請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96796完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳中平 | zh_TW |
| dc.contributor.advisor | Chung-Ping Chen | en |
| dc.contributor.author | 謝律紳 | zh_TW |
| dc.contributor.author | Lu-Shen Shie | en |
| dc.date.accessioned | 2025-02-21T16:35:30Z | - |
| dc.date.available | 2025-02-22 | - |
| dc.date.copyright | 2025-02-21 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-12-30 | - |
| dc.identifier.citation | [1] W. Wang and S. Sonkusale, “A 10-Bit Current Output DAC With Active Resistive Load Interpolation,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 68, no. 6, pp. 1803–1806, 2021.
[2] J.-S. Na, S.-K. Hong, and O.-K. Kwon, “A Highly Linear 10-Bit DAC of Data Driver IC Using Source Degeneration Load for Active Matrix Flat-Panel Displays,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 67, no. 11, pp. 2312–2316, 2020. [3] A. Hamade, “A single chip all-mos 8-bit a/d converter,” IEEE Journal of Solid-State Circuits, vol. 13, no. 6, pp. 785–791, 1978. [4] I. Knausz and R. J. Bowman, “A low power, scalable, dac architecture for liquid crystal display drivers,” IEEE Journal of Solid-State Circuits, vol. 44, no. 9, pp. 2402–2410, 2009. [5] C.-W. Lu, C.-C. Shen, and W.-C. Chen, “An area-efficient fully r-dac-based tftlcd column driver,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 57, no. 10, pp. 2588–2601, 2010. [6] A. Abrial, J. Bouvier, J.-M. Fournier, P. Senn, and M. Veillard, “A 27-mhz digital-to-analog video processor,” IEEE Journal of Solid-State Circuits, vol. 23, no. 6, pp. 1358–1369, 1988. [7] P. Holloway, “A trimless 16b digital potentiometer,” in 1984 IEEE International Solid-State Circuits Conference. Digest of Technical Papers, vol. XXVII, pp. 66–67, 1984. [8] L. Letham, B. Ahuja, K. Quader, R. Mayer, R. Larsen, and G. Canepa, “A highperformance cmos 70-mhz palette/ dac,” IEEE Journal of Solid-State Circuits, vol. 22, no. 6, pp. 1041–1047, 1987. [9] T. Miki, Y. Nakamura, M. Nakaya, S. Asai, Y. Akasaka, and Y. Horiba, “An 80-mhz 8-bit cmos d/a converter,” IEEE Journal of Solid-State Circuits, vol. 21, no. 6, pp. 983–988, 1986. [10] K. Chi, C. Geisenhainer, M. Riley, R. Rose, P. Sturges, B. Sullivan, R. Watson, R. Woodside, and M. Wu, “A cmos triple 100-mbit/s video d/a converter with shift register and color map,” IEEE Journal of Solid-State Circuits, vol. 21, no. 6, pp. 989–996, 1986. [11] J.-S. Kang, J.-H. Kim, S.-Y. Kim, J.-Y. Song, O.-K. Kwon, Y.-J. Lee, B.-H. Kim, C.-W. Park, K.-S. Kwon, W.-T. Choi, S.-K. Yun, I.-J. Yeo, K.-B. Han, T.-S. Kim, and S.-I. Park, “10-bit driver ic using 3-bit dac embedded operational amplifier for spatial optical modulators (soms),” IEEE Journal of Solid-State Circuits, vol. 42, no. 12, pp. 2913–2922, 2007. [12] Y.-J. Jeon, H.-M. Lee, S.-W. Lee, G.-H. Cho, H. R. Kim, Y.-K. Choi, and M. Lee, “A piecewise linear 10 bit dac architecture with drain current modulation for compact lcd driver ics,” IEEE Journal of Solid-State Circuits, vol. 44, no. 12, pp. 3659–3675, 2009. [13] C.-W. Lu, C.-M. Hsiao, and P.-Y. Yin, “A 10-b two-stage dac with an area-efficient multiple-output voltage selector and a linearity-enhanced dac-embedded op-amp for lcd column driver ics,” IEEE Journal of Solid-State Circuits, vol. 48, no. 6, pp. 1475–1486, 2013. [14] C.-W. Lu, P.-Y. Lai Lee, Y.-G. Chang, X.-W. Huang, J.-S. Cheng, P.-Y. Tseng, C.-H. Chou, P. Chen, T.-Y. Chang, and J. Y.-C. Liu, “A 10-bit 1026-channel column driver ic with partially segmented piecewise linear digital-to-analog converters for uhd tftlcds with one billion color display,” IEEE Journal of Solid-State Circuits, vol. 54, no. 10, pp. 2703–2716, 2019. [15] X. Guo and H. Li, “Gray code-based 10-bit source driver for large-size oled display,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 68, no. 7, pp. 2307–2311, 2021. [16] C.-W. Lu, P.-Y. Yin, C.-M. Hsiao, M.-C. F. Chang, and Y.-S. Lin, “A 10-bit resistorfloating-resistor-string dac (rfr-dac) for high color-depth lcd driver ics,” IEEE Journal of Solid-State Circuits, vol. 47, no. 10, pp. 2454–2466, 2012. [17] D.-K. Jung, Y.-H. Jung, T. Yoo, D.-H. Yoon, B.-Y. Jung, T. T.-H. Kim, and K.-H. Baek, “A 12-bit multi-channel r-r dac using a shared resistor string scheme for area-efficient display source driver,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 65, no. 11, pp. 3688–3697, 2018. [18] C.-W. Lu, P.-Y. Yin, and M.-Y. Lin, “A 10-bit two-stage r-dac with isolating source followers for tft-lcd and amoled column-driver ics,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 27, no. 2, pp. 326–336, 2019. [19] C.-W. Lu and L.-C. Huang, “A 10-bit lcd column driver with piecewise linear digital-to-analog converters,” IEEE Journal of Solid-State Circuits, vol. 43, no. 2, pp. 371–378, 2008. [20] H.-S. Kim, J.-H. Yang, S.-H. Park, S.-T. Ryu, and G.-H. Cho, “A 10-bit columndriver ic with parasitic-insensitive iterative charge-sharing based capacitor-string interpolation for mobile active-matrix lcds,” IEEE Journal of Solid-State Circuits, vol. 49, no. 3, pp. 766–782, 2014. [21] G.-G. Kang, S.-T. Koh, W. Jang, J. Lee, S. Lee, O. Kwon, K. Jung, and H.-S. Kim, “A 12-bit mobile oled/μled display driver ic with cascaded loading-free capacitive interpolation dac and 6.24v/μs-slew-rate buffer amplifier,” in 2021 Symposium on VLSI Circuits, pp. 1–2, 2021. [22] C.-H. Lin and K. Bult, “A 10-b, 500-msample/s cmos dac in 0.6 mm/sup 2/,” IEEE Journal of Solid-State Circuits, vol. 33, no. 12, pp. 1948–1958, 1998. [23] M. Pelgrom, A. Duinmaijer, and A. Welbers, “Matching properties of mos transistors,” IEEE Journal of Solid-State Circuits, vol. 24, no. 5, pp. 1433–1439, 1989. [24] H.-S. Kim, J.-H. Yang, S.-H. Park, S.-T. Ryu, and G.-H. Cho, “A 10-bit columndriver ic with parasitic-insensitive iterative charge-sharing based capacitor-string interpolation for mobile active-matrix lcds,” IEEE Journal of Solid-State Circuits, vol. 49, no. 3, pp. 766–782, 2014. [25] W. Wang and S. Sonkusale, “Rail-to-rail digital to analog converter with shared binary weighted resistive load interpolation,” in 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 920–923, 2022. [26] R. Hogervorst, J. Tero, R. Eschauzier, and J. Huijsing, “A compact power-efficient 3 v cmos rail-to-rail input/output operational amplifier for vlsi cell libraries,” IEEE Journal of Solid-State Circuits, vol. 29, no. 12, pp. 1505–1513, 1994. [27] D. Marano, G. Palumbo, and S. Pennisi, “A novel low-power high-speed rail-torail class-b buffer amplifier for lcd output drivers,” in Proceedings of 2010 IEEE International Symposium on Circuits and Systems, pp. 2816–2819, 2010. [28] H.-M. Lee, Y.-J. Jeon, S.-W. Lee, B. Lee, and G.-H. Cho, “An area and power efficient interpolation scheme using variable current control for 10-bit data drivers in mobile active-matrix lcds,” IEEE Transactions on Consumer Electronics, vol. 65, no. 2, pp. 253–262, 2019. [29] J.-S. Kim, J.-O. Yoon, and B.-D. Choi, “A low-area and fully nonlinear 10-bit column driver with low-voltage dac and switched-capacitor amplifier for active-matrix displays,” IEEE Journal of Solid-State Circuits, vol. 56, no. 2, pp. 488–500, 2021. [30] G.-W. Lim, G.-G. Kang, H. Ma, M. Jeong, and H.-S. Kim, “An area-efficient 10-bit source-driver ic with lsb-stacked lv-to-hv-amplify dac for mobile oled displays,” IEEE Journal of Solid-State Circuits, vol. 58, no. 11, pp. 3164–3178, 2023. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96796 | - |
| dc.description.abstract | 數位轉類比轉換器(DAC)在許多現代電子系統中扮演著關鍵角色,特別是在數據轉換、信號處理和各類精密控制應用中。本研究旨在設計和實現一種高解析度、低功耗的10位元DAC,以滿足各種對精度和功耗有嚴格要求的應用需求,如音頻處理、傳感器訊號處理、通訊系統、有機發光二極體(OLED) 和液晶顯示器(LCD)。本研究首先探討了傳統DAC架構的優劣,並提提出了一種改進的雙階段架構設計,以提高轉換精度和效率。該設計透過粗調電阻串數位類比轉換器架構及電壓插補技術,實現了對輸出電壓範圍的精確控制,旨在降低DAC的積分非線性誤差(INL)和微分非線性誤差(DNL)。最後使用TSMC 0.18μm Mixed Signal 1P6M製程實現10位元DAC之設計,量測結果顯示其在僅118μW功耗下仍能保持優異的線性度和單調性,展現出其在廣泛電子應用中的潛力。 | zh_TW |
| dc.description.abstract | The digital to analog converter (DAC) is pivotal in numerous modern electronic systems, particularly in data conversion, signal processing, and precision control applications. This study aims to design and implement a high-resolution, low-power 10-bit DAC to meet the stringent accuracy and power consumption requirements of applications such as audio processing, sensor signal conditioning, communication systems, organic light-emitting diodes (OLED), and liquid crystal displays (LCD). The research first evaluates the strengths and limitations of traditional DAC architectures and proposes an enhanced two-stage design to improve conversion accuracy and efficiency. The proposed design leverages a coarse resistor string DAC architecture and voltage interpolation techniques to control the output voltage range precisely, targeting the reduction of integral non-linearity (INL) and differential non-linearity (DNL) in the DAC. The 10-bit DAC was implemented using the TSMC 0.18μm mixed signal 1P6M process, with measurement results demonstrating that the design maintains excellent linearity and monotonicity with a power consumption of just 118 μW, highlighting its potential for a broad range of electronic applications. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-21T16:35:30Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-02-21T16:35:30Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Acknowledgements i
摘要ii Abstract iii Contents v List of Figures viii List of Tables xi Chapter 1 Introduction 1 1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Chapter 2 Introduction of Traditional Digital to Analog Converter 4 2.1 Digital to Analog Converter . . . . . . . . . . . . . . . . . . . . . . 4 2.2 Ideal Digital to Analog Converter . . . . . . . . . . . . . . . . . . . 5 2.3 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.3.1 Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.3.2 Offset and Gain Error . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.3.3 Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3.3.1 Absolute accuracy . . . . . . . . . . . . . . . . . . . . 8 2.3.3.2 Relative accuracy . . . . . . . . . . . . . . . . . . . . 8 2.3.4 Linearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.3.4.1 Integral Nonlinearity (INL) Error . . . . . . . . . . . . 9 2.3.4.2 Differential Nonlinearity (DNL) Error . . . . . . . . . 10 2.3.5 Monotonicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.3.6 Settling Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.3.7 Conversion/Sampling Rate . . . . . . . . . . . . . . . . . . . . . . 12 2.3.8 Spurios Free Dynamic Range (SFDR) . . . . . . . . . . . . . . . . 12 2.3.9 Total Harmonic Distortion (THD) . . . . . . . . . . . . . . . . . . 13 2.4 The basic architecture of a Digital-to-Analog Converter . . . . . . . 14 2.4.1 Decoder-Based DAC . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.4.1.1 Resistor-String DAC . . . . . . . . . . . . . . . . . . . 15 2.4.1.2 Folded Resistor-String DAC . . . . . . . . . . . . . . 17 2.4.1.3 Multiple Resistor-String DAC . . . . . . . . . . . . . . 19 2.4.2 Binary-Weighted DAC . . . . . . . . . . . . . . . . . . . . . . . . 21 2.4.2.1 Binary-Weighted Resistor DAC . . . . . . . . . . . . . 21 2.4.2.2 R-2R-Based DAC . . . . . . . . . . . . . . . . . . . . 23 2.4.2.3 Charge-Redistribution Switched-Capacitor DAC . . . . 25 2.4.2.4 Current-Steering DAC . . . . . . . . . . . . . . . . . . 27 2.4.3 Thermometer-Code DAC . . . . . . . . . . . . . . . . . . . . . . . 30 2.4.3.1 Thermometer-Code Resistor DAC . . . . . . . . . . . 31 2.4.3.2 Thermometer-Code Current-Steering DAC . . . . . . . 32 2.4.4 Hybrid and Segmented DAC . . . . . . . . . . . . . . . . . . . . . 34 Chapter 3 Design of a Hybrid 10-Bit Digital to Analog Converter 38 3.1 Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.3 Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.4 Building Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.4.1 Coarse Resistor String DAC . . . . . . . . . . . . . . . . . . . . . 46 3.4.2 Multi-Input Interpolation Amplifier . . . . . . . . . . . . . . . . . 49 Chapter 4 Measurement Results 59 4.1 Set Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4.2 Chip-on-Board Measurement Result . . . . . . . . . . . . . . . . . . 64 Chapter 5 Conclusions 71 References 72 | - |
| dc.language.iso | en | - |
| dc.subject | 高解析度 | zh_TW |
| dc.subject | 低功耗 | zh_TW |
| dc.subject | 電壓插補 | zh_TW |
| dc.subject | 數位轉類比轉換器 | zh_TW |
| dc.subject | high-resolution | en |
| dc.subject | digital to analog converter | en |
| dc.subject | voltage interpolation | en |
| dc.subject | low power consumption | en |
| dc.title | 應用於液晶驅動器且具軌對軌B類插值放大器的高線性度十位元數位類比轉換器 | zh_TW |
| dc.title | A Highly Linear 10-Bit Digital to Analog Converter with Rail-to-Rail Class-B Interpolation Amplifier for LCD Drivers | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 鄭士康;趙昌博 | zh_TW |
| dc.contributor.oralexamcommittee | Shyh-Kang Jeng;Paul C.-P. Chao | en |
| dc.subject.keyword | 數位轉類比轉換器,電壓插補,低功耗,高解析度, | zh_TW |
| dc.subject.keyword | digital to analog converter,voltage interpolation,low power consumption,high-resolution, | en |
| dc.relation.page | 76 | - |
| dc.identifier.doi | 10.6342/NTU202404770 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2024-12-30 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 電子工程學研究所 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 電子工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-1.pdf 未授權公開取用 | 14.89 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
