請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9691完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉致為 | |
| dc.contributor.author | Chu-Hsuan Lin | en |
| dc.contributor.author | 林楚軒 | zh_TW |
| dc.date.accessioned | 2021-05-20T20:35:50Z | - |
| dc.date.available | 2013-08-04 | |
| dc.date.available | 2021-05-20T20:35:50Z | - |
| dc.date.copyright | 2008-08-04 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-07-30 | |
| dc.identifier.citation | chap1
[1] E. Finkman, S. Maimon, V. Immer, G. Bahir, S. E. Schacham, F. Fossard, F. H. Julien, J. Brault and M. Gendry, “Polarized front-illumination response in intraband quantum dot infrared photodetectors at 77 K,” Phys. Rev. B, vol. 63, p. 045323, Jan. 2001. [2] J. S. Park, T. L. Lin, E. W. Jones, H. M. Del Castillo and S. D. Gunapala, “Long-wavelength stacked SiGe/Si heterojunction internal photoemission infrared detectors using multiple SiGe/Si layers,” Appl. Phys. Lett., vol. 64, no. 18, pp. 2370-2372, Mar. 1994. [3] Harry J. R. Dutton, Understanding Optical Communications, http://www.redbooks.ibm.com , Sep. 1998. [4] S.-Y. Deng, J. Y.-M. Lee, J.-T. Lai, Y.-D. Chih, T.-P. Sun, and H.-M. Hong, “Front-illuminated long wavelength multiple quantum-well infrared photodetectors with backside gratings,” J. Appl. Phys., vol. 78, no. 11, pp. 6822-6825, Dec. 1995. [5] M. O. Manasreh, Semiconductor Quantum Wells and Superlattices for Long-Wavelength Infrared Detectors, (Artech Houce, Norwood, 1993), p. 2. [6] S. Chakrabarti, X. H. Su, P. Bhattacharya, G. Ariyawansa, and A. G. U. Perera, “Characteristics of a Multicolor InGaAs-GaAs Quantum-Dot Infrared Photodetector,” IEEE Photon. Technol. Lett., vol. 17, no. 1, pp. 178-180, Jan. 2005. [7] W. Zhang, H. Lim, M. Taguchi, S. Tsao, B. Movaghar, and M. Razeghi, “High-detectivity InAs quantum-dot infrared photodetectors grown on InP by metal-organic chemical-vapor deposition,” Appl. Phys. Lett., vol. 86, no. 19, p. 191103, May 2005. [8] J. L. Liu, W. G. Wu, A. Balandin, G. L. Jin, and K. L. Wang, “Intersubband absorption in boron-doped multiple Ge quantum dots,” Appl. Phys. Lett., vol. 74, no. 2, pp. 185-187, Jan. 1999. [9] M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, David H. Albonesi, Eby G. Friedman, and Philippe M. Fauchet, “On-chip optical interconnect roadmap: challenges and critical directions,” IEEE J. Sel. Topics Quantum Electron., vol. 12, no. 6, pp. 1699-1705, Nov. 2006. [10] B.-C. Hsu, W.-C. Hua, C.-R. Shie, C.-C. Lai, K.-F. Chen and C. W. Liu, “A novel Ge MOS detector for 1.3 μm and 1.55 μm light wave communication,” in Proc. Meeting of Electrochemical Society, Philadelphia, PA, 2002, p. 662. [11] R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Selected Topics in Quantum Electrons, vol. 12, no. 6, pp. 1678-1687, 2006. [12] J. Shewchun, D. Burk, and M. B. Spitzer, “MIS and SIS solar cells,” IEEE Trans. Electron Devices, vol. 27, no. 4, pp. 705-716, Apr. 1980. [13] K.-C. Lee and J.-G. Hwu, “17.3% efficiency metal-oxide-semiconductor (MOS) solar cells with liquid-phase-deposited silicon dioxide,” IEEE Electron Device Lett., vol. 18, no. 11, pp. 565-567, Nov. 1997. [14] S. Altundal, A. Tataroglu, and I. Dokme, “Density of interface states, excess capacitance and series resistance in the metal-insulator-semiconductor (MIS) solar cells,” Solar Energy Materials & Solar Cells, vol. 85, pp. 345-358, 2005. chap2 [1] A. Rogalski, “Quantum well photoconductors in infrared detector technology,” J. Appl. Phys., vol. 93, no. 8, pp. 4355-4391, Apr. 2003. [2] M. D. Kim, S. K. Noh, S. C. Hong, and T. W. Kim, “Formation and optical properties of InAs/GaAs quantum dots for applications as infrared photodetectors operating at room temperature,” Appl. Phys. Lett., vol. 82, no. 4, pp. 553-555, Jan. 2003. [3] A. I. Yakimov, A. V. Dvurechenskii, A. I. Nikiforov, and Yu. Yu. Proskuryakov, “Interlevel Ge/Si quantum dot infrared photodetector,” J. Appl. Phys., vol. 89, no. 10, pp. 5676-5681, May 2001. [4] R. People, J. C. Bean, C.G. Bethea, S. K. Sputz, and L. J. Peticolas, “Broadband (8-14μm), normal incidence, pseudomorphic GexSi1-x/Si strained-layer infrared photodetector operating between 20 and 77 K,” Appl. Phys. Lett. vol. 61, no. 9, pp. 1122-1124, Aug. 1992. [5] M. Yang, J. Schaub, D. Rogers, M. Ritter, K. Rim, J. Welser, and B. Park, “High speed silicon lateral trench detector on SOI substrate,” International Electron Device Meeting, pp. 547-550, 2001. [6] J. Kolodzey, T. N. Adam, R. T. Troeeger, P.-C. Lv, S. K. Ray, G. Looney, A. Rosen, M. S. Kagan, and Irina N. Yassievich, “The design and operation of TeraHertz sources based on silicon germanium Alloys,” Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems,9-11th April, 2003, Grainau, Germany. [7] A. I. Yakimov, A. V. Dvurechenskii, A. I. Nikiforov, Yu. Yu. Proskuryakov, “Interlevel Ge/Si quantum dot infrared photodetector,” J. Appl. Phys., vol. 89, no. 10, pp. 5676-5681, May 2001. [8] B.-C. Hsu, S. T. Chang, T.-C. Chen, P.-S. Kuo, P. S. Chen, Z. Pei, and C. W. Liu, “A high efficient 820 nm MOS Ge quantum dot photodetector,” IEEE Electron Device Lett., vol.24, no. 5, pp. 318-320, May 2004. [9] R. R. Lieten, S. Degroote, M. Kuijk, and G. Borghs, “Ohmic contact formation on n-type Ge,” Appl. Phys. Lett., vol. 92, no. 2, p. 022106, Jan. 2008. [10] T. Nishimura, K. Kita, and A. Toriumi, “Effect of ultra-thin Al2O3 insertion on Fermi-level pinning at metal/Ge interface,” International Conference on Solid State Devices and Materials, 2007, Tsukuba, pp. 842-843. [11] T. Nishimura, K. Kita, and A. Toriumi, “Evidence for strong Fermi-level pinning due to metal-induced gap states at metal/germanium interface,” Appl. Phys. Lett., vol. 91, no. 12, p. 123123, Sep. 2007. [12] K. H. Schmidt, G. Medeiros-Ribeiro, M. Oestreich, P. M. Petroff and G. H. Dohler, “Carrier relaxation and electronic structure in InAs self-assembled quantum dots,” Phys. Rev. B, vol. 54, no. 16, pp. 11346-11353, Oct. 1996. [13] J. L. Liu, W. G. Wu, A. Balandin, G. L. Jin and K. L. Wang, “Intersubband absorption in boron-doped multiple Ge quantum dots,” Appl. Phys. Lett. vol. 74, no. 2, pp. 185-187, Jan. 1992. [14] M. H. Liao, C.-H. Lin, C.-H. Lee, T.-H. Cheng, T.-H. Guo, and C. W. Liu, “Electroluminescence from the Si/Ge metal-oxide-semiconductor Tunneling Diodes,” 210th Meeting of Electrochemical Society (ECS), Cancun, Mexico, No. 1278 (2006). [15] O. G. Schmidt and K. Eberl, “Multiple layers of self-asssembled Ge/Si islands: Photoluminescence, strain fields, material interdiffusion, and island formation,” Phys. Rev. B, vol. 61, no. 20, pp. 13721-13729, May 2000. [16] P.-S. Kuo, C.-H. Lin, C.-Y. Peng, Y.-C. Fu, and C. W. Liu, “Transport mechanism of SiGe dot MOS tunneling diodes,” IEEE Electron Device Lett., vol.28, no. 7, pp.596-598, July 2007. [17] B.-C. Hsu, C.-H. Lin, P.-S. Kuo, S. T. Chang, P. S. Chen, C. W. Liu, J.-H. Lu, and C. H. Kuan, “Novel MIS Ge-Si quantum dot infrared photodetectors,” IEEE Electron Device Lett., vol.25, no. 8, pp.544-546, Aug. 2004. [18] C.-H. Lin, B.-C. Hsu, M. H. Lee, and C. W. Liu, “A comprehensive study of gate inversion current of metal-oxide-silicon tunneling diodes,” IEEE Trans. Electron Devices, vol. 48, no. 9, pp. 2125-2130, Sept. 2001. [19] A. D. Stiff, S. Krishna, P. Bhattacharya, and S. W. Kennerly, “Normal-incidence, high-temperature, mid-infrared, InAs-GaAs vertical quantum-dot infrared photodetector,” IEEE J. Quantum Electron., vol. 37, no. 11, pp. 1412-1419, Nov.2001. chap3 [1] M. D. Kim, S. K. Noh, S. C. Hong, and T. W. Kim, “Formation and optical properties of InAs/GaAs quantum dots for applications as infrared photodetectors operating at room temperature,” Appl. Phys. Lett., vol. 82, no. 4, pp. 553-555, Jan. 2003. [2] A. I. Yakimov, A. V. Dvurechenskii, A. I. Nikiforov, and Yu. Yu. Proskuryakov, “Interlevel Ge/Si quantum dot infrared photodetector,” J. Appl. Phys., vol. 89, no. 10, pp. 5676-5681, May 2001. [3] C. J. Chen, K. K. Choi, W. H. Chang, and D. C. Tsui, “Two-color corrugated quantum-well infrared photodetector for remote temperature sensing,” Appl. Phys. Lett., vol. 72, no. 1, pp. 7-9, Jan. 1998. [4] S. Krishna , S. Raghavan, G. von Winckel, A. Stintz, G. Ariyawansa, S. G. Matsik, and A. G. U. Perera, “Three-color (λp1~3.8 μm,λp2~8.5 μm, and λp3~23.2 μm) InAs/InGaAs quantum-dots-in-a-well detector,” Appl. Phys. Lett., vol. 83, no. 14, pp. 2745-2747, Oct. 2003. [5] G. Ariyawansa, A. G. Unil Perera, G. S. Raghavan, G. von Winckel, A. Stintz, and S. Krishna, “Effect of well width on three-color quantum dots-in-a-well infrared detectors,” IEEE Photon. Technol. Lett., vol. 17, no. 5, pp. 1064-1066, May. 2005. [6] S. Chakrabarti, X. H. Su, P. Bhattacharya, G. Ariyawansa, A. G. Unil Perera, “Characteristics of a multicolor InGaAs-GaAs quantum-dot infrared photodetector,” IEEE Photon. Technol. Lett., vol. 17, no. 1, pp. 178-180, Jan. 2005. [7] S. Krishna , D. Forman, S. Annamalai, P. Dowd, P. Varangis, T. Tumolillo, Jr, A. Gray, J. Zilko, K. Sun, M. Liu, J. Campbell, and D. Carothers, “Demonstration of a 320x256 two-color focal plane array using InAs/InGaAs quantum dots in well detectors,” Appl. Phys. Lett., vol. 86, no. 19, p. 193501, May 2005. [8] S. D. Gunapala, S. V. Bandara, C. J. Hill, D. Z. Ting, J. K. Liu, S. B. Rafol, E. R. Blazejewski, J. M. Mumolo, S.A. Keo, S. Krishna, Y. C. Chang, and C. A. Shott, “Long-wavelength infrared (LWIR quantum dot infrared photodetector (QDIP) focal plane array),” Proc. Of SPIE 606, 62060J (2006). [9] G. Ariyawansa, M. B. M. Rinzan, D. G. Esaev, S. G. Matsik, G. Hastings, A. G. U. Perera, H. C. Liu, B. N. Zvonkov, and V. I. Gavrilenko, “Near- and far-infrared p-GaAs dual-band detector,” Appl. Phys. Lett., vol. 86, no. 14, p. 143510, Apr. 2005. [10] R. People, J. C. Bean, C.G. Bethea, S. K. Sputz, and L. J. Peticolas, “Broadband (8-14μm), normal incidence, pseudomorphic GexSi1-x/Si strained-layer infrared photodetector operating between 20 and 77 K,” Appl. Phys. Lett. vol. 61, no. 9, pp. 1122-1124, Aug. 1992. [11] J.-H. Zhu, D.-W. Gong, B. Zhang, F. Lu, C. Sheng, H.-H. Sun, and X. Wang, “Hole confinement in boron δ-doped silicon quantum wells studied by deep-level transient spectroscopy,” Phys. Rev. B, vol. 54, no. 4, pp. 2662-2666, July 1996. [12] M. H. Liao, C.-H. Lin, C.-H. Lee, T.-H. Cheng, T.-H. Guo, and C. W. Liu, “Electroluminescence from the Si/Ge metal-oxide-semiconductor tunneling diodes,” 210th Meeting of Electrochemical Society (ECS), Cancun, Mexico, No. 1278 (2006). [13] O. G. Schmidt and K. Eberl, “Multiple layers of self-asssembled Ge/Si islands: Photoluminescence, strain fields, material interdiffusion, and island formation,” Phys. Rev. B, vol. 61, no. 20, pp. 13721-13729, May 2000. [14] G. Xia, M. Canonico, J. L. Hoyt, “Interdiffusion in SiGe/Si epitaxial heterostructures,” International SiGe Technology and Device Meeting (ISTDM), abstract 28 (2006). [15] B. F. Levine, “Quantum-well infrared photodetectors,” J. Appl. Phys., vol. 74, no. 8, pp. R1-R81, Oct. 1993. [16] V. D. Jovanovic, P. Harrison, Z. Ikonic, and D. Indjin, “Physical model of quantum-well infrared photodetectors,” J. Appl. Phys., vol. 96, no. 1, pp. 269-272, July 2004. [17] L. C. Lenchyshyn, H. C. Liu, M. Buchanan, and Z. R. Wasilewski, “An asymmetric quantum well infrared photodetector with voltage-tunable narrow and broad-band response,” J. Appl. Phys., vol. 79, no. 6, pp. 3307-3311, Mar. 1996. [18] S. Tong, F. Liu, A. Khitun, K. L. Wang, and J. L. Liu, “Tunable normal incidence Ge quantum dot midinfrared detectors,” J. Appl. Phys., vol. 96, no. 1, pp. 773-776, July 2004. [19] A. L. Rosa, L. M. R. Scolfaro, G. M. Sipahi, R. Enderlein, and J. R. Leite, “Hole band structure of p-type delta-doping quantum wells in silicon,” Microelectronic Engineering 43-44, pp. 489-496, 1998. [20] S. M. Sze, Physics of Semiconductor Devices, 2nd Ed. (Wiley, New York, 1985), part 1, p. 21. [21] G. Karunasiri, “Intersubband transition in Si-based quantum wells and application for infrared photodetectors,” Jpn. J. Appl. Phys., vol. 33, Part 1, no. 4B, pp. 2401-2411, Apr. 1994. [22] Z. Chen, C. M. Hu, P. L. Liu, G. L. Shi, and S. C. Shen, “High-lying thermally excited subbands of two-dimensional electron gases in GaAs/AlGaAs heterojunction for modulation-doped field-effect transistor,” J. Appl. Phys., vol. 82, no. 8, pp. 3900-3905, Oct. 1997. [23] D. L. Auble, and T. P. Meyers, “An open path, fast response infrared absorption gas analyzer for H2O and CO2,” Boundary-Layer Meteorology, vol. 59, p. 243, 1992. [24] M. Kong, Z. Luo, Y. Lu, and W. J. Fan, “Inspection of Can’s emission using infrared spectrum technique,” Journal of Physics : Conference Series 48, p. 1186, 2006. [25] A. D. Stiff, S. Krishna, P. Bhattacharya, and S. W. Kennerly, “Normal-incidence, high-temperature, mid-infrared, InAs-GaAs vertical quantum-dot infrared photodetector,” IEEE J. Quantum Electron., vol. 37, no. 11, pp. 1412-1419, Nov.2001. chap4 [1] H. Park, A. W. Fang, S. Kodama, and J. E. Bowers, “Hybrid silicon evanescent laser fabricated with a silicon waveguide and III-V offset quantum wells” Optics Express, vol. 13, no. 23, pp. 9460-9464, Nov. 2005. [2] C. L. Schow, R. Li, J. D. Schaub, and J. C. Campbell, “Design and implementation of high-speed planar Si photodiodes fabricated on SOI substrates” IEEE J. Quantum Electron., vol. 35, no. 10, pp. 1478-1482, Oct. 1999. [3] S. M. Csutak, J. D. Schaub, W. E. Wu, R. Shimer, and J. C. Campbell, “CMOS-compatible high-speed planar silicon photodiodes fabricated on SOI substrates” IEEE J. Quantum Electron., vol. 38, no.2, pp.193- 196, Feb. 2002. [4] B.-C. Hsu, S. T. Chang, T.-C. Chen, P.-S. Kuo, P. S. Chen, Z. Pei, and C. W. Liu, “A high efficient 820 nm MOS Ge quantum dot photodetector” IEEE Electron Device Lett., vol. 24, no. 5, pp. 318-320, May 2003. [5] B.-C. Hsu, W.-C. Hua, C.-R. Shie, C.-C. Lai, K.-F. Chen and C. W. Liu, “A novel Ge MOS detector for 1.3 μm and 1.55 μm light wave communication” in Proc. Meeting of Electrochemical Society, Philadelphia, PA, 2002, p. 662. [6] G. Dehlinger, S. J. Koester, J. D. Schaub, J. O. Chu, Q. C. Ouyang, and A. Grill, “High-speed germanium-on-SOI lateral PIN photodiodes” IEEE Photon. Technol. Lett., vol. 16, no. 11, pp. 2547-2549, Nov. 2004. [7] E. Kasper, M. Oehme, J. Werner, M. Jutzi and M. Berroth, “Fast Ge p-i-n photodetectors on Si” in Proc. International SiGe Technology and Device Meeting (ISTDM), Princeton, NJ, 2006, pp. 38-39. [8] F. Fournel, H. Moriceau, B. Aspar, K. Rousseau, J. Eymery, J.-L. Rouviere, and N. Magnea, “Accurate control of the misorientation angles in direct wafer bonding” Appl. Phys. Lett., vol. 80, no. 5, pp. 793-795, Feb. 2002. [9] S. W. Bedell, and W. A. Lanford, “Investigation of surface blistering of hydrogen implanted crystals” J. Appl. Phys., vol. 90, no. 3, pp. 1138-1146, Aug. 2001. [10] C.-Y. Yu, C.-Y. Lee, C.-H. Lin, and C. W. Liu, “Low-temperature fabrication and characterization of Ge-on-insulator structures,” Appl. Phys. Lett., vol. 89, no. 10, p. 101913, Sep. 2006. [11] M. H. Liao, C.-Y. Yu, C.-F. Huang, C.-H. Lin, C.-J. Lee, M.-H. Yu, S. T. Chang, C.-Y. Liang, C.-Y. Lee, T.-H. Guo, C.-C. Chang, and C. W. Liu, “2 μm emission from Si/Ge heterojunction LED and up to 1.55 μm detection by GOI detector with strain-enhanced features” in IEDM Tech. Dig., 2005, pp. 1023-1026. [12] S. M. Sze, Physics of Semiconductor Devices (2nd Edition), Taipei, Taiwan, R.O.C., 1985, p. 304. [13] O. Madelung, Data in Science and Technology, Semiconductors (Springer, New York, 1991). [14] C.-H. Lin, B.-C. Hsu, M. H. Lee, and C. W. Liu, “A comprehensive study of gate inversion current of metal-oxide-silicon tunneling diodes,” IEEE Trans. Electron Devices, vol. 48, no. 9, pp. 2125-2130, Sept. 2001. [15] L. Colace, G. Masini, and G. Assanto, “Ge-on-Si approaches to the detection of near-infrared light,” IEEE J. Quantum Electron., vol. 35, no. 12, pp. 1843-1852, Dec. 1999. [16] O. I. Dosunmu, D. D. Cannon, M. K. Emsley, B. Ghyselen, J. Liu, L. C. Kimerling, and M. S. Unlu, “Resonant cavity enhanced Ge photodetectors for 1550 nm operation on reflecting Si substrates,” IEEE J. Sel. Top. Quantum Electron., vol. 10, no. 4, pp. 694-701, July 2004. [17] Y. Ishikawa, K. Wada, D. D. Cannon, J. Liu, H.-C. Luan, and L. C. Kimerling, “Strain-induced band gap shrinkage in Ge grown on Si substrate,” Appl. Phys. Lett. vol. 82, no. 13, pp. 2044-2046, March 2003. [18] S. J. Koester, J. D. Schaub, G. Dehlinger, and J. O. Chu, “Germanium-on-SOI infrared detectors for integrated photonic applications,” IEEE J. Sel. Top. Quantum Electron., vol. 12, no. 6, pp. 1489-1502, Nov. 2006. [19] X. Chen, S. Joshi, J. Chen, T. Ngai, and S. K. Banerjee, “MOS capacitors on epitaxial Ge-Si1-xGex with high-k dielectrics using RPCVD” IEEE Trans. Electron Devices, vol. 51, no. 9, pp. 1532-1534, Sept. 2004. [20] J. Liu, D. D. Cannon, K. Wada, Y. Ishikawa, S. Jongthammanurak, D. T. Danielson, J. Michel, and L. C. Kimerling, “Tensile strained Ge p-i-n photodetectors on Si platform for C and L band telecommunications,” Appl. Phys. Lett., vol. 87, no. 1, p. 011110, July 2005. [21] M. Morse, O. Dosunmu, G. Sarid, and Y. Chetrit, “Performance of Ge-on-Si p-i-n photodetectors for standard receiver modules” IEEE Photon. Technol. Lett., vol. 18, no. 23, pp. 2442-2444, Dec. 2006. [22] R. R. Lieten, S. Degroote, M. Kuijk, and G. Borghs, “Ohmic contact formation on n-type Ge,” Appl. Phys. Lett., vol. 92, no. 2, p. 022106, Jan. 2008. [23] T. Nishimura, K. Kita, and A. Toriumi, “Effect of ultra-thin Al2O3 insertion on Fermi-level pinning at Metal/Ge interface,” International Conference on Solid State Devices and Materials, 2007, Tsukuba, pp. 842-843. [24] T. Nishimura, K. Kita, and A. Toriumi, “Evidence for strong Fermi-level pinning due to metal-induced gap states at metal/germanium interface,” Appl. Phys. Lett., vol. 91, no. 12, p. 123123, Sep. 2007. [25] C. W. Liu, W. T. Liu, M. H. Lee, W. S. Kuo, and B. C. Hsu, “A novel photodetector using MOS tunneling structures” IEEE Electron Device Lett., vol. 21, no. 6, pp. 307-309, Jun. 2000. [26] M. H. Liao, T. C. Chen, M. J. Chen, and C. W. Liu, “Electroluminescence from metal/oxide/strained-Si tunneling diodes,” Appl. Phys. Lett. vol. 86, no. 22, p. 223502, May 2005. [27] M. H. Liao, P.-S. Kuo, S.-R. Jan, S.-T. Chang, C. W. Liu, “Strained Pt Schottky diodes on n-type Si and Ge,” Appl. Phys. Lett., vol. 88, no. 14, p. 143509, Apr. 2006. [28] M. El. Kurdi, P. Boucaud, S. Sauvage, G. Fishman, O. Kermarrec, Y. Campidelli, D. Bensahel, G. Saint-Girons, I. Sagnes, and G. Patriarche, “Silicon-on-insulator waveguide photodetector with Ge/Si self-assembled islands,” J. Appl. Phys., vol. 92, no. 4, pp. 1858-1861, Aug. 2002. [29] J.-S. Choe, Y.-H. Kwon, K. Kim, J. Kim, S.-C. Kong, and Y.-W. Choi, “Traveling-wave photodetector with asymmetrically heterostructured intrinsic region,” Jpn. J. Appl. Phys., vol. 43, no. 8A, pp. 5105-5109, Aug. 2004. chap5 [1] O. I. Dosunmu, D. D. Cannon, M. K. Emsley, B. Ghyselen, J. Liu, L. C. Kimerling, and M. S. Unlu, “Resonant cavity enhanced Ge photodetectors for 1550 nm operation on reflecting Si substrates,” IEEE J. Sel. Top. Quantum Electron., vol. 10, no. 4, pp. 694-701, July 2004. [2] G. Dehlinger, S. J. Koester, J. D. Schaub, J. O. Chu, Q. C. Ouyang, and A. Grill, “High-speed germanium-on-SOI lateral PIN photodiodes” IEEE Photon. Technol. Lett., vol. 16, no. 11, pp. 2547-2549, Nov. 2004. [3] M. Rouviere, L. Vivien, X. Le Roux, J. Mangeney, P. Crozat, C. Hoarau, E. Cassan, D. Pascal, S. Laval, J.-M. Fedeli, J.-F. Damlencourt, J. M. Hartmann, and S. Kolev, “Ultrahigh speed germanium-on-silicon-on-insulator photodetectors for 1.31 and 1.55 µm operation,” Appl. Phys. Lett., vol. 87, no. 23, p. 231109, Nov. 2005. [4] L. Colace, G. Masini, F. Galluzzi, G. Assanto, G. Capellini, L. Di Gaspare, E. Palange, and F. Evangelisti, “Metal-semiconductor-metal near-infrared light detector based on epitaxial Ge/Si,” Appl. Phys. Lett., vol. 72, no. 24, p. 3175, June 1998. [5] M. Oehme, J. Werner, E. Kasper, M. Jutzi and M. Berroth, “High bandwidth Ge p-i-n photodetector integrated on Si,” Appl. Phys. Lett., vol. 89, no. 7, p. 071117, Aug. 2006. [6] K. Yamamoto, M. Yoshimi, Y. Tawada, Y. Okamoto, and A. Nakajima, “Thin film Si solar cell fabricated at low temperature,” J. Non-Crystalline. Solids., vol. 266-269, pp. 1082-1087, 2000. [7] S. Klein, F. Finger, R. Carius, H. Wagner, and M. Stutzmann, “Intrinsic amorphous and microcrystalline silicon by hot-wire-deposition for thin film solar cell applications,” Thin Solid Films, vol. 395, pp. 305-309, 2001. [8] A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovolt: Res. Appl., vol. 12, pp. 113-142, 2004. [9] W. H. Teh, Alastair Trigg, C. H. Tung, R. Kumar, N. Balasubramanian, and D. L. Kwong, “200 mm wafer-scale epitaxial transfer of single crystal Si on glass by anodic bonding of silicon-on-insulator wafers,” Appl. Phys. Lett., vol. 87, no. 7, p. 073107, Aug. 2005. [10] M. M. de Lima, Jr., R. G. Lacerda, J. Vilcarromero, and F. C. Marques, “Coefficient of thermal expansion and elastic modulus of thin films,” J. Appl. Phys., vol. 86, no. 9, pp. 4936-4942, Nov. 1999. [11] D. F. Gibbons, “Thermal expansion of some crystals with the diamond structure,” Phys. Rev., vol. 112, no. 1, pp. 136-140, Oct. 1958. [12] P. Abgrall, C. Lattes, V. Conedera, X. Dollat, S. Colin, and A. M. Gue, “A novel fabrication method of flexible and monolithic 3D microfluidic structures using lamination of SU-8 films,” J. Micromech. Microeng., vol. 16, pp. 113-121, Dec. 2006. [13] R. F. Saraf, H.-M. Tong, T. W. Poon, B. D. Silverman, P. S. Ho, and A. R. Rossi, “Thickness-direction thermal-expansion measurements,” J. Appl. Polymer Science, vol. 46, pp. 1329-1337, 1992. [14] J.-H. Zhao, T. Ryan, P. S. Ho, A. J. McKerrow, and W.-Y. Shih, “Measurement of elastic modulus, Poisson ratio, and coefficient of thermal expansion of on-wafer submicron films,” J. Appl. Phys., vol. 85, no. 9, pp. 6421-6424, May 1999. [15] M. Cai, D. Qiao, L. S. Yu, S. S. Lau, C. P. Li, L. S. Hung, Tony E. Haynes, K. Henttinen, Ilkka Suni, V. M. C. Poon, T. Marek and J. W. Mayer, “Single crystal Si layers on glass formed by ion cutting,” J. Appl. Phys., vol. 92, no. 6, pp. 3388-3392, Sep. 2002. [16] O. Madelung, Data in Science and Technology, Semiconductors (Springer, New York, 1991). [17] A. Nayfeh, C. O. Chui, K. C. Saraswat, and T. Yonehara, “Effects of hydrogen annealing on heteroepitaxial-Ge layers on Si: Surface roughness and electrical quality,” Appl. Phys. Lett., vol. 85, no. 14, pp. 2815-2817, Oct. 2004. [18] M. Heyns, M. Meuris, and M. Caymax, “Ge and III/V as enabling materials for future CMOS technologies,” ECS Transactions, vol.3, no. 7, pp. 511-518, 2006. [19] D. Pasquariello, and K. Hjort, “Plasma-assisted InP-to-Si low temperature wafer bonding,” IEEE J. Select. Topics Quantum Electron., vol. 8, no. 1, pp. 118-131, Jan. 2002. [20] H. Kobayashi, A. Asano, M. Takahashi, K. Yoneda, and Y. Todokoro, “Decrease in gap states at ultrathin SiO2/Si interfaces by crown-ether cyanide treatment,” Appl. Phys. Lett., vol. 77, no. 26, pp. 4392-4394, Dec. 2000. [21] M. A. Green, Solid-State Electronics, vol. 20, p. 265 ,1977. [22] C.-Y. Peng, F. Yuan, M. H. Lee, C.-Y. Yu, S. Maikap, S. T. Chang, P.-S. Kuo, and C. W. Liu, “Hole mobility enhancement of Si0.2Ge0.8 quantum well channel on Si,” Appl. Phys. Lett., vol. 90, no. 1, p. 012114, Jan. 2007. [23] C.-H. Lin, C.-Y. Yu, C.-C. Chang, M. H. Liao, C.-Y. Peng, and C. W. Liu, “Broadband SiGe/Si quantum dot infrared photodetector,” J. Appl. Phys., vol. 101, no. 3, p. 033117, 2007. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9691 | - |
| dc.description.abstract | 本論文中,我們利用金屬-絕緣層-半導體穿隧二極體來製作光偵測器。此金屬-絕緣層-半導體結構可降低暗電流。針對中遠紅外光,我們建構出矽鍺/矽量子點紅外光偵測器。針對近紅外光,我們利用晶圓黏合與聰明切技術得到單晶薄膜鍺光偵測器,並利用模擬軟體設計最佳化之單晶薄膜太陽電池。
首先,我們在量子點紅外光偵測器及量子井紅外光偵測器中加入極薄摻雜。比起未經摻雜的量子點紅外光偵測器,極薄摻雜之量子點紅外光偵測器可在3.5-5 μm 得到新的吸收區域。至於經極薄摻雜的量子井紅外光偵測器,因為其侷限能量較極薄摻雜之量子點紅外光偵測器小,截止波長延伸到7 μm,且有較大的響應度。 若在矽鍺/矽量子點紅外光偵測器的矽間隔層中引入極薄摻雜,我們則可得到一個寬帶頻譜。我們發現極薄摻雜在矽的價帶形成很淺的量子井,此量子井可運用在長波長紅外光的偵測。頻譜幾乎涵蓋大氣層可穿透的紅外光波段,所以利用此元件來達成寬帶偵測是可行的。利用計算,與其他元件的比較,以及光激發光的頻譜,我們可以分別指出量子點與極薄摻雜量子井中的躍遷與物理機制。 另一方面,利用晶圓黏合與聰明切技術可製作出絕緣層上鍺的金屬-絕緣層-半導體光偵測器,此晶圓黏合方法是個將光學與電子元件整合在同一個基座上的可行技術。因為鍺具有比矽小的能帶間隙,所以可偵測850 nm,1.3 μm 及1.55 μm 的紅外光。使用1.3 μm 厚的鍺層,可成功在1.3 μm 的紅外光波段達到0.23 A/W 的響應度。絕緣層上鍺元件利用高功函數的金屬(鉑)作為閘極金屬,成功的降低了暗電流,並藉由外加機械應力來提升光電流。值得注意的是暗電流幾乎不會隨著應力而變大。 最後,我們也成功的將單晶薄膜鍺轉移到玻璃基座上。雖然在聰明切的過程中,鍺會因為佈植過程而產生缺陷,但我們可藉由化學蝕刻將缺陷區去除,且將表面粗糙度降成4 nm。經過蝕刻的元件在可見光的光電流可提升成1.85 倍,暗電流還能降低至三十分之ㄧ。同樣的玻璃基板上鍺元件也被測試是否可運用在太陽電池的應用上。我們探討了此元件低效率的原因,並進一步利用模擬軟體設計出最佳化的結構,利用四層3 nm 厚的鍺之矽/鍺/矽薄膜結構可達到15.7%的效率。在未來可利用模擬結果及已有的製程技術來製作高效率單晶薄膜太陽電池。 | zh_TW |
| dc.description.abstract | In this dissertation, the Si/Ge metal-insulator-semiconductor (MIS) tunneling diodes are utilized as photodetectors, and it is proven that the MIS structure can
reduce the dark current. We have demonstrated mid- and long- wavelength infrared detection by MIS SiGe/Si quantum dot infrared photodetectors (QDIPs). On the other hand, single crystalline thin-film structures obtained by wafer bonding and smart-cut can be applied to MIS near-infrared detectors and solar cells. First, δ doping is introduced in the QDIPs and quantum well infrared photodetectors (QWIPs). The δ doping in QDIPs provides QDs with a sufficient hole concentration for infrared excitation. Compared to the un-doped QDIP, a new absorption region at 3.5-5 μm is observed. Due to the smaller confinement energy of the δ-doped SiGe QWIP as compared with the δ-doped SiGe QDIP, the cut-off wavelength extends to 7 μm and a larger responsivity is achieved. The broadband absorption of MIS SiGe/Si QDIPs is demonstrated using the boron δ doping in Si spacers. Shallow QWs can be formed in the valence band due to the boron δ doping in Si spacers and contribute to the long-wavelength infrared detection. The broadband spectrum covers most of the atmospheric transmission windows for infrared, so the broadband detection is feasible using this device. Calculations, comparison with other δ-doped QDIPs/QWIPs, and PL spectrum are studied to identify the transitions in QDs and δ-doping wells. On the other hand, Ge-on-insulator MIS detectors are fabricated by wafer bonding and smart-cut. Wafer bonding is an enabling technology to integrate both optical devices and electronic devices on the same substrate. Due to the small bandgap of Ge, the 850 nm, 1.3 μm, and 1.55 μm infrared can be detected. The responsivity of 0.23 A/W at the wavelength of 1.3 μm has been achieved using n-type Ge with the thickness of 1.3 μm. The large work function metal (Pt) is used for the gate electrode to reduce the dark current. External mechanical strain can further enhance the photocurrent with only slight degradation on the dark current. Finally, the single crystalline thin-film Ge on glass is also demonstrated. The implantation damage of transferred Ge on glass is removed by chemical etching, and the surface roughness is reduced to 4 nm. The defect removal reduces the dark currentby a factor of 30, and increases the visible-light photocurrent by a factor of 1.85. The GOG MIS structure is also tested for solar cell applications. The reason for low efficiency is discussed, and then the optimized structures are designed by simulation. An outstanding enhancement on efficiency can be achieved with the Si/Ge/Si structure. With four-layer 3-nm-thick Ge in the Si/Ge/Si solar cell, the efficiency will be as high as 15.7 %. Based on the simulation and technology, high efficiency thin film solar cells can be demonstrated in the future. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-20T20:35:50Z (GMT). No. of bitstreams: 1 ntu-97-F92943038-1.pdf: 3083291 bytes, checksum: baa254be33954fabf2092613f6245db9 (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | List of Figures VII
List of Tables XIII Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Dissertation Organization 4 References 6 Chapter 2 Delta-Doped MIS SiGe/Si Quantum Dot/Well Infrared Photodetectors 8 2.1 Introduction 8 2.2 LPD Oxide Deposition 9 2.3 Characteristics of MIS Photodetectors 10 2.4 Delta-Doped Quantum Dot Infrared Photodetector 14 2.5 Delta-Doped Quantum Well Infrared Photodetector 24 2.6 Summary 30 References 32 Chapter 3 MIS SiGe/Si Quantum Dot Infrared Photodetector with Delta Doping in Spacer 35 3.1 Introduction 35 3.2 Device Fabrication 36 3.3 Results and Discussion 42 3.3.1 Transitions in SiGe/Si QDs 42 3.3.2 PL Spectrum 48 3.3.3 Transitions in Boron Delta-Doping Wells 49 3.4 Summary 54 References 56 Chapter 4 Ge-on-Insulator MIS Detectors 60 4.1 Introduction 60 4.2 Device Fabrication 60 4.3 Near Infrared Detection 64 4.4 External Strain on Detectors 72 4.5 Impulse Response 74 4.6 Summary 77 References 78 Chapter 5 Single Crystalline Film on Glass for Detectors and Solar Cells 82 5.1 Introduction 82 5.2 Ge-on-Glass Detectors 83 5.2.1 Device Fabrication 83 5.2.2 Roughness Reduction 86 5.2.3 I-V Characteristics 94 5.2.4 Results and Discussion 95 5.3 Single Crystalline Film on Glass for Solar Cells 98 5.3.1 Ge-on-Glass Solar Cell 98 5.3.2 Optimized Structure 100 5.4 Summary 110 References 112 Chapter 6 Summary and Future Work 115 6.1 Summary 115 6.2 Future Work 117 Appendix Related Publication 120 | |
| dc.language.iso | en | |
| dc.title | 矽/鍺金屬-絕緣層-半導體光偵測器 | zh_TW |
| dc.title | Si/Ge Metal-Insulator-Semiconductor Photodetectors | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 王維新,胡振國,祁錦雲,何清華,洪志旺,賴聰賢,許博欽 | |
| dc.subject.keyword | 金絕半,矽鍺,量子點紅外光偵測器,極薄摻雜,聰明切, | zh_TW |
| dc.subject.keyword | MIS,SiGe,QDIP,delta-doping,smart-cut, | en |
| dc.relation.page | 122 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2008-07-30 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電子工程學研究所 | zh_TW |
| 顯示於系所單位: | 電子工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-97-1.pdf | 3.01 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
