請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97212完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 朱致遠 | zh_TW |
| dc.contributor.advisor | James C. Chu | en |
| dc.contributor.author | 黃榆峻 | zh_TW |
| dc.contributor.author | Yu-Jun Huang | en |
| dc.date.accessioned | 2025-02-27T16:42:02Z | - |
| dc.date.available | 2025-02-28 | - |
| dc.date.copyright | 2025-02-27 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-02-14 | - |
| dc.identifier.citation | Bai, X., Chin, K. S., & Zhou, Z. (2019). A bi-objective model for location planning of electric vehicle charging stations with GPS trajectory data. Computers & Industrial Engineering, 128, 591-604.
Capar, I., Kuby, M., Leon, V. J., & Tsai, Y. J. (2013). An arc cover–path-cover formulation and strategic analysis of alternative-fuel station locations. European Journal of Operational Research, 227(1), 142-151. Cavadas, J., de Almeida Correia, G. H., & Gouveia, J. (2015). A MIP model for locating slow-charging stations for electric vehicles in urban areas accounting for driver tours. Transportation Research Part E: Logistics and Transportation Review, 75, 188-201. Choi, J., Lee, K., Kim, H., An, S., & Nam, D. (2020). Classification of inter-urban highway drivers’ resting behavior for advanced driver-assistance system technologies using vehicle trajectory data from car navigation systems. Sustainability, 12(15), 5936. Chung, S. H., & Kwon, C. (2015). Multi-period planning for electric car charging station locations: A case of Korean Expressways. European Journal of Operational Research, 242(2), 677-687. Davidov, S., & Pantoš, M. (2017). Planning of electric vehicle infrastructure based on charging reliability and quality of service. Energy, 118, 1156-1167. Dong, X., Mu, Y., Jia, H., Wu, J., & Yu, X. (2016). Planning of fast EV charging stations on a round freeway. IEEE Transactions on sustainable Energy, 7(4), 1452-1461. U. S. Department of Energy (2022). Model Year 2021 All-Electric Vehicles Had a Median Driving Range about 60% That of Gasoline Powered Vehicles. Vehicle Technologies Office. Retrieved November 15 from https://www.energy.gov/eere/vehicles/articles/fotw-1221-january-17-2022-model-year-2021-all-electric-vehicles-had-median#:~:text=Gasoline%20Powered%20Vehicles-,FOTW%20%231221%2C%20January%2017%2C%202022%3A%20Model%20Year%202021,gasoline%20vehicles%20was%20403%20miles. U. S. Department of Energy (2023). EV Charging at Paid DC Fast Charging Stations Average 42 Minutes per Session. Vehicle Technologies Office. Retrieved November 15 from https://www.energy.gov/eere/vehicles/articles/fotw-1319-december-4-2023-ev-charging-paid-dc-fast-charging-stations-average Executive Yuan (2024). Land transportation. Retrieved November 15 from https://www.ey.gov.tw/state/A44E5E33CDA7E738/738c0735-9a67-4bb8-a7da-5a9b0e956461 Freeway Bureau, MOTC (2012). Service area information network. Retrieved November 15 from https://www.freeway.gov.tw/ServiceArea/index.html Freeway Bureau, MOTC (2018, July 4 2024). Statistics table of national highway gas station facilities. Retrieved November 15 from https://data.gov.tw/dataset/88625 Freeway Bureau, MOTC (2024a). Traffic dataset. Retrieved November 15 from https://tisvcloud.freeway.gov.tw/ Freeway Bureau, MOTC (2024b). User Manual for the Highway Electronic Toll Collection and Traffic Data Collection System (v4.1 ed.). https://tisvcloud.freeway.gov.tw/documents/TDCS%E4%BD%BF%E7%94%A8%E6%89%8B%E5%86%8Av41b.pdf Fu, A. (2023). A multi-period optimization model for the deployment of capacitated charging station at highway service area [Unpublished master's thesis]. http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92519 Ghamami, M., Zockaie, A., & Nie, Y. M. (2016). A general corridor model for designing plug-in electric vehicle charging infrastructure to support intercity travel. Transportation Research Part C: Emerging Technologies, 68, 389-402. Hodgson, M. J. (1990). A flow‐capturing location‐allocation model. Geographical analysis, 22(3), 270-279. IEA. (2024). CO2 Emissions in 2023. IEA. https://www.iea.org/reports/co2-emissions-in-2023 Kadri, A. A., Perrouault, R., Boujelben, M. K., & Gicquel, C. (2020). A multi-stage stochastic integer programming approach for locating electric vehicle charging stations. Computers & Operations Research, 117, 104888. Kchaou-Boujelben, M. (2021). Charging station location problem: A comprehensive review on models and solution approaches. Transportation Research Part C: Emerging Technologies, 132, 103376. Kuby, M., & Lim, S. (2005). The flow-refueling location problem for alternative-fuel vehicles. Socio-Economic Planning Sciences, 39(2), 125-145. Li, S., Huang, Y., & Mason, S. J. (2016). A multi-period optimization model for the deployment of public electric vehicle charging stations on network. Transportation Research Part C: Emerging Technologies, 65, 128-143. Li, Y., Cui, F., & Li, L. (2018). An integrated optimization model for the location of hydrogen refueling stations. International Journal of Hydrogen Energy, 43(42), 19636-19649. Lin, Y., Zhang, K., Shen, Z. J. M., Ye, B., & Miao, L. (2019). Multistage large-scale charging station planning for electric buses considering transportation network and power grid. Transportation Research Part C: Emerging Technologies, 107, 423-443. MirHassani, S. A., & Ebrazi, R. (2013). A flexible reformulation of the refueling station location problem. Transportation Science, 47(4), 617-628. MOTC (2023). Key Strategic Action Plan for 2050 Net-Zero Transformation: Transportation Electrification and Decarbonization in Taiwan. https://www.ey.gov.tw/File/D2A731DDD7EC55EC?A=C NDC (2022, March 30). Taiwan’s Pathway to Net-Zero Emissions in 2050. National Development Council. https://www.ndc.gov.tw/en/Content_List.aspx?n=B154724D802DC488 Shi, H. C., & Wu, Y. Y. (2021). Implications of international electric vehicle industry policies for Taiwan. Econ. Prospect, 198, 116-122. Upchurch, C., Kuby, M., & Lim, S. (2009). A model for location of capacitated alternative‐fuel stations. Geographical analysis, 41(1), 85-106. Wang, Y. W., & Lin, C. C. (2009). Locating road-vehicle refueling stations. Transportation Research Part E: Logistics and Transportation Review, 45(5), 821-829. Xie, R., Wei, W., Khodayar, M. E., Wang, J., & Mei, S. (2018). Planning fully renewable powered charging stations on highways: A data-driven robust optimization approach. IEEE transactions on transportation electrification, 4(3), 817-830. Yang, W. (2018). A user-choice model for locating congested fast charging stations. Transportation Research Part E: Logistics and Transportation Review, 110, 189-213. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97212 | - |
| dc.description.abstract | 充電站選址問題的研究自流量捕捉選址模型以來逐漸成熟。由於大量溫室氣體排放對全球環境造成的嚴峻影響,這種趨勢伴隨著推動電動車普及的需求,使得充電基礎設施的部署更為迫切,因此眾多學者投入並加強了充電站選址問題模型的研究。本研究提出一種多期設施之容量限制的充電站佈設模型並同時考量路網中的電動車與燃油車之車流,旨在最大化所服務的總流量。研究同時提供一個混合整數規劃的數學模型,用於在服務區內透過替換既有設施來部署充電設備,並設計一套演算法,以確定駕駛者在服務區內進行資源或體力恢復的行動序列。案例研究展示了該模型的具體應用,並針對範例問題進行敏感度分析,針對實際案例進行情境分析,以探討不同參數對研究目標及部署策略的影響。 | zh_TW |
| dc.description.abstract | Studies on Charging Station Location Problem (CSLP) have evolved since the flow capturing location model was proposed. Plenty of researchers have fortified the model for CSLP due to the precarious global environment resulted from large emission of green-house gases, which causes a trend to promote electric vehicles and makes the deployment of charging infrastructures more urgent. The present study proposes a capacitated multiperiod optimization model to maximize the total flow of electric and internal combustion engine vehicles served. The model presents a mixed integer programming formulation to deploy chargers by replacing existing facilities in service areas, as well as an algorithm for determining action sequences for drivers to restore resources or stamina in service areas. Case studies are then demonstrating how the presented model works, and sensitivity analyses for the illustrative problem and scenario analyses for a real case problem are conducted to see the influence of parameters to the objective of the study and the deployment strategy. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-27T16:42:02Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-02-27T16:42:02Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 I
Acknowledgements II 摘要 III Abstract IV Table of Contents V List of Tables VIII List of Figures XII Chapter 1: Introduction 1 1.1 Background and Motivation 1 1.2 Contributions 2 1.3 Flow chart 3 Chapter 2: Literature Review 5 2.1 Charging Station Location Problem 5 2.1.1 Demand Coverage Approaches 6 2.1.2 Charging Facility Capacity 8 2.1.3 Multiperiod Models 9 2.1.4 Vehicle Transition 10 2.2 Summary 11 Chapter 3: Methodology 13 3.1 Problem Statement 14 3.1.1 Network 14 3.1.2 O-D pairs 15 3.1.3 Vehicles 16 3.1.4 Drivers’ Actions 18 3.1.5 Operator’s Actions 19 3.2 Model Assumptions 21 3.2.1 Assumptions of Demand 22 3.2.2 Assumptions of Facilities 22 3.2.3 Assumptions of Traffic flows 23 3.3 Model Formulation 24 Sets: 24 Parameters: 26 Variables: 29 Objective Function: 30 Constraints: 30 3.4 Action sequence generating algorithm 34 Chapter 4: Case Study and Discussions 43 4.1 Illustrative Problem 43 4.1.1 Result 46 4.1.2 Sensitivity Analysis 52 4.1.3 Summary 76 4.2 Real world Problem 78 4.2.1 Results 83 4.2.2 Scenario Analysis 90 4.2.3 Summary 99 Chapter 5: Conclusions and Suggestions 101 5.1 Conclusions 101 5.2 Suggestions 103 Reference 105 | - |
| dc.language.iso | en | - |
| dc.subject | 電動車 | zh_TW |
| dc.subject | 多期佈設 | zh_TW |
| dc.subject | 充電站佈設 | zh_TW |
| dc.subject | 混合整數規劃 | zh_TW |
| dc.subject | 設施容量限制 | zh_TW |
| dc.subject | Capacitated facility | en |
| dc.subject | Multiperiod deployment | en |
| dc.subject | Electric vehicles | en |
| dc.subject | Charging infrastructures | en |
| dc.subject | Mixed integer programming | en |
| dc.title | 考量容量限制與電動車及燃油車混合車流之高速公路服務區設施多期佈設最佳化模型 | zh_TW |
| dc.title | A capacitated multiperiod optimization model for charging facility deployment at freeway service areas with mixed traffic flows of electric and internal combustion engine vehicles | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 盧宗成;陳柏華;許聿廷 | zh_TW |
| dc.contributor.oralexamcommittee | Chung-Cheng Lu;Albert Y. Chen;Yu-Ting Hsu | en |
| dc.subject.keyword | 充電站佈設,電動車,混合整數規劃,設施容量限制,多期佈設, | zh_TW |
| dc.subject.keyword | Charging infrastructures,Electric vehicles,Mixed integer programming,Capacitated facility,Multiperiod deployment, | en |
| dc.relation.page | 110 | - |
| dc.identifier.doi | 10.6342/NTU202500682 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-02-15 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 土木工程學系 | - |
| dc.date.embargo-lift | 2028-03-01 | - |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-1.pdf 此日期後於網路公開 2028-03-01 | 3.67 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
