Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地質科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97059
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor徐澔德zh_TW
dc.contributor.advisorJ Bruce H Shyuen
dc.contributor.author高秉辰zh_TW
dc.contributor.authorWallace Kaoen
dc.date.accessioned2025-02-26T16:15:52Z-
dc.date.available2025-02-27-
dc.date.copyright2025-02-26-
dc.date.issued2025-
dc.date.submitted2025-02-10-
dc.identifier.citationBerner, R. A., Lasaga, A. C., & Garrels, R. M. (1983). The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years. American Journal of Science, 283(7), 641–683.
Blattmann, T. M., Wang, S. L., Lupker, M., Märki, L., Haghipour, N., Wacker, L., Chung, L. H., Bernasconi, S. M., Plötze, M., & Eglinton, T. I. (2019). Sulphuric acid-mediated weathering on Taiwan buffers geological atmospheric carbon sinks. Scientific Reports, 9(1), 2945.
Blum, J.D., Gazis, C.A., Jacobson, A.D., & Chamberlain, C.P. (1998). Carbonate versus silicate weathering in the Raikhot watershed within the High Himalayan Crystalline Series. Geology, 26(5), 411–414.
Bucher, K., Zhou, W. & Stober, I. (2017). Rocks control the chemical composition of surface water from the high Alpine Zermatt area (Swiss Alps). Swiss Journal of Geosciences, 110(3), 811–831.
Bufe, A., Hovius, N., Emberson, R., Caves Rugenstein, J., Galy, A., Hassenruck-Gudipati, H., & Chang, J. M. (2021). Co-variation of silicate, carbonate and sulfide weathering drives CO2 release with erosion. Nature Geoscience, 14(4), 211-216.
Burke, A., Present, T. M., Paris, G., Rae, E. C. M., Sandilands, B. H., Gaillardet, J., Peucker-Ehrenbrink, B., Fischer, W. W., McClelleand, J. W., Spencer, G. M., Voss, B. M., & Adkins, J. F. (2018). Sulfur isotopes in rivers: Insights into global weathering budgets, pyrite oxidation, and the modern sulfur cycle. Earth and Planetary Science Letters, 496, 168-177.
Calmels, D., Gaillardet, J., Brenot, A., & France-Lanord, C. (2007). Sustained sulfide oxidation by physical erosion processes in the Mackenzie River basin: Climatic perspectives. Geology, 35(11), 1003-1006.
Calmels, D., Galy, A., Hovius, N., Bickle, M., West, A. J., Chen, M. C., & Chapman, H. (2011). Contribution of deep groundwater to the weathering budget in a rapidly eroding mountain belt, Taiwan. Earth and Planetary Science Letters, 303(1-2), 48-58.
Chen, C. (1985). Chemical Characteristics of thermal waters in the Central Range of Taiwan, R.O.C. Chemical Geology, 49(1), 303–317.
Chung, C. H., You, C. F., & Chu, H. Y. (2009). Weathering sources in the Gaoping (Kaoping) river catchments, southwestern Taiwan: Insights from major elements, Sr isotopes, and rare earth elements. Journal of Marine Systems, 76(4), 433-443.
Das, A., Chung, C. H., & You, C. F. (2012). Disproportionately high rates of sulfide oxidation from mountainous river basins of Taiwan orogeny: Sulfur isotope evidence. Geophysical Research Letters, 39(12), 6.
Emberson, R., Hovius, N., Galy, A., & Marc, O. (2016). Oxidation of sulfides and rapid weathering in recent landslides. Earth Surface Dynamics, 4(3), 727-742.
Emberson, R., Galy, A., & Hovius, N. (2018). Weathering of reactive mineral phases in landslides acts as a source of carbon dioxide in mountain belts. Journal of Geophysical Research-Earth Surface, 123(10), 2695-2713.
Francois, L.M. & Walker, J.C.G. (1992). Modelling the Phanerozoic carbon cycle and climate, constraints from the 87Sr/86Sr isotopic ratio of seawater. American Journal of Science, 292(2), 81-135.
Gaillardet, J., Dupre, B., Louvat, P., & Allegre, C. J. (1999). Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chemical Geology, 159(1-4), 3-30.
Galy, A. & France-Lanord, C. (1999). Weathering processes in the Ganges-Brahmaputra basin and the riverine alkalinity budget. Chemical Geology, 159(1-4), 31-60.
Graedel, T. E. & Keene, W. C. (1996). The Budget and Cycle of Earth's Natural Chlorine, Pure and Applied Chemistry, 68(9), 1689-1697.
Ho, C. S. (1975). An introduction to the geology of Taiwan: Explanatory text of the geologic map of Taiwan, 153, Ministry of Economic Affairs, Taipei.
Horng, C. S., Huh, C. A., Chen, K. H., Lin, C. H., Shea, K. S., & Hsiung, K. H. (2012). Pyrrhotite as a tracer for denudation of the Taiwan orogen. Geochemistry, Geophysics, Geosystems, 13(8), Q08Z47.
Johnson, N. M., & Reynolds, R. C. (1972). Atmospheric Sulfur - Its Effect on Chemical Weathering of New England. Science, 177(4048), 514-516.
Lerman, A., Wu, L. L., & Mackenzie, F. T. (2007). CO2 and H2SO4 consumption in weathering and material transport to the ocean, and their role in the global carbon balance. Marine Chemistry, 106(1-2), 326-350.
Li, Y.H. (2000). A Compendium of Geochemistry, from Solar Nebula to the Human Brain. Princeton University Press, Princeton, N.J.
Li, Y. H., Chen, C. T. A. & Hung, J. J. (1997). Aquatic chemistry of lakes and reservoirs in Taiwan. Terrestrial Atmospheric and Oceanic Sciences, 8, 405–426.
Meybeck, M. (1987). Global Chemical-Weathering of Surficial Rocks Estimated from River Dissolved Loads. American Journal of Science, 287(5), 401-428.
Meyer, K. J., Carey, A. E., & You, C. F. (2017). Typhoon impacts on chemical weathering source provenance of a High Standing Island watershed, Taiwan. Geochimica Et Cosmochimica Acta, 215, 404-420.
Relph, K. E., Stevenson, E. I., Turchyn, A. V., Antler, G., Bickle, M. J., Baronas, J., J. Jotautas, Darby, S. E., Parsons, D. R., & Tipper, E. T. (2021). Partitioning riverine sulfate sources using oxygen and sulfur isotopes: Implications for carbon budgets of large rivers. Earth and Planetary Science Letters, 567(2), 116957
Siever, R. (1968), Sedimentological consequences of a steady-state ocean-atmosphere. Sedimentology, 11, 5-29.
Taylor, B. E., Wheeler, M. C., & Nordstrom, D. K. (1984). Stable Isotope Geochemistry of Acid-Mine Drainage - Experimental Oxidation of Pyrite. Geochimica Et Cosmochimica Acta, 48(12), 2669-2678.
Torres, M., West, A. & Li, G. (2014) Sulphide oxidation and carbonate dissolution as a source of CO2 over geological timescales. Nature, 507(7492), 346–349.
Walker, J. C. G., Hays, P. B., & Kasting, J. F. (1981). A Negative Feedback Mechanism for the Long-Term Stabilization of Earths Surface-Temperature. Journal of Geophysical Research, 86(C10), 9776-9782.
Wang, P. L., Tu, T. H., Lin, L. H. et al. (2024) Microbial communities modulate chemical weathering and carbon dioxide cycling in an active orogen in Taiwan. Communications Earth & Environment, 5(1), 174.
Wang, Y. J. (2019). The effect of chemical weathering on CO2 budget in the Beinan river system (In Chinses with English abstract). Graduate Institute of Oceanography, College of Science, National Taiwan University, Master’s thesis, 88.
Yen, T. P. (1959). The stratigraphic distribution of the bedded cupriferous pyrite deposits and manganese deposits in Taiwan. Mining Geology (Society of Mining Geologists Japan), 9(33), 19-24.
Yoshimura, K., Nakao, S., Noto, M., Inokura, Y., Urata, K., Chen, M., & Lin, P. W. (2001). Geochemical and stable isotope studies on natural water in the Taroko Gorge karst area, Taiwan - chemical weathering of carbonate rocks by deep source CO2 and sulfuric acid. Chemical Geology, 177(3-4), 415-430.
Yui, T. F., Chu, H. T., Wang, Y. H., & Yeh, T. H. (1997). Sulfide-bearing Quartz Veins in the Szeleng Sandstone, Chinmienshan, Northeastern Taiwan: A Preliminary Study on Fluid Inclusions and Stable Isotopes (In Chinses with English abstract). Journal of the Geological Society of China, 40(4), 723-742.
Encyclopaedia Britannica. https://www.britannica.com/science/water-cycle
First River Management Branch, Water Resources Agency, Ministry of Economic Affairs, https://www.wra01.gov.tw/Default.aspx .
Geological Survey and Mining Management Agency (formally Central Geological Survey, CGS), Ministry of Economic Affairs, Taiwan. https://twgeoref.gsmma.gov.tw/GipOpenWeb/wSite/lp?ctNode=339&mp=106
Water Education Foundation. https://www.watereducation.org/
Water Resources Department, Yilan County. https://wres.e-land.gov.tw/cp.aspx?n=79FB5DB9DC2E17BE
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97059-
dc.description.abstract河流系統是沉積物由造山帶輸送至海洋的主要管道,因此河水的化學組成對於自然界的物質循環具有重要的意義。近年有研究指出臺灣地區受到高侵蝕與風化速率影響,河流中具有相當高的硫酸根濃度,可能與變質岩岩層中硫化鐵礦物的溶解有關。然而河流流經不同之岩層是否的確會出現不同的化學組成,過去並沒有系統性的研究。因此本研究嘗試採集流經不同岩層的河水樣本,藉由分析河水中的陰陽離子組成,探討河水的化學組成與其可能的地質控制。
本研究以蘭陽溪的上游數個主要支流作為研究區域,河水採樣點根據支流所流經的地層差異挑選。其中西北側源自雪山山脈的支流主要流經四稜砂岩、乾溝層與西村層,岩性以砂岩、硬頁岩、變質砂岩為主。東南側中央山脈發源的支流流過以硬頁岩、板岩、千枚岩為主的廬山層,其中武荖坑溪更流經變質程度較高的大南澳片岩。另一方面,雨水及溫泉水的注入亦影響河水的離子變化,因此我們亦採集分析雨水與溫泉水,以推算來自岩層之離子貢獻。
本研究共採集11條支流的河水樣本,並收集蘭陽平原雨水與芃芃溫泉、天狗溪噴泉的溫泉水進行分析。於2022年至2023年間進行六次採樣,水樣經過處理後利用離子層析儀 (IC) 與感應耦合電漿質譜儀 (ICP-MS) 分別獲得陰離子與陽離子濃度數據。根據前人建立的端成分模型,蘭陽溪流域河水的陽離子成分均來自矽酸鹽岩與碳酸鹽岩的化學風化及混合,證明此處沒有蒸發鹽礦的影響。硫酸根濃度較高的樣本幾乎都臨近或流經溫泉露頭,暗示硫酸根受到溫泉的影響可能較大。唯在保養溪,除潛在未發現的溫泉影響外,現地的觀察顯示其高濃度之硫酸根亦可能來自四稜砂岩中硫化鐵礦物的風化。武荖坑溪之陽離子組成與其他溪流相差甚遠,可能與其流經之大南澳片岩中的大理岩有關。基於得到的結果,在蘭陽溪流域,只有當河床底岩差異夠明顯且流域不受溫泉影響時,受到底岩岩性影響之河水離子組成差異才會比較明顯。
zh_TW
dc.description.abstractRiver systems play a crucial role in various natural cycles, thus the chemical compositions of river water are important to understanding the circulations of matter in nature. Some previous studies reported high sulfate concentrations in rivers in southern Taiwan, and suggest the weathering of sulfide minerals as the cause. Despite this, no systematic research has been conducted to examine any links between rivers and the rock formations they run through. This study analyzes samples from rivers of basins with varying lithology, and aims to discuss the possible geological controls of the chemical compositions with major ions analysis.
The study area focuses on upstream tributaries along the Lanyang River in northeastern Taiwan. The basins of these tributaries spread across the Hsuehshan Range and the Central Range. These ranges differ in lithology, with the Central Range consisting of higher-grade and older metamorphic rocks.
We sampled 11 rivers and 2 hot springs from 2022 to 2023. In addition, rainwater samples were collected to represent atmospheric input for calibration. We obtained anion and cation concentrations using Ion Chromatography (IC) and Induced Coupled Plasma Mass Spectrometer (ICP-MS) respectively. Based on the cation end-member model, riverine cations originate from a mixture of silicate and carbonate weathering, while evaporite weathering is absent in this region. Anion results show a potential correlation between high sulfate concentrations and hot springs. At Baoyang River, however, apart from the possible influence of an unknown hot spring, field observations suggest that its high sulfate concentrations may be contributed by the weathering of sulfides in the Szeleng Sandstone. The cation characteristics of WRK stand out from the other rivers, which is likely due to marbles in the Tananao Schist in its drainage basin. Based on the results, in the Lanyang River region, the influence of bedrock lithology on the chemical composition of river waters is only more obvious when the bedrock is distinctive enough, and there is no hot spring influence in the drainage basin.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-26T16:15:52Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-02-26T16:15:52Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
致謝 ii
中文摘要 iii
Abstract iv
Chapter 1 Introduction 1
1.1 Motives 1
1.1.1 Chemical weathering of rocks and minerals 1
1.1.2 Sulfate and chemical weathering in Taiwanese riverine waters 5
1.2 Purpose 9
Chapter 2 Background 11
2.1 Sources of major ions 11
2.1.1 Surface runoff 11
2.1.2 Chemical weathering of silicates and carbonates 12
2.1.3 Sources of riverine sulfate 16
2.2 Study area 18
2.2.1 Geological Background 18
2.2.2 Sample sites 21
Chapter 3 Methods 25
3.1 Field work 26
3.1.1 Water collection 26
3.1.2 Rainwater 30
3.1.3 River water & hot spring 31
3.1.4 On site observations and measurements 31
3.2 Chemical analysis 33
3.2.1 Anion Analysis 33
3.2.2 Cation Analysis 35
3.2.3 Data analysis 37
Chapter 4 Results 39
4.1 Field observations 39
4.1.1 River and hot spring collection 39
4.1.2 On-site observations 41
4.1.3 On-site measurements 43
4.2 Ion results 49
4.2.1 Measured concentration results 49
4.2.2 Rainwater results 51
4.2.3 Atmospheric correction with chloride 54
4.2.4 Corrected riverine concentration results 58
4.2.5 Hot spring water 62
Chapter 5 Discussion 64
5.1 Water – rock relationships 64
5.1.1 Anthropogenic and atmospheric sources of sulfate 64
5.1.2 Cation end-member 67
5.1.3 Characteristics of sulfate concentration 71
5.1.4 Sulfate versus cation 73
5.2 Hot spring influences 79
5.3 Noticeable cases 85
5.3.1 BY 85
5.3.2 WRK 87
Chapter 6 Conclusions 88
References 90
Appendix 97
-
dc.language.isoen-
dc.subject硫酸根zh_TW
dc.subject蘭陽溪zh_TW
dc.subject化學風化zh_TW
dc.subject硫化礦物zh_TW
dc.subject河水化學zh_TW
dc.subjectriver chemistryen
dc.subjectsulfateen
dc.subjectsulfideen
dc.subjectLanyang Riveren
dc.subjectchemical weatheringen
dc.title蘭陽溪流域河水的化學組成與其可能之地質控制zh_TW
dc.titleRiver chemistry of Lanyang River and its possible geological controlsen
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree碩士-
dc.contributor.coadvisor王興麟zh_TW
dc.contributor.coadvisorShing-Lin Wangen
dc.contributor.oralexamcommittee王珮玲;朱美妃;林玉詩zh_TW
dc.contributor.oralexamcommitteePei-Ling Wang;Mei-Fei Chu;Yu-Shih Linen
dc.subject.keyword蘭陽溪,化學風化,河水化學,硫酸根,硫化礦物,zh_TW
dc.subject.keywordLanyang River,chemical weathering,river chemistry,sulfate,sulfide,en
dc.relation.page112-
dc.identifier.doi10.6342/NTU202500428-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-02-10-
dc.contributor.author-college理學院-
dc.contributor.author-dept地質科學系-
dc.date.embargo-lift2025-02-27-
顯示於系所單位:地質科學系

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf4.51 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved