請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96740| 標題: | 污水中抗生素抗藥性基因分布:糞便生物標記之人口標準化應用與臭氧微奈米氣泡系統對生物膜菌相的影響 Distribution of Antibiotic Resistance Genes in Wastewater: Application of Fecal Biomarkers for Population-Based Normalization & Effects of Ozone Micro-Nano Bubbles on Biofilm Microbial Community. |
| 作者: | 張育綺 Yu-Qi Chang |
| 指導教授: | 童心欣 Hsin-Hsin Tung |
| 關鍵字: | 抗生素抗藥性基因,污水流行病學方法,醫院污水,糞便生物標記,臭氧微奈米氣泡技術,載體生物膜,菌相分析, Antibiotic Resistance Genes,Wastewater-based Epidemiology,Hospital Wastewater,Fecal Biomarkers,Ozone Micro-Nano bubble Technology,Biofilm Carriers,Microbiome Analysis, |
| 出版年 : | 2024 |
| 學位: | 碩士 |
| 摘要: | 抗生素濫用引發的抗藥性問題對人類健康及環境構成重大威脅,抗藥性細菌和抗藥性基因(Antibiotic Resistance Genes, ARGs)的增長已成為全球公共衛生的挑戰。本研究首先聚焦新北市淡水區污水環境,分析多種目標ARGs的時空分布與變化,特別關注污水下水道與都市污水處理廠的熱點區域。結果顯示,sul1、tetA、tetX及整合酶基因intl1在污水中呈現時間與地點的一致性變化,並在污水處理廠中富集。且鄰近醫院排放點(S1)中,醫院後線用抗生素mcr-1與vanA基因濃度偏高,突顯醫療污水排放對特定ARGs的影響。接著進一步以污水流行病學方法(Wastewater-Based Epidemiology, WBE),評估16S rRNA與糞便生物標記在ARGs監測中的標準化表現。結果表明,糞便生物標記能有效克服由非人類貢獻所引起的細菌總數波動,具備更高的穩定性與準確性,並揭示ARGs與人類活動的關聯。為解決醫療污水中ARGs的處理問題,本研究探討了臭氧微奈米氣泡技術結合生物膜載體系統的應用。結果顯示,臭氧微奈米氣泡技術能有效降低污水中ARGs濃度,並在載體生物膜中達到0.5至2.3 log的ARGs抑制效果。儘管不同載體材料對生物膜中ARGs的影響無顯著性差異,但菌相分析結果顯示,臭氧處理能提升微生物多樣性,卻同時提高潛在致病菌(如鮑氏不動桿菌Acinetobacter baumannii)比例,證實臭氧微奈米氣泡技術在控制ARGs方面的應用潛力,但也強調需進一步評估其長期環境影響與安全性。從數據分析結果顯示,COVID-19病例數與ARGs豐度間存在遲滯相關性,尤其在鄰近醫院排放點(S1)的ARGs相對人口豐度的變化情況較早出現,顯示醫療污水排放可能反映人口抗藥性風險的早期變化趨勢。整體而言,本研究為國內抗生素抗藥性監測與標準化方法的建立提供科學依據,並為未來抗藥性基因管控策略的制定與公共衛生保護措施的推動提供支援。 The overuse of antibiotics has led to the growing issue of antibiotic resistance, posing significant threats to human health and the environment. The rise of antibiotic-resistant bacteria and resistance genes (ARGs) has become a critical global public health concern. This study analyzes the spatiotemporal distribution of target ARGs in the wastewater environment of Tamsui District, with a focus on hotspots in sewer systems and urban wastewater treatment plants. The results show consistent temporal and spatial variations in the concentrations of sul1, tetA, tetX, and integrase gene intl1, which accumulate in wastewater treatment plants. Higher concentrations of hospital-specific ARGs, including mcr-1 and vanA, were found near hospital discharge points (S1), highlighting the impact of medical wastewater. The study also applied Wastewater-Based Epidemiology (WBE) methods to assess the performance of 16S rRNA and fecal biomarkers in ARG monitoring. Fecal biomarkers were found to offer greater stability and accuracy, effectively addressing bacterial fluctuations caused by non-human contributions and revealing correlations between ARGs and human activities. To address the treatment of ARGs in medical wastewater, the study explored ozone micro-nano bubble technology combined with a biofilm carrier system. The results showed that ozone micro-nano bubble effectively reduced ARG concentrations, achieving 0.5 to 2.3 log reductions. While there was no significant difference in the impact of various carrier materials on ARGs in biofilms, microbial analysis revealed an increase in microbial diversity, alongside a higher proportion of potential pathogens (e.g., Acinetobacter baumannii) under ozone treatment. This highlights ozone micro-nano bubble' potential for ARG control, but further assessment of long-term environmental impact is needed. Finally, the study identified a lag correlation between COVID-19 case numbers and ARG abundance, indicating that medical wastewater could reflect early trends in antibiotic resistance risks. This research provides key insights for domestic ARG monitoring and supports the development of control strategies and public health measures. |
| URI: | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96740 |
| DOI: | 10.6342/NTU202404768 |
| 全文授權: | 同意授權(限校園內公開) |
| 電子全文公開日期: | 2029-12-22 |
| 顯示於系所單位: | 環境工程學研究所 |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-1.pdf 未授權公開取用 | 6.68 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
