Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96831
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄭修偉zh_TW
dc.contributor.advisorHSIU-WEI CHENGen
dc.contributor.author黃子軒zh_TW
dc.contributor.authorTzu-Hsuan Huangen
dc.date.accessioned2025-02-24T16:09:53Z-
dc.date.available2025-02-25-
dc.date.copyright2025-02-24-
dc.date.issued2024-
dc.date.submitted2024-10-21-
dc.identifier.citation[1] Bassma Reda, Amr A Elzamar, Shehab AlFazzani, and Shahira M Ezzat. Green hydrogen as a source of renewable energy: a step towards sustainability, an overview. Environment, Development and Sustainability, pages 1–21, 2024.
[2] MrinmoyKumarSarmah,TejPratapSingh,PankajKalita,andAnupamDewan.Sus- tainable hydrogen generation and storage–a review. RSC advances, 13(36):25253– 25275, 2023.
[3] Marian Chatenet, Bruno G Pollet, Dario R Dekel, Fabio Dionigi, Jonathan Deseure, Pierre Millet, Richard D Braatz, Martin Z Bazant, Michael Eikerling, Iain Staffell, et al. Water electrolysis: from textbook knowledge to the latest scientific strategies and industrial developments. Chemical Society Reviews, 51(11):4583–4762, 2022.
[4] GuoqiangZhao,KunRui,ShiXueDou,andWenpingSun.Heterostructuresforelec- trochemical hydrogen evolution reaction: a review. Advanced Functional Materials, 28(43):1803291, 2018.
[5] Carlos G Morales-Guio, Lucas-Alexandre Stern, and Xile Hu. Nanostructured hy- drotreating catalysts for electrochemical hydrogen evolution. Chemical Society Reviews, 43(18):6555–6569, 2014.
[6] Aleksandar R Zeradjanin, George Polymeros, Cigdem Toparli, Marc Ledendecker,Nejc Hodnik, Andreas Erbe, Michael Rohwerder, and Fabio La Mantia. What is the trigger for the hydrogen evolution reaction?–towards electrocatalysis beyond the sabatier principle. Physical Chemistry Chemical Physics, 22(16):8768–8780, 2020.
[7] AkakuruOziomaUdochukwubandThomasOdeyMagub.Understandingthemech- anism of electrochemical reduction of co2 using cu/cu-based electrodes: a review. Asian Journal of Nanoscience and Materials, 1(4):183–224, 2018.
[8] Charles CL McCrory, Suho Jung, Jonas C Peters, and Thomas F Jaramillo. Bench- marking heterogeneous electrocatalysts for the oxygen evolution reaction. Journal of the American Chemical Society, 135(45):16977–16987, 2013.
[9] HideshiOoka,JunHuang,andKaiSExner.Thesabatierprincipleinelectrocatalysis: Basics, limitations, and extensions. Frontiers in Energy Research, 9:654460, 2021.
[10] Sami M Ibn Shamsah. Earth-abundant electrocatalysts for water splitting: current and future directions. Catalysts, 11(4):429, 2021.
[11] Subhasis Shit, Saikat Bolar, Naresh Chandra Murmu, and Tapas Kuila. An account of the strategies to enhance the water splitting efficiency of noble-metal-free elec- trocatalysts. Journal of Energy Chemistry, 59:160–190, 2021.
[12] SebastienRauchandOlalekanSFatoki.Impactofplatinumgroupelementemissions from mining and production activities. In Platinum metals in the environment, pages 19–29. Springer, 2014.
[13] Yulin Sun, Chuanqi Huang, Junling Shen, Yijun Zhong, Jiqiang Ning, and Yong Hu. One-step construction of a transition-metal surface decorated with metal sulfide nanoparticles: A high-efficiency electrocatalyst for hydrogen generation. Journal of colloid and interface science, 558:1–8, 2020.
[14] Yanmei Shi and Bin Zhang. Recent advances in transition metal phosphide nanoma- terials: synthesis and applications in hydrogen evolution reaction. Chemical Society Reviews, 45(6):1529–1541, 2016.
[15] Yi Shi, Yue Zhou, Dong-Rui Yang, Wei-Xuan Xu, Chen Wang, Feng-Bin Wang, Jing-Juan Xu, Xing-Hua Xia, and Hong-Yuan Chen. Energy level engineering of mos2 by transition-metal doping for accelerating hydrogen evolution reaction. Journal of the American Chemical Society, 139(43):15479–15485, 2017.
[16] Ashish Kumar and Venkata Krishnan. Vacancy engineering in semiconductor pho- tocatalysts: implications in hydrogen evolution and nitrogen fixation applications. Advanced Functional Materials, 31(28):2009807, 2021.
[17] Jinbong Seok, Jun-Ho Lee, Suyeon Cho, Byungdo Ji, Hyo Won Kim, Min Kwon, Dohyun Kim, Young-Min Kim, Sang Ho Oh, Sung Wng Kim, et al. Active hydrogen evolution through lattice distortion in metallic mote2. 2D Materials, 4(2):025061, 2017.
[18] Jing-Fang Huang, Ruo-Hua Zeng, and Jeng-Lung Chen. Thermostable carbon- supported subnanometer-sized (< 1 nm) pt clusters for the hydrogen evolution re- action. Journal of Materials Chemistry A, 9(38):21972–21980, 2021.
[19] H Vogt. The voidage problem in gas-electrolyte dispersions. Journal of applied electrochemistry, 17(2):419–426, 1987.
[20] MG Fouad and GH Sedahmed. Mass transfer at horizontal gas-evolving electrodes. Electrochimica Acta, 18(1):55–58, 1973.
[21] Mengxuan Li, Pengpeng Xie, Linfeng Yu, Liang Luo, and Xiaoming Sun. Bubble engineering on micro-/nanostructured electrodes for water splitting. ACS nano, 17(23):23299–23316, 2023.
[22] Andrea Angulo, Peter van der Linde, Han Gardeniers, Miguel Modestino, and David Fernández Rivas. Influence of bubbles on the energy conversion efficiency of electrochemical reactors. Joule, 4(3):555–579, 2020.
[23] Yi He, Yifan Cui, Wenxu Shang, Zhongxi Zhao, and Peng Tan. Insight into the bubble-induced overpotential towards high-rate charging of zn-air batteries. Chemical Engineering Journal, 448:137782, 2022.
[24] John Dukovic and Charles W Tobias. The influence of attached bubbles on po- tential drop and current distribution at gas-evolving electrodes. Journal of the Electrochemical Society, 134(2):331, 1987.
[25] Yi He, Yifan Cui, Zhongxi Zhao, Yongtang Chen, Wenxu Shang, and Peng Tan. Strategies for bubble removal in electrochemical systems. Energy Reviews, 2(1):100015, 2023.
[26] Tatsuki Fujimura, Wakana Hikima, Yasuhiro Fukunaka, and Takayuki Homma. Analysis of the effect of surface wettability on hydrogen evolution reaction in water electrolysis using micro-patterned electrodes. Electrochemistry Communications, 101:43–46, 2019.
[27] Ryuichi Iwata, Lenan Zhang, Kyle L Wilke, Shuai Gong, Mingfu He, Betar M Gal- lant, and Evelyn N Wang. Bubble growth and departure modes on wettable/non- wettable porous foams in alkaline water splitting. Joule, 5(4):887–900, 2021.
[28] C Gabrielli, F Huet, M Keddam, A Macias, and A Sahar. Potential drops due to an attached bubble on a gas-evolving electrode. Journal of applied electrochemistry, 19(5):617–629, 1989.
[29] Amir Taqieddin, Roya Nazari, Ljiljana Rajic, and Akram Alshawabkeh. Physic- ochemical hydrodynamics of gas bubbles in two phase electrochemical systems. Journal of The Electrochemical Society, 164(13):E448, 2017.
[30] Valentina Wieser, Pierluigi Bilotto, Ulrich Ramach, Hui Yuan, Kai Schwenzfeier, Hsiu-Wei Cheng, and Markus Valtiner. Novel in situ sensing surface forces apparatus for measuring gold versus gold, hydrophobic, and biophysical interactions. Journal of Vacuum Science & Technology A, 39(2), 2021.
[31] Yinming Zhao, Yang Liu, Yongqian Li, and Qun Hao. Development and application of resistance strain force sensors. Sensors, 20(20):5826, 2020.
[32] Jing Yu, Nicholas E Jackson, Xin Xu, Blair K Brettmann, Marina Ruths, Juan J De Pablo, and Matthew Tirrell. Multivalent ions induce lateral structural inhomo- geneities in polyelectrolyte brushes. Science advances, 3(12):eaao1497, 2017.
[33] JN Israelachvili. Thin film studies using multiple-beam interferometry. Journal of Colloid and Interface Science, 44(2):259–272, 1973.
[34] KaiASchwenzfeier,AndreasErbe,PierluigiBilotto,MaximilianLengauer,Claudia Merola, Hsiu-Wei Cheng, Laura LE Mears, and Markus Valtiner. Optimizing mul- tiple beam interferometry in the surface forces apparatus: Novel optics, reflection mode modeling, metal layer thicknesses, birefringence, and rotation of anisotropic layers. Review of Scientific Instruments, 90(4), 2019.
[35] Peter J Kelly and R Derek Arnell. Magnetron sputtering: a review of recent devel- opments and applications. Vacuum, 56(3):159–172, 2000.
[36] O. Hammadi. Fundamentals of plasma sputtering. ResearchGate, November 2015.
[37] Jon Tomas Gudmundsson. Physics and technology of magnetron sputtering dis- charges. Plasma Sources Science and Technology, 29(11):113001, 2020.
[38] S Calderon Velasco, A Cavaleiro, and S Carvalho. Functional properties of ceramic- ag nanocomposite coatings produced by magnetron sputtering. Progress in Materials Science, 84:158–191, 2016.
[39] JS Lyons, DN Furlong, and TW Healy. The electrical double-layer properties of the mica (muscovite)-aqueous electrolyte interface. Australian Journal of Chemistry, 34(6):1177–1187, 1981.
[40] Frank Ostendorf, Carsten Schmitz, Sabine Hirth, Angelika Kühnle, Jacek J Kolodziej, and Michael Reichling. How flat is an air-cleaved mica surface? Nanotechnology, 19(30):305705, 2008.
[41] Sander JT Brugman, Ben L Werkhoven, Eleanor R Townsend, Paolo Accordini, René van Roij, and Elias Vlieg. Monovalent–divalent cation competition at the muscovite mica surface: Experiment and theory. Journal of Colloid and Interface Science, 559:291–303, 2020.
[42] Jacob N Israelachvili and Gayle E Adams. Measurement of forces between two mica surfaces in aqueous electrolyte solutions in the range 0–100 nm. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 74:975–1001, 1978.
[43] Guanhua Cheng, Wei Zhang, Andreas Jentys, Erika E Ember, Oliver Y Gutiérrez, Yue Liu, and Johannes A Lercher. Importance of interface open circuit potential on aqueous hydrogenolytic reduction of benzyl alcohol over pd/c. Nature Communications, 13(1):7967, 2022.
[44] Uwe Reimer, Yun Cai, Ruiyu Li, Dieter Froning, and Werner Lehnert. Time depen- dence of the open circuit potential of platinum disk electrodes in half cell experi- ments. Journal of The Electrochemical Society, 166(7):F3098, 2019.
[45] Edmund JF Dickinson, Henrik Ekström, and Ed Fontes. Comsol multiphysics®: Fi- nite element software for electrochemical analysis. a mini-review. Electrochemistry communications, 40:71–74, 2014.
[46] YifeiWang,SRNarayanan,andWeiWu.Field-assistedsplittingofpurewaterbased on deep-sub-debye-length nanogap electrochemical cells. ACS nano, 11(8):8421– 8428, 2017.
[47] Edmund JF Dickinson and Andrew J Wain. The butler-volmer equation in electrochemical theory: Origins, value, and practical application. Journal of Electroanalytical Chemistry, 872:114145, 2020.
[48] Horace E Darling. Conductivity of sulfuric acid solutions. Journal of Chemical & Engineering Data, 9(3):421–426, 1964.
[49] Kenji Arinaga, Ulrich Rant, Jelena Knežević, Erika Pringsheim, Marc Tornow, Shozo Fujita, Gerhard Abstreiter, and Naoki Yokoyama. Controlling the surface den- sity of dna on gold by electrically induced desorption. Biosensors and Bioelectronics, 23(3):326–331, 2007.
[50] Naoyuki Ishida and Vincent SJ Craig. Direct measurement of interaction forces between surfaces in liquids using atomic force microscopy. KONA Powder and Particle Journal, 36:187–200, 2019.
[51] Mathias Boström, Vivianne Deniz, GV Franks, and BW Ninham. Extended dlvo theory: Electrostatic and non-electrostatic forces in oxide suspensions. Advances in Colloid and Interface Science, 123:5–15, 2006.
[52] Sho Fujii, Motohiro Kasuya, and Kazue Kurihara. Characterization of platinum electrode surfaces by electrochemical surface forces measurement. The Journal of Physical Chemistry C, 121(47):26406–26413, 2017.
[53] ValentinosMouarrawis,RaoulPlessius,JarlIvarVanderVlugt,andJoostNHReek. Confinement effects in catalysis using well-defined materials and cages. Frontiers in chemistry, 6:419863, 2018.
[54] Joanna Dziadkowiec, Gaute Linga, Lukas Kalchgruber, Sunil Kavunga, Hsiu-Wei Cheng, Ola Nilsen, Coen Campsteijn, Boaz Pokroy, and Markus Valtiner. Electro- chemically assisted growth of hopper and tabular calcite under confinement. Crystal Growth & Design, 2024.
[55] Lei Gao, Feixiang Bao, Xin Tan, Mengfan Li, Zhen Shen, Xuli Chen, Ziyi Tang, Wenchuan Lai, Yangfan Lu, Peifeng Huang, et al. Engineering a local potassium cation concentrated microenvironment toward the ampere-level current density hy- drogen evolution reaction. Energy & Environmental Science, 16(1):285–294, 2023.
[56] ZhiyiLu,WeiZhu,XiaoyouYu,HaichuanZhang,YingjieLi,XiaomingSun,Xinwei Wang, Hao Wang, Jingming Wang, Jun Luo, et al. Ultrahigh hydrogen evolution performance of under-water “superaerophobic"mos2 nanostructured electrodes. Advanced Materials, 26(17):2683–2687, 2014.
[57] Artincontext.org. How to draw bubbles–a tutorial for easy bubble drawing, 2024. Accessed: 2024-07-29.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96831-
dc.description.abstract氫氣是重要的乾淨能源,電解水為產生氫氣的方法之一,目前大多數研究集中在通過合成新材料或改變材料表面化學組成來尋找能取代貴金屬的高效氫氣生成反應 (Hydrogen Evolution Reaction, HER) 的電催化劑而我們則探索了通過改變材料的幾何結構來提高催化性能。我們利用表面力儀(Surface Force Apparatus, SFA)在金和雲母表面之間創建奈米至微米級的限制空間,觀察並分析在此條件下導引的HER催化現象。通過遷移、對流和擴散等機制來研究水合氫離子在限制空間中的質量傳輸過程,並使用Comsol多物理場建模和原位影像分析等方法來深入理解這些作用。研究顯示,限制空間會提高電極表面電位並促使水合氫離子遷移。氣泡的形成會撐開限制空間,提供水合氫離子運輸通道並引發微對流,加速電解質進入間隙。雲母表面的高水合氫離子濃度使水合氫離子從雙電層擴散到金表面,增強水合氫離子傳輸。但這些短程作用無法完全解釋催化能力,暗示存在長程相互作用。本研究證明,通過改變材料的幾何結構而非表面組成,可以有效提升HER催化性能,並以質量傳輸的角度為此現象提供了解釋。zh_TW
dc.description.abstractHydrogen is an important clean energy source, and water electrolysis is one of the methods for producing hydrogen. Currently, most research focuses on finding efficient electrocatalysts for the hydrogen evolution reaction (HER) that can replace precious metals by synthesizing new materials or altering the chemical composition of material surfaces. In our study, we explored enhancing catalytic performance by changing the geometric structure of the materials.
We used a Surface Force Apparatus (SFA) to create nanometer to micrometer-scale confined spaces between gold and mica surfaces, observing and analyzing the HER catalytic phenomena under these conditions. We investigated the mass transport processes of hydronium ion in confined spaces through mechanisms such as migration, convection, and diffusion, and used Comsol multiphysics modeling and in-situ imaging analysis to gain a deeper understanding of these effects. Our research showed that confined spaces increase the electrode surface potential and promote the migration of hydronium ion. The formation of bubbles expands the confined spaces, providing channels for the transport of hydronium ion and inducing micro-convection, which accelerates the entry of electrolytes into the gaps. The high concentration of hydronium ion on the mica surface enhances the diffusion of these ions from the electric double layer of mica to the gold surface, improving ion transport. However, these short-range effects do not fully explain the catalytic capability, suggesting the presence of long-range interactions. This study demonstrates that altering the geometric structure of materials, rather than their surface composition, can effectively enhance HER catalytic performance, providing an explanation for this phenomenon from the perspective of mass transport.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-24T16:09:53Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-02-24T16:09:53Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsVerification Letter from the Oral Examination Committee ...... i
Acknowledgements ...... iii
摘要 ...... v
Abstract ...... vii
Contents ...... ix
List of Figures ...... xiii
List of Tables ...... xix
Denotation ...... xxi

Chapter 1 Introduction ...... 1

1.1 Hydrogen evolution reaction ...... 1
1.1.1 Mechanism of HER ...... 2
1.1.2 Overpotential of HER ...... 3
1.1.3 Electrocatalyst for HER ...... 5

1.2 Geometry effect ...... 6

1.3 Gas evolving electrodes ...... 9
1.3.1 Bubble generation mechanism ...... 10
1.3.2 Overpotential induced by bubbles on GEEs ...... 10

1.4 Motivation and aims ...... 14
1.5 Highlight of this work ...... 16

Chapter 2 Experimental Section ...... 17

2.1 Materials and Chemicals ...... 17
2.2 Surface force apparatus ...... 18
2.2.1 Structure of SFA ...... 18
2.2.2 Multiple beam interferometry ...... 21

2.3 Surface preparation ...... 25
2.3.1 Magnetron sputtering ...... 25
2.3.2 Template stripping method ...... 28
2.3.3 Preparation of back-silvered Mica surface ...... 29
2.3.4 Structure of Muscovite mica ...... 29

2.4 Electrochemistry ...... 30
2.4.1 Linear sweep voltammetry ...... 30
2.4.2 Chronoamperometry ...... 31
2.4.3 Open Circuit Potential ...... 32

2.5 Comsol Multi-Physics modeling ...... 33
2.5.1 Secondary current distribution ...... 33
2.5.2 Dilute species transportation ...... 35
2.5.3 Model Geometry ...... 36
2.5.4 Boundary conditions in our experiment ...... 36

2.6 Calculating and modeling proton concentration near electrode surface ...... 38
2.6.1 Modeling the proton concentration profile ...... 38

2.7 Bubble size calculation ...... 41

Chapter 3 Result and Discussion ...... 47

3.1 Confinement induced HER ...... 47
3.1.1 The stability under different electrolyte conditions ...... 47
3.1.2 Defects induced HER ...... 49
3.1.3 Distance dependency of HER overpotential ...... 53
3.1.4 Capture of HER within a nanometer-confined gap ...... 56

3.2 Possible reasons for confinement induced HER ...... 58
3.2.1 The uneven distribution of electrode potential under confinement ...... 59
3.2.2 The presence of Muscovite mica surface ...... 61
3.2.2.1 Python modeling of the proton concentration profile ...... 62
3.2.3 Minimizing bubble size by confinement ...... 64
3.2.4 Local concentrated effect on dissolved hydrogen ...... 68

Chapter 4 Conclusion ...... 71
References ...... 73

Appendix A — Introduction 81
A.1 Python script - proton concentration profile ...... 81

Appendix B — Introduction 85
B.1 Python Script - Background substraction ...... 85
B.2 Python script - Bubble cross-section area analysis ...... 88
-
dc.language.isoen-
dc.subject干涉光學zh_TW
dc.subject電催化zh_TW
dc.subject限制空間zh_TW
dc.subject氫氣生成反應zh_TW
dc.subjectInterferometryen
dc.subjectHydrogen evolution reactionen
dc.subjectConfined spaceen
dc.subjectElectrocatalysten
dc.title限制空間導引之氫氣生成反應zh_TW
dc.titleConfinement Induced Hydrogen Evolution Reactionen
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳俊顯;陳浩洺;簡儀欣zh_TW
dc.contributor.oralexamcommitteeCHUN-HSIEN CHEN;HAO-MING CHEN;YI-HSIN CHIENen
dc.subject.keyword氫氣生成反應,限制空間,電催化,干涉光學,zh_TW
dc.subject.keywordHydrogen evolution reaction,Confined space,Electrocatalyst,Interferometry,en
dc.relation.page92-
dc.identifier.doi10.6342/NTU202404416-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-10-22-
dc.contributor.author-college理學院-
dc.contributor.author-dept化學系-
dc.date.embargo-lift2025-02-25-
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf15.21 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved