Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97155
Title: MAQEE:互適應量化與提早退出
MAQEE: Mutual Adaptive Quantization with Early Exiting
Authors: 蔡莉亞
Li-Ya Tsai
Advisor: 陳銘憲
Ming-Syan Chen
Keyword: 視覺變換器,訓練後量化,混合精度量化,早期退出,
Vision Transformers (ViTs),Post-Training Quantization (PTQ),Mixed-Precision Quantization,Early Exiting,
Publication Year : 2025
Degree: 碩士
Abstract: 視覺Transformer(Vision Transformers, ViTs)透過自注意力機制在電腦視覺領域展現出色的表現,但由於其高昂的運算量,實際部署仍面臨相當挑戰。雖然混合精度量化(Mixed-Precision Quantization, MPQ)可降低模型容量,而提早退出(Early Exiting, EE)則能提升推論效率,然而將兩者整合時卻會面臨關鍵難題:一方面,量化雜訊會干擾提早退出的判斷穩定度;另一方面,動態的網路層使用情況會使得位元配置更加複雜。

為因應上述問題,我們提出 MAQEE(Mutual Adaptive Quantization with Early Exiting),提供一個可在量化與提早退出之間建立互惠關係的整合式框架。具體包含以下特色:

提早退出感知的混合精度量化(Early Exiting-Aware MPQ):根據各層的實際使用狀況,動態調整並重新配置量化位元。量化後自我蒸餾(Post-Quantization Self-Distillation):在量化後進行自我知識蒸餾,確保提早退出決策的穩定度。整合 SQNR 的量化風險控制(SQNR-incorporated Quantization-Aware Risk Control):在量化過程中納入信號量化雜訊比(SQNR)指標,強化模型的風險控制能力。透過在 CIFAR-100 與 ImageNet-1K 上進行實驗,我們證實了 MAQEE 在維持 MPQ 與 EE 加速效率的同時,能比單純的 MPQ 基線模型提升最高可達 6% 的分類準確率,展現出 MAQEE 在實際應用中的效能與潛力。
Vision Transformers (ViTs) excel in computer vision through self-attention mechanisms but face deployment challenges due to high computational demands. While Mixed-Precision Quantization (MPQ) reduces model capacity and Early Exit-ing (EE) improves inference efficiency, their integration introduces critical challenges: quantization noise destabilizes exit decisions, while dynamic layer usage complicates bit allocation. We propose Mutual Adaptive Quantization with Early Exiting (MAQEE), a unified framework enabling mutual synergy between quantization and early exiting. Our approach features Early Exiting-Aware MPQ with layer utilization-based bit reallocation, Post-Quantization Self-Distillation for early exiting stability, and SQNR-incorporated Quantization-Aware Risk Control. Experiments on CIFAR-100 and ImageNet-1K demonstrate MAQEE’s effectiveness in achieving up to 6% higher classification accuracy compared with MPQ baseline while preserving the acceleration efficiency of both MPQ and EE.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97155
DOI: 10.6342/NTU202404797
Fulltext Rights: 同意授權(限校園內公開)
metadata.dc.date.embargo-lift: 2025-02-28
Appears in Collections:電信工程學研究所

Files in This Item:
File SizeFormat 
ntu-113-1.pdf
Access limited in NTU ip range
884.3 kBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved