into a normal dis-
tribution, improving the model’s ability to capture spatial relationships and energy
dependencies.
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Through extensive experimentation with variance exploding (VE) and variance
preserving (VP) stochastic differential equations, we found that VE outperforms VP
in terms of pushing the data distribution towards an effective generative space, re-
sulting in lower FID scores and better model convergence.

We also examined the effect of key hyperparameters, particularly σmax and σmin,
in controlling the diffusion process. Our results indicate that a larger σmax improves
the diversity and realism of generated samples by facilitating a more expressive trans-
formation of the data, while σmin had a minor impact on overall performance.

To assess model quality, we used the Fréchet Inception Distance (FID) score, sup-
plemented with a classifier-based evaluation. While the classifier achieved near-perfect
performance in distinguishing real and generated samples, we observed that real-
world constraints and detector properties introduce inherent discreteness that can be
challenging for the generative model to replicate.

One significant challenge we encountered was the conditioning issue, particularly
with incident energy and time as conditional variables. Despite various conditioning
strategies, including direct concatenation and implicit conditioning through normal-
ization, the model struggled to fully leverage these inputs. This suggests that addi-
tional work is required to refine the conditional mechanisms to improve control over
generated samples.

Additionally, we observed a centralization issue in the generated data, where the
model failed to accurately capture the expected energy-radius relationship. Our at-
tempts to enforce correlation constraints showed limited improvement, but the Quan-
tileTransformer preprocessing unexpectedly enhanced centralization, highlighting its
potential importance in data representation.

Moving forward, future work will focus on:

• Improving the conditioning mechanism to ensure that incident energy and other
physical parameters effectively guide the generation process.

• Investigating alternative loss functions and regularization techniques to better
capture the physical constraints of the detector.

• Exploring architectural modifications, such as hybrid transformer-CNN approaches,
to better leverage spatial dependencies in hit distributions.

• Refining the preprocessing pipeline by testing other transformations that could
further enhance the model’s ability to generalize across different hit distribu-
tions.
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In conclusion, while our model demonstrates strong generative capabilities and
promising results, further refinement is needed to fully capture the underlying physics
of detector hit data. The findings in this work provide a solid foundation for future im-
provements in data-driven generative modeling in high-energy physics applications.
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Future Goals

Looking ahead, there are two primary objectives for future work:

7.1 Further Acceleration of the Model

The first goal is to further improve the speed of the model. Currently, our model
achieves a 100x speedup compared to Geant4 simulations. However, there is potential
for even greater acceleration by exploring alternative methods. For instance, replacing
the Stochastic Differential Equation (SDE) framework with an Ordinary Differential
Equation (ODE) approach, or implementing a restart method as suggested in [59],
could lead to significant improvements in computational efficiency.

7.2 Layer Relationship Learning and Tracking

The second goal is to enhance the model’s ability to learn the relationships between
layers. Specifically, we aim to train the model to identify which hits in one layer cor-
respond to hits in the previous layer. This capability would enable the development
of a model for particle tracking, providing a more comprehensive and detailed under-
standing of the underlying physical processes.

Achieving these goals would not only improve the current model but also open
new possibilities for its application in simulation and analysis.
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Appendix A

Figures

A.1 Best Result for Full Dataset

(A) Energy vs Radius (B) Energy vs Z (C) R-width vs Layers
(D) Max Voxel Deposit
vs Layers

(E) 1D Histogram (F) Energy voxel comparison (G) Energy Deposit
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A.2 Best Result for Single Bucket Data

(A) Energy vs Radius (B) Energy vs Z (C) R-width vs layers
(D) Max Voxel Deposit
vs Layers

(E) 1D Histogram (F) Energy voxel comparison (G) Energy Deposit
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A.3 Result for using different Preprocessor

(A) Energy vs Radius (B) Energy vs Z (C) R-width vs layers

(D) Max Voxel Deposit vs Lay-
ers (E) 1D Histogram (F) Energy Deposit

FIGURE A.3: Result for using robust preprocessor
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(A) Energy vs Radius (B) Energy vs Z (C) R-width vs layers

(D) Max Voxel Deposit vs Lay-
ers (E) 1D Histogram (F) Energy Deposit

FIGURE A.4: Result for using quantile preprocessor

(A) Energy vs Radius (B) Energy vs Z (C) R-width vs layers

(D) Max Voxel Deposit vs Lay-
ers (E) 1D Histogram (F) Energy Deposit

FIGURE A.5: Result for using exponential preprocessor
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A.4 Result for using different SDE settings

(A) σmax = 20 (B) σmax = 10 (C) σmax = 5 (D) σmax = 1

FIGURE A.6: Result for Energy vs Radius for VE

(A) σmax = 20 (B) σmax = 10 (C) σmax = 5 (D) σmax = 1

FIGURE A.7: Result for Energy vs Radius for VP

(A) σmax = 20 (B) σmax = 10 (C) σmax = 5 (D) σmax = 1

FIGURE A.8: Result for Energy vs Layers for VE
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(A) σmax = 20 (B) σmax = 10 (C) σmax = 5 (D) σmax = 1

FIGURE A.9: Result for Energy vs Layers for VP

(A) σmax = 20 (B) σmax = 10 (C) σmax = 5 (D) σmax = 1

FIGURE A.10: Result for R-width vs Layers for VE

(A) σmax = 20 (B) σmax = 10 (C) σmax = 5 (D) σmax = 1

FIGURE A.11: Result for R-width vs Layers for VP

(A) σmax = 20 (B) σmax = 10 (C) σmax = 5 (D) σmax = 1

FIGURE A.12: Result for Max Voxel Deposit vs Layer for VE

(A) σmax = 20 (B) σmax = 10 (C) σmax = 5 (D) σmax = 1

FIGURE A.13: Result for Max Voxel Deposit vs Layer for VP
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(A) σmax = 20 (B) σmax = 10 (C) σmax = 5 (D) σmax = 1

FIGURE A.14: Result for Each Dimension VE

(A) σmax = 20 (B) σmax = 10 (C) σmax = 5 (D) σmax = 1

FIGURE A.15: Result for Each Dimension VP

(A) σmax = 20 (B) σmax = 10 (C) σmax = 5 (D) σmax = 1

FIGURE A.16: Result for Energy Voxel Comparison for VE

(A) σmax = 20 (B) σmax = 10 (C) σmax = 5 (D) σmax = 1

FIGURE A.17: Result for Energy Voxel Comparison for VP
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(A) σmax = 20 (B) σmax = 10 (C) σmax = 5 (D) σmax = 1

FIGURE A.18: Result for Energy Deposit for VE

(A) σmax = 20 (B) σmax = 10 (C) σmax = 5 (D) σmax = 1

FIGURE A.19: Result for Energy Deposit for VP
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Appendix B

TopFCNH

B.1 Introduction

Besides my work on the Fast Calorimeter Simulation Challenge, I have also been in-
volved in the TopFCNH project. For the sake of better understanding the concept and
workflow of an analysis. This project aims to study the the interaction between top
quark, higgs boson, and a light quark (u or c) in the context of the Standard Model
Effective Field Theory (SMEFT) and search for new physics phenomena. It’s just at
the beginning stage, so what I have done includes roundtable presentation, gridpack
preparation, monte carlo and data comparison. In this appendix, I will provide an
overview of the TopFCNC project, the analysis workflow, gridpack generation, and
the current status of the project.

B.2 Background

While higgs boson has been discovered in 2012, which is the newest particle, and the
LHC is mainly designed for observing it, the top quark is the heaviest known elemen-
tary particle in the Standard Model (SM). The interaction between top quark and higgs
boson is of great interest, as it can provide many insights into many unknown field.

The top-quark flavor-changing neutral current (TopFCNC) decay t → Hq (where
q = u, c) is highly suppressed in the Standard Model (SM) due to the Glashow-
Iliopoulos-Maiani (GIM) mechanism. [60] The predicted SM branching ratio for this
process is BR(t → Hq) ∼ 10−15 − 10−13, making it practically unobservable at the
LHC. However, many beyond-the-SM (BSM) theories predict significantly enhanced
branching ratios, making it a promising channel for new physics searches. As you can
see the figure B.1

Several BSM frameworks predict an increase in the branching ratio. The Two-Higgs
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FIGURE B.1: The prediction and the result so far

Doublet Model (2HDM) suggests that BR(t→ Hq) could reach 10−5 − 10−3.[61] Sim-
ilarly, Supersymmetric Models (SUSY) predict comparable enhancements. Addition-
ally, theories involving a Composite Higgs and Extra Dimensions indicate the possi-
bility of increasing the branching ratio to 10−4 − 10−3. Given these enhancements,
detecting t→ Hq at the LHC would be a clear sign of new physics.

Among the Higgs boson decay channels, the H → γγ (diphoton decay) is partic-
ularly attractive due to its clean experimental signature in the CMS electromagnetic
calorimeter. The branching ratio of H → γγ for a 125 GeV Higgs is approximately
0.2%, which is small but provides a well-reconstructed final state. Our research fo-
cuses on the process pp → tt̄ , pp → tH and pp → tW−, with H → γγ, where the
diphoton final state can be efficiently detected using high-resolution electromagnetic
calorimetry. The demonstrated Feymann diagram is shown in Figure B.2.

Photon triggers in CMS have high efficiency, with single-photon triggers reaching
efficiencies above 99% and double-photon triggers capturing over 88% of events. Ma-
jor backgrounds include prompt diphoton production (pp→ γγ + jets) and fake γ + j,
which can be reduced by later analysis methods.
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FIGURE B.2: The Feynman diagrams for the TopFCNC channels

B.3 Analysis Tool

Before we dive into the details of the analysis, let’s first introduce the tool, HiggsDNA,
we use for the analysis. HiggsDNA stands for Higgs diphoton NANOAOD, which is
a tool for analyzing the Higgs boson decay to diphoton in the NanoAOD format. It is a
pure Python package, which means the user can do things without CMS environment,
that provides a set of functions to analyze the Higgs boson decay to diphoton.

Besides the environment independence, HiggsDNA also has some other changes
and advantages compared to the traditional analysis tool.

First,traditional high-energy physics analyses often employ a per-event processing
method, iterating through each event and its components sequentially. While straight-
forward, this approach can be computationally intensive and time-consuming. Higgs-
DNA adopts a columnar analysis paradigm, utilizing libraries such as awkward-array
and coffea. This method processes data in a vectorized manner, enabling simultane-
ous operations on entire datasets. Such an approach not only accelerates computations
but also enhances code clarity and maintainability.

Second, it provides robust tools to define and propagate these uncertainties through-
out the analysis workflow, ensuring that results reflect both statistical and systematic
variations.

Third, it also provides the studied corrections for each year, which can be used to
correct the data and simulation.

In practice, we incorporate all these pre-studied corrections and uncertainties into
a file called run_analysis.py, which calls a processor to handle the data, apply the nec-
essary corrections, and propagate uncertainties to both the data and the simulation.
In this process, our main tasks are to write the processor and the analysis code. Once
these are prepared, we simply run run_analysis.py to obtain the results.

The overall workflow of the analysis is shown in Figure B.3.
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FIGURE B.3: The workflow of HiggsDNA.
[62]
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B.4 Workflow

Although the TopFCNC analysis is still in its early stages, we have established a
preliminary workflow to guide our research. The workflow consists of several key
steps, each contributing to the overall analysis process. The overall workflow consists
of three main stages: Data-MC Samples Comparison & Top Reconstruction, Signal-
Background Separation & Signal Region Optimization, and Statistical Analysis. This
section outlines the key steps in each stage and their significance in the overall analy-
sis.

B.4.1 Data-MC Samples Comparison & Top Reconstruction

The first step in the analysis workflow involves comparing data and Monte Carlo
(MC) samples to validate the simulation’s accuracy in modeling real experimental con-
ditions. This stage focuses on reconstructing the top quark and verifying its properties
against theoretical predictions. The main aspects of this step include:

• Utilizing Run 3 data collected between 2022 and 2024.

• Studying a total of 12 analysis channels, derived from three different production
mechanisms and two possible decay modes:

– Flavored Higgs couplings: Hut and Hct.

– W boson decays into either leptonic or hadronic final states.

– Single-top production (st), top-pair production (tt̄), and associated top-W
production (tW).

• Performing event reconstruction using:

– A χ2 method for selecting the most probable event topology.

– Artificial Neural Network (ANN) training to improve event classification.

This stage ensures that the data used in the analysis is well understood and that the
top quark events are reconstructed with high precision.

B.4.2 Signal-Background Separation & Signal Region Optimization

Once events are reconstructed, the next stage involves distinguishing signal events
from background contributions. This process is critical for maximizing the sensitivity
of the analysis. The main components of this stage are:

• Signal-Background Separation:
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– Multi-Variate Analysis (MVA) techniques are employed, incorporating kine-
matic features and top reconstruction information.

– Dedicated MVA classifiers are trained to differentiate between the Higgs
signal and backgrounds, including Non-Resonant Background (NRB) and
Standard Model Higgs Background (SMH).

• Signal Region Optimization:

– Signal regions are defined using a two-dimensional phase space, where
classification scores from NRB-MVA and SMH-MVA are used to optimize
the separation of signal and background events.

These steps ensure that the analysis isolates the signal efficiently while minimizing
background contamination, thereby improving the precision of the final measurement.

B.4.3 Statistical Analysis

The final stage of the workflow involves statistical modeling and interpretation of the
extracted signal. This stage includes:

• Modeling:

– The invariant mass of the diphoton system (mγγ) is used as the key observ-
able.

– Background modeling is performed separately for NRB and SMH compo-
nents.

– The sideband regions are defined within the ranges [100, 115] ∪ [135, 180]

GeV.

– The signal window is restricted to [115, 135] GeV.

• Results:

– A simultaneous signal-plus-background (S+B) fit is performed to extract
the Higgs boson signal strength.

– The final step involves setting an upper limit on the branching ratio (BR) of
the targeted decay mode.

This stage quantifies the statistical significance of the observed signal and provides
constraints on Higgs boson properties based on the analyzed dataset.
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B.4.4 Summary of the Workflow

The entire analysis workflow is summarized in Figure B.4. It illustrates the three major
stages, from data preparation to final statistical inference. Each step is designed to
systematically refine the dataset, enhance the signal-to-background ratio, and extract
meaningful physics results from the experimental data.

FIGURE B.4: The workflow of the HiggsDNA analysis framework.

This structured approach ensures a robust and efficient methodology for Higgs
boson studies, leveraging advanced data analysis techniques and statistical tools.

B.5 Gridpack Generation

Originally, this shouldn’t be a big problem. However, we faced some difficulties which
will be explained later during doing the NLO calculation. In order to generate the sig-
nal samples for the TopFCNH ananlysis, we need to create gridpacks which contains
all the parameters and configurations for the simulation. The gridpack generation
process involves several key steps:

• MadGraph5 Generation The first step is to do the first decay, there are three
channels in our research. The first channel is pp → tt̄, the second channel is
pp → tH , and the third channel is pp → tW−. It is here that we do the NLO
calculation. And the t and W will be decayed in madspin again.

• Madspin Decay: In this step, we will futher decay t → qH or t → bW+ and
W → jj or W → lν, where q = u, c and l = e, µ.

However, due to the forbidden process t→ qH in SM, we need to use special model
with special parameters designed for TopFCNH. This is the main difficulty we faced
during the gridpack generation. The original model in CMS failed to do the NLO
calculation due to the improper parameter settings and python version inconsistency.
We need to modify the model and the parameters to make it work. At the end, we also
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discussed with ATLAS modeling group to get the workable model and parameters.
Thus, I also made a presentaion in formal meeting to introduce the work we have
done and the problems we faced.

B.6 Current Status

The TopFCNH analysis is still in its early stages, with the gridpack generation being
the primary focus. Besides the gridpack generation, we have also started to do the
top reconstruction and compare the data and MC samples. For top reconstruction,
because we don’t have the signal samples yet, we used the ttbar samples to do the re-
construction also for the sake of practicing the HiggsDNA tool. The results are shown
in Figure B.5.

FIGURE B.5: Top quark reconstruction using Higgs DNA package (with ttH samples as prac-
tice)
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