請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96740完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 童心欣 | zh_TW |
| dc.contributor.advisor | Hsin-Hsin Tung | en |
| dc.contributor.author | 張育綺 | zh_TW |
| dc.contributor.author | Yu-Qi Chang | en |
| dc.date.accessioned | 2025-02-21T16:20:21Z | - |
| dc.date.available | 2025-02-22 | - |
| dc.date.copyright | 2025-02-21 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-12-26 | - |
| dc.identifier.citation | Ahammad, Z. S., Sreekrishnan, T. R., Hands, C. L., Knapp, C. W., & Graham, D. W. (2014). Increased Waterborne blaNDM-1 Resistance Gene Abundances Associated with Seasonal Human Pilgrimages to the Upper Ganges River. Environmental Science & Technology, 48(5), 3014-3020. https://doi.org/10.1021/es405348h
Al Aukidy, M., Al Chalabi, S., & Verlicchi, P. (2018). Hospital Wastewater Treatments Adopted in Asia, Africa, and Australia. In P. Verlicchi (Ed.), Hospital Wastewaters: Characteristics, Management, Treatment and Environmental Risks (pp. 171-188). Springer International Publishing. https://doi.org/10.1007/698_2017_5 Ali, O. S., Hozayen, W. G., Almutairi, A. S., Edris, S. A., Abulfaraj, A. A., Ouf, A. A., & Mahmoud, H. M. (2021). Metagenomic Analysis Reveals the Fate of Antibiotic Resistance Genes in a Full-Scale Wastewater Treatment Plant in Egypt. Sustainability, 13(20), 11131. https://www.mdpi.com/2071-1050/13/20/11131 Amangelsin, Y., Semenova, Y., Dadar, M., Aljofan, M., & Bjørklund, G. (2023). The Impact of Tetracycline Pollution on the Aquatic Environment and Removal Strategies. Antibiotics, 12(3), 440. https://www.mdpi.com/2079-6382/12/3/440 Amaral-Silva, N., Martins, R. C., Castro-Silva, S., & Quinta-Ferreira, R. M. (2016). Ozonation and perozonation on the biodegradability improvement of a landfill leachate. Journal of Environmental Chemical Engineering, 4(1), 527-533. https://doi.org/https://doi.org/10.1016/j.jece.2015.12.002 Andleeb, S., Majid, M., & Sardar, S. (2020). Chapter 18 - Environmental and public health effects of antibiotics and AMR/ARGs. In M. Z. Hashmi (Ed.), Antibiotics and Antimicrobial Resistance Genes in the Environment (Vol. 1, pp. 269-291). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-818882-8.00018-8 Andreani, J., Le Bideau, M., Duflot, I., Jardot, P., Rolland, C., Boxberger, M., Wurtz, N., Rolain, J.-M., Colson, P., La Scola, B., & Raoult, D. (2020). In vitro testing of combined hydroxychloroquine and azithromycin on SARS-CoV-2 shows synergistic effect. Microbial Pathogenesis, 145, 104228. https://doi.org/https://doi.org/10.1016/j.micpath.2020.104228 Arthur, M., & Courvalin, P. (1993). Genetics and mechanisms of glycopeptide resistance in enterococci. Antimicrob Agents Chemother, 37(8), 1563-1571. https://doi.org/10.1128/aac.37.8.1563 Azuma, T., Katagiri, M., Sekizuka, T., Kuroda, M., & Watanabe, M. (2022). Inactivation of Bacteria and Residual Antimicrobials in Hospital Wastewater by Ozone Treatment. Antibiotics, 11(7), 862. https://www.mdpi.com/2079-6382/11/7/862 Bakir, M. A., Sakamoto, M., Kitahara, M., Matsumoto, M., & Benno, Y. (2006). Bacteroides dorei sp. nov., isolated from human faeces. International Journal of Systematic and Evolutionary Microbiology, 56(7), 1639-1643. https://doi.org/https://doi.org/10.1099/ijs.0.64257-0 Bengtsson-Palme, J., Kristiansson, E., & Larsson, D. G. J. (2018). Environmental factors influencing the development and spread of antibiotic resistance. FEMS Microbiol Rev, 42(1). https://doi.org/10.1093/femsre/fux053 Berendonk, T. U., Manaia, C. M., Merlin, C., Fatta-Kassinos, D., Cytryn, E., Walsh, F., Bürgmann, H., Sørum, H., Norström, M., Pons, M.-N., Kreuzinger, N., Huovinen, P., Stefani, S., Schwartz, T., Kisand, V., Baquero, F., & Martinez, J. L. (2015). Tackling antibiotic resistance: the environmental framework. Nature Reviews Microbiology, 13(5), 310-317. https://doi.org/10.1038/nrmicro3439 Bishen, S. (2024). Funding the future: Sustainable financing models to help the fight against antimicrobial resistance. Retrieved 2024/10/13 from Blair, J. M. A., Webber, M. A., Baylay, A. J., Ogbolu, D. O., & Piddock, L. J. V. (2015). Molecular mechanisms of antibiotic resistance. Nature Reviews Microbiology, 13(1), 42-51. https://doi.org/10.1038/nrmicro3380 Boleda, M. R., Galceran, M. T., & Ventura, F. (2009). Monitoring of opiates, cannabinoids and their metabolites in wastewater, surface water and finished water in Catalonia, Spain. Water Research, 43(4), 1126-1136. https://doi.org/https://doi.org/10.1016/j.watres.2008.11.056 Bonanno Ferraro, G., Bonomo, C., Brandtner, D., Mancini, P., Veneri, C., Briancesco, R., Coccia, A. M., Lucentini, L., Suffredini, E., Bongiorno, D., Musso, N., Stefani, S., & La Rosa, G. (2024). Characterisation of microbial communities and quantification of antibiotic resistance genes in Italian wastewater treatment plants using 16S rRNA sequencing and digital PCR. Science of The Total Environment, 933, 173217. https://doi.org/https://doi.org/10.1016/j.scitotenv.2024.173217 Boogaerts, T., Van Wichelen, N., Quireyns, M., Burgard, D., Bijlsma, L., Delputte, P., Gys, C., Covaci, A., & van Nuijs, A. L. N. (2024). Current state and future perspectives on de facto population markers for normalization in wastewater-based epidemiology: A systematic literature review. Science of The Total Environment, 935, 173223. https://doi.org/https://doi.org/10.1016/j.scitotenv.2024.173223 Brüssow, H., Canchaya, C., & Hardt, W. D. (2004). Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol Mol Biol Rev, 68(3), 560-602, table of contents. https://doi.org/10.1128/mmbr.68.3.560-602.2004 Bush, K., & Bradford, P. A. (2016). β-Lactams and β-Lactamase Inhibitors: An Overview. Cold Spring Harbor Perspectives in Medicine, 6(8). https://doi.org/10.1101/cshperspect.a025247 Cai, L., Wu, D., Xia, J., Shi, H., & Kim, H. (2019). Influence of physicochemical surface properties on the adhesion of bacteria onto four types of plastics. Science of The Total Environment, 671, 1101-1107. https://doi.org/https://doi.org/10.1016/j.scitotenv.2019.03.434 Cambray, G., Guerout, A. M., & Mazel, D. (2010). Integrons. Annu Rev Genet, 44, 141-166. https://doi.org/10.1146/annurev-genet-102209-163504 Cassini, A., Högberg, L. D., Plachouras, D., Quattrocchi, A., Hoxha, A., Simonsen, G. S., Colomb-Cotinat, M., Kretzschmar, M. E., Devleesschauwer, B., Cecchini, M., Ouakrim, D. A., Oliveira, T. C., Struelens, M. J., Suetens, C., Monnet, D. L., Strauss, R., Mertens, K., Struyf, T., Catry, B., . . . Hopkins, S. (2019). Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: a population-level modelling analysis. The Lancet Infectious Diseases, 19(1), 56-66. https://doi.org/https://doi.org/10.1016/S1473-3099(18)30605-4 Castiglioni, S., Bijlsma, L., Covaci, A., Emke, E., Hernández, F., Reid, M., Ort, C., Thomas, K. V., van Nuijs, A. L. N., de Voogt, P., & Zuccato, E. (2013). Evaluation of Uncertainties Associated with the Determination of Community Drug Use through the Measurement of Sewage Drug Biomarkers. Environmental Science & Technology, 47(3), 1452-1460. https://doi.org/10.1021/es302722f Cavalcanti, A. B., Zampieri, F. G., Rosa, R. G., Azevedo, L. C. P., Veiga, V. C., Avezum, A., Damiani, L. P., Marcadenti, A., Kawano-Dourado, L., Lisboa, T., Junqueira, D. L. M., Silva, P. G. M. d. B. e., Tramujas, L., Abreu-Silva, E. O., Laranjeira, L. N., Soares, A. T., Echenique, L. S., Pereira, A. J., Freitas, F. G. R., . . . Berwanger, O. (2020). Hydroxychloroquine with or without Azithromycin in Mild-to-Moderate Covid-19. New England Journal of Medicine, 383(21), 2041-2052. https://doi.org/doi:10.1056/NEJMoa2019014 CDC. (2019). Antibiotic Resistance Threats in the United States, 2019. Retrieved 2024/10/15 from http://www.cdc.gov/drugresistance/Biggest-Threats.html CDC. (2023). National Wastewater Surveillance System (NWSS). Centers for Disease Control and Prevention. https://www.cdc.gov/nwss/testing.html Ceolotto, N., Dollamore, P., Hold, A., Balne, B., Jagadeesan, K. K., Standerwick, R., Robertson, M., Barden, R., & Kasprzyk-Hordern, B. (2024). A new Wastewater-Based Epidemiology workflow to estimate community wide non-communicable disease prevalence using pharmaceutical proxy data. Journal of Hazardous Materials, 461, 132645. https://doi.org/https://doi.org/10.1016/j.jhazmat.2023.132645 Chen, H., Bai, X., Li, Y., Jing, L., Chen, R., & Teng, Y. (2019). Source identification of antibiotic resistance genes in a peri-urban river using novel crAssphage marker genes and metagenomic signatures. Water Research, 167, 115098. https://doi.org/https://doi.org/10.1016/j.watres.2019.115098 Chen, J., Yu, Z., Michel Frederick, C., Wittum, T., & Morrison, M. (2007). Development and Application of Real-Time PCR Assays for Quantification of erm Genes Conferring Resistance to Macrolides-Lincosamides-Streptogramin B in Livestock Manure and Manure Management Systems. Applied and Environmental Microbiology, 73(14), 4407-4416. https://doi.org/10.1128/AEM.02799-06 Chen, N., Zhou, M., Dong, X., Qu, J., Gong, F., Han, Y., Qiu, Y., Wang, J., Liu, Y., Wei, Y., Xia, J. a., Yu, T., Zhang, X., & Zhang, L. (2020). Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. The Lancet, 395(10223), 507-513. https://doi.org/10.1016/S0140-6736(20)30211-7 Chen, Z., Duan, Y., Yin, L., Chen, Y., Xue, Y., Wang, X., Mao, D., & Luo, Y. (2023). Unraveling the influence of human fecal pollution on antibiotic resistance gene levels in different receiving water bodies using crAssphage indicator gene. Journal of Hazardous Materials, 442, 130005. https://doi.org/https://doi.org/10.1016/j.jhazmat.2022.130005 Choi, P. M., Tscharke, B. J., Donner, E., O'Brien, J. W., Grant, S. C., Kaserzon, S. L., Mackie, R., O'Malley, E., Crosbie, N. D., Thomas, K. V., & Mueller, J. F. (2018). Wastewater-based epidemiology biomarkers: Past, present and future. TrAC Trends in Analytical Chemistry, 105, 453-469. https://doi.org/https://doi.org/10.1016/j.trac.2018.06.004 Cimen, C., Berends, M. S., Bathoorn, E., Lokate, M., Voss, A., Friedrich, A. W., Glasner, C., & Hamprecht, A. (2023). Vancomycin-resistant enterococci (VRE) in hospital settings across European borders: a scoping review comparing the epidemiology in the Netherlands and Germany. Antimicrob Resist Infect Control, 12(1), 78. https://doi.org/10.1186/s13756-023-01278-0 Conejo-Saucedo, U., Ledezma-Villanueva, A., Ángeles de Paz, G., Herrero-Cervera, M., Calvo, C., & Aranda, E. (2021). Evaluation of the Potential of Sewage Sludge Mycobiome to Degrade High Diclofenac and Bisphenol-A Concentrations. Toxics, 9(6), 115. https://www.mdpi.com/2305-6304/9/6/115 Connell, S. R., Tracz, D. M., Nierhaus, K. H., & Taylor, D. E. (2003). Ribosomal protection proteins and their mechanism of tetracycline resistance. Antimicrob Agents Chemother, 47(12), 3675-3681. https://doi.org/10.1128/aac.47.12.3675-3681.2003 Courvalin, P. (2006). Vancomycin Resistance in Gram-Positive Cocci. Clinical Infectious Diseases, 42(Supplement_1), S25-S34. https://doi.org/10.1086/491711 Cui, B., Fu, S., Hao, X., & Zhou, D. (2023). Synergistic effects of simultaneous coupling ozonation and biodegradation for coking wastewater treatment: Advances in COD removal, toxic elimination, and microbial regulation. Chemosphere, 318, 137956. https://doi.org/https://doi.org/10.1016/j.chemosphere.2023.137956 Cui, T., Zhang, S., Ye, J., Gao, L., Zhan, M., & Yu, R. (2022). Distribution, Dissemination and Fate of Antibiotic Resistance Genes During Sewage Sludge Processing—a Review. Water, Air, & Soil Pollution, 233(4), 138. https://doi.org/10.1007/s11270-022-05597-7 Daughton, C. G. (2001). Illicit Drugs in Municipal Sewage. In Pharmaceuticals and Care Products in the Environment (Vol. 791, pp. 348-364). American Chemical Society. https://doi.org/doi:10.1021/bk-2001-0791.ch020 10.1021/bk-2001-0791.ch020 Davies, J., & Davies, D. (2010). Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev, 74(3), 417-433. https://doi.org/10.1128/mmbr.00016-10 Dedysh, S. N., & Ivanova, A. A. (2019). Planctomycetes in boreal and subarctic wetlands: diversity patterns and potential ecological functions. FEMS Microbiology Ecology, 95(2), fiy227. https://doi.org/10.1093/femsec/fiy227 Dutilh, B. E., Cassman, N., McNair, K., Sanchez, S. E., Silva, G. G. Z., Boling, L., Barr, J. J., Speth, D. R., Seguritan, V., Aziz, R. K., Felts, B., Dinsdale, E. A., Mokili, J. L., & Edwards, R. A. (2014). A highly abundant bacteriophage discovered in the unknown sequences of human faecal metagenomes. Nature Communications, 5(1), 4498. https://doi.org/10.1038/ncomms5498 Edwards, R. A., Vega, A. A., Norman, H. M., Ohaeri, M., Levi, K., Dinsdale, E. A., Cinek, O., Aziz, R. K., McNair, K., Barr, J. J., Bibby, K., Brouns, S. J. J., Cazares, A., de Jonge, P. A., Desnues, C., Díaz Muñoz, S. L., Fineran, P. C., Kurilshikov, A., Lavigne, R., . . . Dutilh, B. E. (2019). Global phylogeography and ancient evolution of the widespread human gut virus crAssphage. Nat Microbiol, 4(10), 1727-1736. https://doi.org/10.1038/s41564-019-0494-6 Elder, F. C. T., Proctor, K., Barden, R., Gaze, W. H., Snape, J., Feil, E. J., & Kasprzyk-Hordern, B. (2021). Spatiotemporal profiling of antibiotics and resistance genes in a river catchment: Human population as the main driver of antibiotic and antibiotic resistance gene presence in the environment. Water Research, 203, 117533. https://doi.org/https://doi.org/10.1016/j.watres.2021.117533 Escher, B. I., Baumgartner, R., Koller, M., Treyer, K., Lienert, J., & McArdell, C. S. (2011). Environmental toxicology and risk assessment of pharmaceuticals from hospital wastewater. Water Research, 45(1), 75-92. https://doi.org/https://doi.org/10.1016/j.watres.2010.08.019 Fahrenfeld, N., & Bisceglia, K. J. (2016). Emerging investigators series: sewer surveillance for monitoring antibiotic use and prevalence of antibiotic resistance: urban sewer epidemiology [10.1039/C6EW00158K]. Environmental Science: Water Research & Technology, 2(5), 788-799. https://doi.org/10.1039/C6EW00158K Fan, W., An, W.-g., Huo, M.-x., Yang, W., Zhu, S.-y., & Lin, S.-s. (2020). Solubilization and stabilization for prolonged reactivity of ozone using micro-nano bubbles and ozone-saturated solvent: A promising enhancement for ozonation. Separation and Purification Technology, 238, 116484. https://doi.org/https://doi.org/10.1016/j.seppur.2019.116484 Farkas, K., Walker, D. I., Adriaenssens, E. M., McDonald, J. E., Hillary, L. S., Malham, S. K., & Jones, D. L. (2020). Viral indicators for tracking domestic wastewater contamination in the aquatic environment. Water Research, 181, 115926. https://doi.org/https://doi.org/10.1016/j.watres.2020.115926 Fawell, J., Robinson, D., Bull, R., Birnbaum, L., Boorman, G., Butterworth, B., Daniel, P., Galal-Gorchev, H., Hauchman, F., Julkunen, P., Klaassen, C., Krasner, S., Orme-Zavaleta, J., Reif, J., & Tardiff, R. (1997). Disinfection By-Products in Drinking Water: Critical Issues in Health Effects Research. Environmental Health Perspectives, 105, 108-109. https://doi.org/10.1289/ehp.97105108 Fàbrega, A., Madurga, S., Giralt, E., & Vila, J. (2009). Mechanism of action of and resistance to quinolones. Microbial Biotechnology, 2(1), 40-61. https://doi.org/https://doi.org/10.1111/j.1751-7915.2008.00063.x Feng, N., Wang, G., Kang, X., Hu, T., Wu, H., & Xie, J. (2022). Treatment of organic pollutants in coke plant wastewater by micro-nanometer catalytic ozonation, A/A/O and reverse osmosis membrane. Water Science and Technology, 86(7), 1629-1641. https://doi.org/10.2166/wst.2022.292 Fernández-Villa, D., Aguilar, M. R., & Rojo, L. (2019). Folic Acid Antagonists: Antimicrobial and Immunomodulating Mechanisms and Applications. International Journal of Molecular Sciences, 20(20). Fiolet, T., Guihur, A., Rebeaud, M. E., Mulot, M., Peiffer-Smadja, N., & Mahamat-Saleh, Y. (2021). Effect of hydroxychloroquine with or without azithromycin on the mortality of coronavirus disease 2019 (COVID-19) patients: a systematic review and meta-analysis. Clinical Microbiology and Infection, 27(1), 19-27. https://doi.org/https://doi.org/10.1016/j.cmi.2020.08.022 Foroughi, M., Khiadani, M., Kakhki, S., Kholghi, V., Naderi, K., & Yektay, S. (2022). Effect of ozonation-based disinfection methods on the removal of antibiotic resistant bacteria and resistance genes (ARB/ARGs) in water and wastewater treatment: a systematic review. Science of The Total Environment, 811, 151404. https://doi.org/https://doi.org/10.1016/j.scitotenv.2021.151404 Forum, W. E. (2024). Global Risks Report 2024. Retrieved 2024/10/13 from Fournier, P.-E., Vallenet, D., Barbe, V., Audic, S., Ogata, H., Poirel, L., Richet, H., Robert, C., Mangenot, S., Abergel, C., Nordmann, P., Weissenbach, J., Raoult, D., & Claverie, J.-M. (2006). Comparative Genomics of Multidrug Resistance in Acinetobacter baumannii. PLOS Genetics, 2(1), e7. https://doi.org/10.1371/journal.pgen.0020007 Gajdács, M., & Albericio, F. (2019). Antibiotic Resistance: From the Bench to Patients. Antibiotics, 8(3). Gao, M., Liu, Y., Liu, Z., Li, H., & Zhang, A. (2019). Strengthening of aerobic sludge granulation by the endogenous acylated homoserine lactones-secreting strain Aeromonas sp. A-L3. Biochemical Engineering Journal, 151, 107329. https://doi.org/https://doi.org/10.1016/j.bej.2019.107329 García, B., Latasa, C., Solano, C., Portillo, F. G.-d., Gamazo, C., & Lasa, I. (2004). Role of the GGDEF protein family in Salmonella cellulose biosynthesis and biofilm formation. Molecular Microbiology, 54(1), 264-277. https://doi.org/https://doi.org/10.1111/j.1365-2958.2004.04269.x Getahun, H., Smith, I., Trivedi, K., Paulin, S., & Balkhy, H. H. (2020). Tackling antimicrobial resistance in the COVID-19 pandemic. Bull World Health Organ, 98(7), 442-442a. https://doi.org/10.2471/blt.20.268573 Gillings, M. R., Gaze, W. H., Pruden, A., Smalla, K., Tiedje, J. M., & Zhu, Y.-G. (2015). Using the class 1 integron-integrase gene as a proxy for anthropogenic pollution. The ISME Journal, 9(6), 1269-1279. https://doi.org/10.1038/ismej.2014.226 Godzieba, M., Zubrowska-Sudol, M., Walczak, J., & Ciesielski, S. (2022). Development of microbial communities in biofilm and activated sludge in a hybrid reactor. Scientific Reports, 12(1), 12558. https://doi.org/10.1038/s41598-022-16570-z Gonzalez, R., Curtis, K., Bivins, A., Bibby, K., Weir, M. H., Yetka, K., Thompson, H., Keeling, D., Mitchell, J., & Gonzalez, D. (2020). COVID-19 surveillance in Southeastern Virginia using wastewater-based epidemiology. Water Res, 186, 116296. https://doi.org/10.1016/j.watres.2020.116296 Green Hyatt, C., Haugland Richard, A., Varma, M., Millen Hana, T., Borchardt Mark, A., Field Katharine, G., Walters William, A., Knight, R., Sivaganesan, M., Kelty Catherine, A., & Shanks Orin, C. (2014). Improved HF183 Quantitative Real-Time PCR Assay for Characterization of Human Fecal Pollution in Ambient Surface Water Samples. Applied and Environmental Microbiology, 80(10), 3086-3094. https://doi.org/10.1128/AEM.04137-13 Green Stefan, J., Prakash, O., Jasrotia, P., Overholt Will, A., Cardenas, E., Hubbard, D., Tiedje James, M., Watson David, B., Schadt Christopher, W., Brooks Scott, C., & Kostka Joel, E. (2012). Denitrifying Bacteria from the Genus Rhodanobacter Dominate Bacterial Communities in the Highly Contaminated Subsurface of a Nuclear Legacy Waste Site. Applied and Environmental Microbiology, 78(4), 1039-1047. https://doi.org/10.1128/AEM.06435-11 Guengerich, F. P. (2008). Cytochrome P450 and Chemical Toxicology. Chemical Research in Toxicology, 21(1), 70-83. https://doi.org/10.1021/tx700079z Guo, X.-p., Sun, X.-l., Chen, Y.-r., Hou, L., Liu, M., & Yang, Y. (2020). Antibiotic resistance genes in biofilms on plastic wastes in an estuarine environment. Science of The Total Environment, 745, 140916. https://doi.org/https://doi.org/10.1016/j.scitotenv.2020.140916 Guo, X., Li, B., Zhao, R., Zhang, J., Lin, L., Zhang, G., Li, R.-h., Liu, J., Li, P., Li, Y., & Li, X.-y. (2019). Performance and bacterial community of moving bed biofilm reactors with various biocarriers treating primary wastewater effluent with a low organic strength and low C/N ratio. Bioresource Technology, 287, 121424. https://doi.org/https://doi.org/10.1016/j.biortech.2019.121424 Högberg, L. D., Vlahović-Palčevski, V., Pereira, C., Weist, K., Monnet, D. L., & group, E.-N. s. (2021). Decrease in community antibiotic consumption during the COVID-19 pandemic, EU/EEA, 2020. Eurosurveillance, 26(46), 2101020. https://doi.org/doi:https://doi.org/10.2807/1560-7917.ES.2021.26.46.2101020 Hamza, I. A., Jurzik, L., Überla, K., & Wilhelm, M. (2011). Evaluation of pepper mild mottle virus, human picobirnavirus and Torque teno virus as indicators of fecal contamination in river water. Water Research, 45(3), 1358-1368. https://doi.org/https://doi.org/10.1016/j.watres.2010.10.021 Harwood, V. J., Boehm, A. B., Sassoubre, L. M., Vijayavel, K., Stewart, J. R., Fong, T.-T., Caprais, M.-P., Converse, R. R., Diston, D., Ebdon, J., Fuhrman, J. A., Gourmelon, M., Gentry-Shields, J., Griffith, J. F., Kashian, D. R., Noble, R. T., Taylor, H., & Wicki, M. (2013). Performance of viruses and bacteriophages for fecal source determination in a multi-laboratory, comparative study. Water Research, 47(18), 6929-6943. https://doi.org/https://doi.org/10.1016/j.watres.2013.04.064 Harwood, V. J., Staley, C., Badgley, B. D., Borges, K., & Korajkic, A. (2014). Microbial source tracking markers for detection of fecal contamination in environmental waters: relationships between pathogens and human health outcomes. FEMS Microbiology Reviews, 38(1), 1-40. https://doi.org/10.1111/1574-6976.12031 Hembach, N., Schmid, F., Alexander, J., Hiller, C., Rogall, E. T., & Schwartz, T. (2017). Occurrence of the mcr-1 Colistin Resistance Gene and other Clinically Relevant Antibiotic Resistance Genes in Microbial Populations at Different Municipal Wastewater Treatment Plants in Germany [Original Research]. Frontiers in Microbiology, 8. https://www.frontiersin.org/journals/microbiology/articles/10.3389/fmicb.2017.01282 Hendriksen, R. S., Munk, P., Njage, P., van Bunnik, B., McNally, L., Lukjancenko, O., Röder, T., Nieuwenhuijse, D., Pedersen, S. K., Kjeldgaard, J., Kaas, R. S., Clausen, P. T. L. C., Vogt, J. K., Leekitcharoenphon, P., van de Schans, M. G. M., Zuidema, T., de Roda Husman, A. M., Rasmussen, S., Petersen, B., . . . The Global Sewage Surveillance project, c. (2019). Global monitoring of antimicrobial resistance based on metagenomics analyses of urban sewage. Nature Communications, 10(1), 1124. https://doi.org/10.1038/s41467-019-08853-3 Hewitt, J., Greening, G. E., Leonard, M., & Lewis, G. D. (2013). Evaluation of human adenovirus and human polyomavirus as indicators of human sewage contamination in the aquatic environment. Water Research, 47(17), 6750-6761. https://doi.org/https://doi.org/10.1016/j.watres.2013.09.001 Hosoda, A., Kurosaki, M., Kazama, K., Murano, H., Mizota, C., & Niizuma, Y. (2022). Correlation between molecular microbial community and nitrogen cycling on ornithogenic soil affected by tsunami in Japan. Ecological Genetics and Genomics, 23, 100114. https://doi.org/https://doi.org/10.1016/j.egg.2022.100114 Hossen, A., Ahmed, F., Saha, S. S., & Mondal, M. I. H. (2023). Advantages of ozone disinfection method for water purification over chlorine disinfection [drinking water purification; disinfectant; ozonation; chlorination; by-products; advanced oxidation processes]. 2023, 6(2). https://doi.org/10.24294/nrcr.v6i2.2090 Hsiao, S.-S., Hsu, C.-Y., Ananthakrishnan, B., Hsu, M.-H., Chien, Y.-T., Wang, L.-P., & Tung, H.-H. (2023). Ozone micron bubble pretreatment for antibiotic resistance genes reduction in hospital wastewater treatment. Sustainable Environment Research, 33(1), 40. https://doi.org/10.1186/s42834-023-00203-9 Hsu, S.-Y., Bayati, M., Li, C., Hsieh, H.-Y., Belenchia, A., Klutts, J., Zemmer, S. A., Reynolds, M., Semkiw, E., Johnson, H.-Y., Foley, T., Wieberg, C. G., Wenzel, J., Johnson, M. C., & Lin, C.-H. (2022). Biomarkers selection for population normalization in SARS-CoV-2 wastewater-based epidemiology. Water Research, 223, 118985. https://doi.org/https://doi.org/10.1016/j.watres.2022.118985 Hua, J., Feng, Y., Jiang, Q., Bao, X., & Yin, Y. (2017). Shift of bacterial community structure along different coastal reclamation histories in Jiangsu, Eastern China. Scientific Reports, 7(1), 10096. https://doi.org/10.1038/s41598-017-10608-3 Ip, H., Stratton, K., Zgurskaya, H., & Liu, J. (2003). pH-induced Conformational Changes of AcrA, the Membrane Fusion Protein of Escherichia coli Multidrug Efflux System*. Journal of Biological Chemistry, 278(50), 50474-50482. https://doi.org/https://doi.org/10.1074/jbc.M305152200 Jetty, P., Gaddam, S., & Padi, S. S. V. (2023). Emergence of Third Generation Tetracyclines: New Magic Bullets to Tackle Antibiotic Resistance in the Post-antibiotic Era. Asian Journal of Research in Infectious Diseases, 13(4), 1-14. https://doi.org/10.9734/ajrid/2023/v13i4271 Jhunkeaw, C., Khongcharoen, N., Rungrueng, N., Sangpo, P., Panphut, W., Thapinta, A., Senapin, S., St-Hilaire, S., & Dong, H. T. (2021). Ozone nanobubble treatment in freshwater effectively reduced pathogenic fish bacteria and is safe for Nile tilapia (Oreochromis niloticus). Aquaculture, 534, 736286. https://doi.org/https://doi.org/10.1016/j.aquaculture.2020.736286 Jiang, S., Shang, X., Chen, G., Zhao, M., Kong, H., Huang, Z., & Zheng, X. (2023). Effects of regular zooplankton supplement on the bacterial communities and process performance of biofilm for wastewater treatment. Journal of Environmental Management, 345, 118933. https://doi.org/https://doi.org/10.1016/j.jenvman.2023.118933 Johnston, C., Martin, B., Fichant, G., Polard, P., & Claverys, J.-P. (2014). Bacterial transformation: distribution, shared mechanisms and divergent control. Nature Reviews Microbiology, 12(3), 181-196. https://doi.org/10.1038/nrmicro3199 Kümmerer, K. (2008). Pharmaceuticals in the Environment (K. Kümmerer, Ed. 3 ed.). Springer Berlin, Heidelberg. https://doi.org/https://doi.org/10.1007/978-3-540-74664-5 Kümmerer, K. (2009). Antibiotics in the aquatic environment – A review – Part I. Chemosphere, 75(4), 417-434. https://doi.org/https://doi.org/10.1016/j.chemosphere.2008.11.086 Karkman, A., Do, T. T., Walsh, F., & Virta, M. P. J. (2018). Antibiotic-Resistance Genes in Waste Water. Trends in Microbiology, 26(3), 220-228. https://doi.org/https://doi.org/10.1016/j.tim.2017.09.005 Kasprzyk-Hordern, B., Dinsdale, R. M., & Guwy, A. J. (2009). Illicit drugs and pharmaceuticals in the environment – Forensic applications of environmental data. Part 1: Estimation of the usage of drugs in local communities. Environmental Pollution, 157(6), 1773-1777. https://doi.org/https://doi.org/10.1016/j.envpol.2009.03.017 Khan, N. A., Vambol, V., Vambol, S., Bolibrukh, B., Sillanpaa, M., Changani, F., Esrafili, A., & Yousefi, M. (2021). Hospital effluent guidelines and legislation scenario around the globe: A critical review. Journal of Environmental Chemical Engineering, 9(5), 105874. https://doi.org/https://doi.org/10.1016/j.jece.2021.105874 Kim, S., Park, H., & Chandran, K. (2010). Propensity of activated sludge to amplify or attenuate tetracycline resistance genes and tetracycline resistant bacteria: A mathematical modeling approach. Chemosphere, 78(9), 1071-1077. https://doi.org/https://doi.org/10.1016/j.chemosphere.2009.12.068 Klimkaitė, L., Ragaišis, I., Krasauskas, R., Ružauskas, M., Sužiedėlienė, E., & Armalytė, J. (2023). Novel Antibiotic Resistance Genes Identified by Functional Gene Library Screening in Stenotrophomonas maltophilia and Chryseobacterium spp. Bacteria of Soil Origin. International Journal of Molecular Sciences, 24(7). Kohanski, M. A., Dwyer, D. J., & Collins, J. J. (2010). How antibiotics kill bacteria: from targets to networks. Nature Reviews Microbiology, 8(6), 423-435. https://doi.org/10.1038/nrmicro2333 Kraemer, S. A., Ramachandran, A., & Perron, G. G. (2019). Antibiotic Pollution in the Environment: From Microbial Ecology to Public Policy. Microorganisms, 7(6), 180. https://www.mdpi.com/2076-2607/7/6/180 Kraupner, N., Hutinel, M., Schumacher, K., Gray, D. A., Genheden, M., Fick, J., Flach, C.-F., & Larsson, D. G. J. (2021). Evidence for selection of multi-resistant E. coli by hospital effluent. Environment International, 150, 106436. https://doi.org/https://doi.org/10.1016/j.envint.2021.106436 Laht, M., Karkman, A., Voolaid, V., Ritz, C., Tenson, T., Virta, M., & Kisand, V. (2014). Abundances of Tetracycline, Sulphonamide and Beta-Lactam Antibiotic Resistance Genes in Conventional Wastewater Treatment Plants (WWTPs) with Different Waste Load. PLOS ONE, 9(8), e103705. https://doi.org/10.1371/journal.pone.0103705 Laspidou, C. S., & Rittmann, B. E. (2002). A unified theory for extracellular polymeric substances, soluble microbial products, and active and inert biomass. Water Research, 36(11), 2711-2720. https://doi.org/https://doi.org/10.1016/S0043-1354(01)00413-4 Layton, A., McKay, L., Williams, D., Garrett, V., Gentry, R., & Sayler, G. (2006). Development of Bacteroides 16S rRNA gene TaqMan-based real-time PCR assays for estimation of total, human, and bovine fecal pollution in water. Appl Environ Microbiol, 72(6), 4214-4224. https://doi.org/10.1128/aem.01036-05 Li, D., Van De Werfhorst, L. C., & Holden, P. A. (2022). Genetic sequence data evidence that human faecal-associated HF183 sequences are on human skin and in urine. J Appl Microbiol, 133(2), 232-240. https://doi.org/10.1111/jam.15577 Li, X.-Z., Mehrotra, M., Ghimire, S., & Adewoye, L. (2007). β-Lactam resistance and β-lactamases in bacteria of animal origin. Veterinary Microbiology, 121(3), 197-214. https://doi.org/https://doi.org/10.1016/j.vetmic.2007.01.015 Liang, Z., Yao, J., Ma, H., Peng, W., Xia, X., & Chen, Y. (2023). A sludge bulking wastewater treatment plant with an oxidation ditch-denitrification filter in a cold region: bacterial community composition and antibiotic resistance genes. Environmental Science and Pollution Research, 30(12), 33767-33779. https://doi.org/10.1007/s11356-022-24591-4 Liguori, K., Keenum, I., Davis, B. C., Calarco, J., Milligan, E., Harwood, V. J., & Pruden, A. (2022). Antimicrobial Resistance Monitoring of Water Environments: A Framework for Standardized Methods and Quality Control. Environmental Science & Technology, 56(13), 9149-9160. https://doi.org/10.1021/acs.est.1c08918 Liu, S.-S., Qu, H.-M., Yang, D., Hu, H., Liu, W.-L., Qiu, Z.-G., Hou, A.-M., Guo, J., Li, J.-W., Shen, Z.-Q., & Jin, M. (2018). Chlorine disinfection increases both intracellular and extracellular antibiotic resistance genes in a full-scale wastewater treatment plant. Water Research, 136, 131-136. https://doi.org/https://doi.org/10.1016/j.watres.2018.02.036 Logan, L. K., & Weinstein, R. A. (2017). The Epidemiology of Carbapenem-Resistant Enterobacteriaceae: The Impact and Evolution of a Global Menace. The Journal of Infectious Diseases, 215(suppl_1), S28-S36. https://doi.org/10.1093/infdis/jiw282 Lu, Z., Na, G., Gao, H., Wang, L., Bao, C., & Yao, Z. (2015). Fate of sulfonamide resistance genes in estuary environment and effect of anthropogenic activities. Science of The Total Environment, 527-528, 429-438. https://doi.org/https://doi.org/10.1016/j.scitotenv.2015.04.101 Luo, Y., Mao, D., Rysz, M., Zhang, H., Xu, L., & J. J. Alvarez, P. (2010). Trends in Antibiotic Resistance Genes Occurrence in the Haihe River, China. Environmental Science & Technology, 44(19), 7220-7225. https://doi.org/10.1021/es100233w Maal-Bared, R., Qiu, Y., Li, Q., Gao, T., Hrudey, S. E., Bhavanam, S., Ruecker, N. J., Ellehoj, E., Lee, B. E., & Pang, X. (2023). Does normalization of SARS-CoV-2 concentrations by Pepper Mild Mottle Virus improve correlations and lead time between wastewater surveillance and clinical data in Alberta (Canada): comparing twelve SARS-CoV-2 normalization approaches. Science of The Total Environment, 856, 158964. https://doi.org/https://doi.org/10.1016/j.scitotenv.2022.158964 MacIntyre, C. R., & Bui, C. M. (2017). Pandemics, public health emergencies and antimicrobial resistance - putting the threat in an epidemiologic and risk analysis context. Archives of Public Health, 75(1), 54. https://doi.org/10.1186/s13690-017-0223-7 Mackuľak, T., Škubák, J., Grabic, R., Ryba, J., Birošová, L., Fedorova, G., Špalková, V., & Bodík, I. (2014). National study of illicit drug use in Slovakia based on wastewater analysis. Science of The Total Environment, 494-495, 158-165. https://doi.org/https://doi.org/10.1016/j.scitotenv.2014.06.089 Maehana, S., Kitasato, H., & Suzuki, M. (2021). Genome Sequence of Acinetobacter towneri Strain DSM 16313, Previously Known as the Proposed Type Strain of Acinetobacter seohaensis. Microbiology Resource Announcements, 10(35), 10.1128/mra.00690-00621. https://doi.org/10.1128/mra.00690-21 Manaia, C. M. (2017). Assessing the Risk of Antibiotic Resistance Transmission from the Environment to Humans: Non-Direct Proportionality between Abundance and Risk. Trends in Microbiology, 25(3), 173-181. https://doi.org/https://doi.org/10.1016/j.tim.2016.11.014 Mao, D., Yu, S., Rysz, M., Luo, Y., Yang, F., Li, F., Hou, J., Mu, Q., & Alvarez, P. J. J. (2015). Prevalence and proliferation of antibiotic resistance genes in two municipal wastewater treatment plants. Water Research, 85, 458-466. https://doi.org/https://doi.org/10.1016/j.watres.2015.09.010 Martinez, J. L. (2009). Environmental pollution by antibiotics and by antibiotic resistance determinants. Environmental Pollution, 157(11), 2893-2902. https://doi.org/https://doi.org/10.1016/j.envpol.2009.05.051 Martínez, J. L., Coque, T. M., & Baquero, F. (2015). What is a resistance gene? Ranking risk in resistomes. Nature Reviews Microbiology, 13(2), 116-123. https://doi.org/10.1038/nrmicro3399 Mauch, E., Serra Moncadas, L., & Andrei, A.-S. (2022). Complete Genome Sequence of an Uncultivated Freshwater Bacteroidota Lineage. Microbiology Resource Announcements, 11(10), e00766-00722. https://doi.org/10.1128/mra.00766-22 Maurya, A., & Raj, A. (2020). 5 - Recent advances in the application of biofilm in bioremediation of industrial wastewater and organic pollutants. In P. Chowdhary, A. Raj, D. Verma, & Y. Akhter (Eds.), Microorganisms for Sustainable Environment and Health (pp. 81-118). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-819001-2.00005-X McKinney, C. W., & Pruden, A. (2012). Ultraviolet Disinfection of Antibiotic Resistant Bacteria and Their Antibiotic Resistance Genes in Water and Wastewater. Environmental Science & Technology, 46(24), 13393-13400. https://doi.org/10.1021/es303652q Medema, G., Heijnen, L., Elsinga, G., Italiaander, R., & Brouwer, A. (2020). Presence of SARS-Coronavirus-2 RNA in Sewage and Correlation with Reported COVID-19 Prevalence in the Early Stage of the Epidemic in The Netherlands. Environmental Science & Technology Letters, 7(7), 511-516. https://doi.org/10.1021/acs.estlett.0c00357 Mehdizadeh Gohari, I., A. Navarro, M., Li, J., Shrestha, A., Uzal, F., & A. McClane, B. (2021). Pathogenicity and virulence of Clostridium perfringens. Virulence, 12(1), 723-753. https://doi.org/10.1080/21505594.2021.1886777 Michael, I., Rizzo, L., McArdell, C. S., Manaia, C. M., Merlin, C., Schwartz, T., Dagot, C., & Fatta-Kassinos, D. (2013). Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: A review. Water Research, 47(3), 957-995. https://doi.org/https://doi.org/10.1016/j.watres.2012.11.027 Michael R. Mulvey, P., & MD, A. E. S. (2009). Antimicrobial resistance in hospitals: How concerned should we be? Canadian Medical Association Journal, 180(4), 408-415. https://doi.org/10.1503/cmaj.080239 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2638041/ Mondal, A. H., Khare, K., Saxena, P., Debnath, P., Mukhopadhyay, K., & Yadav, D. (2024). A Review on Colistin Resistance: An Antibiotic of Last Resort. Microorganisms, 12(4), 772. https://www.mdpi.com/2076-2607/12/4/772 Moreira, N. F. F., Ribeirinho-Soares, S., Viana, A. T., Graça, C. A. L., Ribeiro, A. R. L., Castelhano, N., Egas, C., Pereira, M. F. R., Silva, A. M. T., & Nunes, O. C. (2021). Rethinking water treatment targets: Bacteria regrowth under unprovable conditions. Water Research, 201, 117374. https://doi.org/https://doi.org/10.1016/j.watres.2021.117374 Morris, D. E., Cleary, D. W., & Clarke, S. C. (2017). Secondary Bacterial Infections Associated with Influenza Pandemics [Review]. Frontiers in Microbiology, 8. https://doi.org/10.3389/fmicb.2017.01041 Munir, M., Wong, K., & Xagoraraki, I. (2011). Release of antibiotic resistant bacteria and genes in the effluent and biosolids of five wastewater utilities in Michigan. Water Research, 45(2), 681-693. https://doi.org/https://doi.org/10.1016/j.watres.2010.08.033 Murshid, S., Antonysamy, A., Dhakshinamoorthy, G., Jayaseelan, A., & Pugazhendhi, A. (2023). A review on biofilm-based reactors for wastewater treatment: Recent advancements in biofilm carriers, kinetics, reactors, economics, and future perspectives. Science of The Total Environment, 892, 164796. https://doi.org/https://doi.org/10.1016/j.scitotenv.2023.164796 (Science of The Total Environment) Muyzer, G., de Waal, E. C., & Uitterlinden, A. G. (1993). Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Applied and Environmental Microbiology, 59(3), 695-700. https://doi.org/10.1128/aem.59.3.695-700.1993 Narciso-da-Rocha, C., & Manaia, C. M. (2016). Multidrug resistance phenotypes are widespread over different bacterial taxonomic groups thriving in surface water. Science of The Total Environment, 563-564, 1-9. https://doi.org/https://doi.org/10.1016/j.scitotenv.2016.04.062 Ni, B.-J., Zeng, S., Wei, W., Dai, X., & Sun, J. (2020). Impact of roxithromycin on waste activated sludge anaerobic digestion: Methane production, carbon transformation and antibiotic resistance genes. Science of The Total Environment, 703, 134899. https://doi.org/https://doi.org/10.1016/j.scitotenv.2019.134899 Nie, K., Ji, N., Xu, J., Guo, M., Wang, Y., & Xu, X. (2022). Fast and efficient removal of dyes and Cr(VI) ion from wastewater using halloysite nanotubes-covalently coated polyurethane sponges. Journal of Environmental Chemical Engineering, 10(5), 108308. https://doi.org/https://doi.org/10.1016/j.jece.2022.108308 Nikaido, H. (2003). Molecular Basis of Bacterial Outer Membrane Permeability Revisited. Microbiology and Molecular Biology Reviews, 67(4), 593-656. https://doi.org/10.1128/mmbr.67.4.593-656.2003 O'Neill, J. (2016a). Review on antimicrobial resistance: tackling drug-resistant infections globally: final report and recommendations. O'Neill, J. (2016b). Tackling drug-resistant infections globally: final report and recommendations. O’Brien, J. W., Thai, P. K., Eaglesham, G., Ort, C., Scheidegger, A., Carter, S., Lai, F. Y., & Mueller, J. F. (2014). A Model to Estimate the Population Contributing to the Wastewater Using Samples Collected on Census Day. Environmental Science & Technology, 48(1), 517-525. https://doi.org/10.1021/es403251g Pagès, J.-M., James, C. E., & Winterhalter, M. (2008). The porin and the permeating antibiotic: a selective diffusion barrier in Gram-negative bacteria. Nature Reviews Microbiology, 6(12), 893-903. https://doi.org/10.1038/nrmicro1994 Parnham, M. J., Haber, V. E., Giamarellos-Bourboulis, E. J., Perletti, G., Verleden, G. M., & Vos, R. (2014). Azithromycin: Mechanisms of action and their relevance for clinical applications. Pharmacology & Therapeutics, 143(2), 225-245. https://doi.org/https://doi.org/10.1016/j.pharmthera.2014.03.003 Partridge Sally, R., Kwong Stephen, M., Firth, N., & Jensen Slade, O. (2018). Mobile Genetic Elements Associated with Antimicrobial Resistance. Clinical Microbiology Reviews, 31(4), 10.1128/cmr.00088-00017. https://doi.org/10.1128/cmr.00088-17 Pazda, M., Rybicka, M., Stolte, S., Piotr Bielawski, K., Stepnowski, P., Kumirska, J., Wolecki, D., & Mulkiewicz, E. (2020). Identification of Selected Antibiotic Resistance Genes in Two Different Wastewater Treatment Plant Systems in Poland: A Preliminary Study. Molecules, 25(12), 2851. https://www.mdpi.com/1420-3049/25/12/2851 Pei, R., Kim, S.-C., Carlson, K. H., & Pruden, A. (2006). Effect of River Landscape on the sediment concentrations of antibiotics and corresponding antibiotic resistance genes (ARG). Water Research, 40(12), 2427-2435. https://doi.org/https://doi.org/10.1016/j.watres.2006.04.017 Peleg, A. Y., Seifert, H., & Paterson, D. L. (2008). Acinetobacter baumannii: emergence of a successful pathogen. Clin Microbiol Rev, 21(3), 538-582. https://doi.org/10.1128/cmr.00058-07 Porob, S., Craddock, H. A., Motro, Y., Sagi, O., Gdalevich, M., Ezery, Z., Davidovitch, N., Ronen, Z., & Moran-Gilad, J. (2020). Quantification and Characterization of Antimicrobial Resistance in Greywater Discharged to the Environment. Water, 12(5), 1460. https://www.mdpi.com/2073-4441/12/5/1460 Prabhasankar, V. P., Joshua, D. I., Balakrishna, K., Siddiqui, I. F., Taniyasu, S., Yamashita, N., Kannan, K., Akiba, M., Praveenkumarreddy, Y., & Guruge, K. S. (2016). Removal rates of antibiotics in four sewage treatment plants in South India. Environmental Science and Pollution Research, 23(9), 8679-8685. https://doi.org/10.1007/s11356-015-5968-3 Pruden, A., Pei, R., Storteboom, H., & Carlson, K. H. (2006). Antibiotic Resistance Genes as Emerging Contaminants: Studies in Northern Colorado. Environmental Science & Technology, 40(23), 7445-7450. https://doi.org/10.1021/es060413l Rafraf, I. D., Lekunberri, I., Sànchez-Melsió, A., Aouni, M., Borrego, C. M., & Balcázar, J. L. (2016). Abundance of antibiotic resistance genes in five municipal wastewater treatment plants in the Monastir Governorate, Tunisia. Environmental Pollution, 219, 353-358. https://doi.org/https://doi.org/10.1016/j.envpol.2016.10.062 Rastogi, R. P., Richa, Kumar, A., Tyagi, M. B., & Sinha, R. P. (2010). Molecular Mechanisms of Ultraviolet Radiation-Induced DNA Damage and Repair. Journal of Nucleic Acids, 2010(1), 592980. https://doi.org/https://doi.org/10.4061/2010/592980 Rehman, Z. U., Fortunato, L., Cheng, T., & Leiknes, T. (2020). Metagenomic analysis of sludge and early-stage biofilm communities of a submerged membrane bioreactor. Science of The Total Environment, 701, 134682. https://doi.org/https://doi.org/10.1016/j.scitotenv.2019.134682 Revitt-Mills, S. A., Rood, J. I., & Adams, V. (2015). Clostridium perfringens extracellular toxins and enzymes: 20 and counting. Microbiology Australia, 36(3), 114-117. Reygaert, W. (2009). Methicillin-resistant Staphylococcus aureus (MRSA): molecular aspects of antimicrobial resistance and virulence. Clinical laboratory science : journal of the American Society for Medical Technology, 22, 115-119. Reygaert, W. C. (2018). An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiol, 4(3), 482-501. https://doi.org/10.3934/microbiol.2018.3.482 Rizzo, L., Manaia, C., Merlin, C., Schwartz, T., Dagot, C., Ploy, M. C., Michael, I., & Fatta-Kassinos, D. (2013). Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: A review. Science of The Total Environment, 447, 345-360. https://doi.org/https://doi.org/10.1016/j.scitotenv.2013.01.032 Roberts, M. C. (2008). Update on macrolide–lincosamide–streptogramin, ketolide, and oxazolidinone resistance genes. FEMS Microbiology Letters, 282(2), 147-159. https://doi.org/10.1111/j.1574-6968.2008.01145.x Rodriguez-Mozaz, S., Chamorro, S., Marti, E., Huerta, B., Gros, M., Sànchez-Melsió, A., Borrego, C. M., Barceló, D., & Balcázar, J. L. (2015). Occurrence of antibiotics and antibiotic resistance genes in hospital and urban wastewaters and their impact on the receiving river. Water Research, 69, 234-242. https://doi.org/https://doi.org/10.1016/j.watres.2014.11.021 Rosario, K., Symonds Erin, M., Sinigalliano, C., Stewart, J., & Breitbart, M. (2009). Pepper Mild Mottle Virus as an Indicator of Fecal Pollution. Applied and Environmental Microbiology, 75(22), 7261-7267. https://doi.org/10.1128/AEM.00410-09 Rowe, W. P. M., Baker-Austin, C., Verner-Jeffreys, D. W., Ryan, J. J., Micallef, C., Maskell, D. J., & Pearce, G. P. (2017). Overexpression of antibiotic resistance genes in hospital effluents over time. J Antimicrob Chemother, 72(6), 1617-1623. https://doi.org/10.1093/jac/dkx017 Rumky, J., Kruglova, A., & Repo, E. (2022). Fate of antibiotic resistance genes (ARGs) in wastewater treatment plant: Preliminary study on identification before and after ultrasonication. Environmental Research, 215, 114281. https://doi.org/https://doi.org/10.1016/j.envres.2022.114281 (Environmental Research) Sader, H. S., & Jones, R. N. (2005). Antimicrobial susceptibility of uncommonly isolated non-enteric Gram-negative bacilli. International Journal of Antimicrobial Agents, 25(2), 95-109. https://doi.org/https://doi.org/10.1016/j.ijantimicag.2004.10.002 Saingam, P., Baig, Z., Xu, Y., & Xi, J. (2018). Effect of ozone injection on the long-term performance and microbial community structure of a VOCs biofilter. Journal of Environmental Sciences, 69, 133-140. https://doi.org/https://doi.org/10.1016/j.jes.2017.09.008 Saleem, Z., Godman, B., Hassali, M. A., Hashmi, F. K., Azhar, F., & Rehman, I. U. (2019). Point prevalence surveys of health-care-associated infections: a systematic review. Pathogens and Global Health, 113(4), 191-205. https://doi.org/10.1080/20477724.2019.1632070 Sarmah, A. K., Meyer, M. T., & Boxall, A. B. A. (2006). A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere, 65(5), 725-759. https://doi.org/https://doi.org/10.1016/j.chemosphere.2006.03.026 Schnabel Elise, L., & Jones Alan, L. (1999). Distribution of Tetracycline Resistance Genes and Transposons among Phylloplane Bacteria in Michigan Apple Orchards. Applied and Environmental Microbiology, 65(11), 4898-4907. https://doi.org/10.1128/AEM.65.11.4898-4907.1999 Schuster, A., Hädrich, C., & Kümmerer, K. (2008). Flows of Active Pharmaceutical Ingredients Originating from Health Care Practices on a Local, Regional, and Nationwide Level in Germany—Is Hospital Effluent Treatment an Effective Approach for Risk Reduction? Water, Air, & Soil Pollution: Focus, 8(5), 457-471. https://doi.org/10.1007/s11267-008-9183-9 Seridou, P., & Kalogerakis, N. (2021). Disinfection applications of ozone micro- and nanobubbles [10.1039/D1EN00700A]. Environmental Science: Nano, 8(12), 3493-3510. https://doi.org/10.1039/D1EN00700A Sheykhsaran, E., Baghi, H. B., Soroush, M. H., & Ghotaslou, R. (2019). An overview of tetracyclines and related resistance mechanisms. Reviews and Research in Medical Microbiology, 30(1), 69-75. https://doi.org/10.1097/mrm.0000000000000154 Shi, P., Jia, S., Zhang, X.-X., Zhang, T., Cheng, S., & Li, A. (2013). Metagenomic insights into chlorination effects on microbial antibiotic resistance in drinking water. Water Research, 47(1), 111-120. https://doi.org/https://doi.org/10.1016/j.watres.2012.09.046 Sinha, R. P., & Häder, D.-P. (2002). UV-induced DNA damage and repair: a review. Photochemical & Photobiological Sciences, 1(4), 225-236. https://doi.org/10.1039/b201230h Smillie, C., Garcillán-Barcia, M. P., Francia, M. V., Rocha Eduardo, P. C., & de la Cruz, F. (2010). Mobility of Plasmids. Microbiology and Molecular Biology Reviews, 74(3), 434-452. https://doi.org/10.1128/mmbr.00020-10 Smith, C. J., Rocha, E. R., & Paster, B. J. (2006). The Medically Important Bacteroides spp. in Health and Disease. In M. Dworkin, S. Falkow, E. Rosenberg, K.-H. Schleifer, & E. Stackebrandt (Eds.), The Prokaryotes: Volume 7: Proteobacteria: Delta, Epsilon Subclass (pp. 381-427). Springer New York. https://doi.org/10.1007/0-387-30747-8_14 Smith, D. S., Lindholm-Levy, P., Huitt, G. A., Heifets, L. B., & Cook, J. L. (2000). Mycobacterium terrae: Case Reports, Literature Review, and In Vitro Antibiotic Susceptibility Testing. Clinical Infectious Diseases, 30(3), 444-453. https://doi.org/10.1086/313693 Song, S., Han, M., Wang, X., Wang, S., Qin, W., Zhang, Y., Liu, Y., & Sun, X. (2023). Fate of antibiotic resistance genes in cultivation substrate and its association with bacterial communities throughout commercial production of Agaricus bisporus. Ecotoxicology and Environmental Safety, 249, 114360. https://doi.org/https://doi.org/10.1016/j.ecoenv.2022.114360 Stachler, E., Akyon, B., de Carvalho, N. A., Ference, C., & Bibby, K. (2018). Correlation of crAssphage qPCR Markers with Culturable and Molecular Indicators of Human Fecal Pollution in an Impacted Urban Watershed. Environmental Science & Technology, 52(13), 7505-7512. https://doi.org/10.1021/acs.est.8b00638 Stachler, E., Kelty, C., Sivaganesan, M., Li, X., Bibby, K., & Shanks, O. C. (2017). Quantitative CrAssphage PCR Assays for Human Fecal Pollution Measurement. Environmental Science & Technology, 51(16), 9146-9154. https://doi.org/10.1021/acs.est.7b02703 Subirats, J., Royo, E., Balcázar, J. L., & Borrego, C. M. (2017). Real-time PCR assays for the detection and quantification of carbapenemase genes (blaKPC, blaNDM, and blaOXA-48) in environmental samples. Environmental Science and Pollution Research, 24(7), 6710-6714. https://doi.org/10.1007/s11356-017-8426-6 Sun, L., Klein, E. Y., & Laxminarayan, R. (2012). Seasonality and Temporal Correlation between Community Antibiotic Use and Resistance in the United States. Clinical Infectious Diseases, 55(5), 687-694. https://doi.org/10.1093/cid/cis509 Suzuki, S., & Hoa, P. T. P. (2012). Distribution of Quinolones, Sulfonamides, Tetracyclines in Aquatic Environment and Antibiotic Resistance in Indochina [Review]. Frontiers in Microbiology, 3. https://www.frontiersin.org/journals/microbiology/articles/10.3389/fmicb.2012.00067 Svebrant, S., Spörndly, R., Lindberg, R. H., Olsen Sköldstam, T., Larsson, J., Öhagen, P., Söderström Lindström, H., & Järhult, J. D. (2021). On-Site Pilot Testing of Hospital Wastewater Ozonation to Reduce Pharmaceutical Residues and Antibiotic-Resistant Bacteria. Antibiotics, 10(6). Tago, Y., & Yokota, A. (2004). <i>Comamonas badia</i> sp. nov., a floc-forming bacterium isolated from activated sludge. The Journal of General and Applied Microbiology, 50(5), 243-248. https://doi.org/10.2323/jgam.50.243 Teixeira, A. M., Vaz-Moreira, I., Calderón-Franco, D., Weissbrodt, D., Purkrtova, S., Gajdos, S., Dottorini, G., Nielsen, P. H., Khalifa, L., Cytryn, E., Bartacek, J., & Manaia, C. M. (2023). Candidate biomarkers of antibiotic resistance for the monitoring of wastewater and the downstream environment. Water Research, 247, 120761. https://doi.org/https://doi.org/10.1016/j.watres.2023.120761 Teixeira, P., Tacão, M., & Henriques, I. (2022). Occurrence and distribution of Carbapenem-resistant Enterobacterales and carbapenemase genes along a highly polluted hydrographic basin. Environmental Pollution, 300, 118958. https://doi.org/https://doi.org/10.1016/j.envpol.2022.118958 Tian, X., Li, X., Dong, P., Ren, Z., Ji, X., & Bian, D. (2022). The treatment effect and denitrification mechanism of low-temperature and low-carbon source municipal wastewater treated by micro pressure swirl reactor. Journal of Water Process Engineering, 49, 103027. https://doi.org/https://doi.org/10.1016/j.jwpe.2022.103027 Tian, X., Zhao, J., Huang, J., Chen, G., & Zhao, Y. (2021). The metabolic process of aerobic granular sludge treating piggery wastewater: Microbial community, denitrification genes and mathematical model calculation. Journal of Environmental Chemical Engineering, 9(4), 105392. https://doi.org/https://doi.org/10.1016/j.jece.2021.105392 Todedji, J., Sopoh, G., Degbey, C., Yessoufou, A., Suanon, F., & Mama, D. (2021). Assessment of the quality of effluent management from university hospitals in the Littoral department in Benin. BMC Public Health, 21(1), 1429. https://doi.org/10.1186/s12889-021-11478-1 Tomás, J. M. (2012). The main Aeromonas pathogenic factors. ISRN Microbiol, 2012, 256261. https://doi.org/10.5402/2012/256261 von Gunten, U. (2003). Ozonation of drinking water: Part I. Oxidation kinetics and product formation. Water Research, 37(7), 1443-1467. https://doi.org/https://doi.org/10.1016/S0043-1354(02)00457-8 Wang, C., Lin, C.-Y., & Liao, G.-Y. (2020). Degradation of antibiotic tetracycline by ultrafine-bubble ozonation process. Journal of Water Process Engineering, 37, 101463. https://doi.org/https://doi.org/10.1016/j.jwpe.2020.101463 Wang, X., Hu, M., Xia, Y., Wen, X., & Ding, K. (2012). Pyrosequencing Analysis of Bacterial Diversity in 14 Wastewater Treatment Systems in China. Applied and Environmental Microbiology, 78(19), 7042-7047. https://doi.org/10.1128/AEM.01617-12 Wang, Z., Cai, M., Du, P., & Li, X. (2024). Wastewater surveillance for antibiotics and resistance genes in a river catchment: Spatiotemporal variations and the main drivers. Water Research, 251, 121090. https://doi.org/https://doi.org/10.1016/j.watres.2023.121090 Wayne, L. G., & Sramek, H. A. (1992). Agents of newly recognized or infrequently encountered mycobacterial diseases. Clin Microbiol Rev, 5(1), 1-25. https://doi.org/10.1128/cmr.5.1.1 Weinbren, M. J. (2020). Dissemination of antibiotic resistance and other healthcare waterborne pathogens. The price of poor design, construction, usage and maintenance of modern water/sanitation services. Journal of Hospital Infection, 105(3), 406-411. https://doi.org/https://doi.org/10.1016/j.jhin.2020.03.034 WHO. (2020). WHO Director-General’s Opening Remarks at the Media briefing on COVID-19 – 11 March 2020. https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020 Wu, D., Zhao, J., Su, Y., Yang, M., Dolfing, J., Graham, D. W., Yang, K., & Xie, B. (2023). Explaining the resistomes in a megacity's water supply catchment: Roles of microbial assembly-dominant taxa, niched environments and pathogenic bacteria. Water Research, 228, 119359. https://doi.org/https://doi.org/10.1016/j.watres.2022.119359 Wu, J., Chen, Z., Zhang, S., Gao, L., Yu, R., & Zhan, M. (2019). Mechanistic Understanding of Predatory Bacteria-Induced Biolysis for Waste Sludge Dewaterability Improvement. Water, Air, & Soil Pollution, 230(8), 194. https://doi.org/10.1007/s11270-019-4242-6 Wu, L., Wang, L.-K., Wei, W., Song, L., & Ni, B.-J. (2022). Sulfur-driven autotrophic denitrification of nitric oxide for efficient nitrous oxide recovery. Biotechnology and Bioengineering, 119(1), 257-267. https://doi.org/https://doi.org/10.1002/bit.27970 Wu, X., Gu, Y., Wu, X., Zhou, X., Zhou, H., Amanze, C., Shen, L., & Zeng, W. (2020). Construction of a Tetracycline Degrading Bacterial Consortium and Its Application Evaluation in Laboratory-Scale Soil Remediation. Microorganisms, 8(2). Xu, L., Ceolotto, N., Jagadeesan, K., Standerwick, R., Robertson, M., Barden, R., & Kasprzyk-Hordern, B. (2024). Antimicrobials and antimicrobial resistance genes in the shadow of COVID-19 pandemic: A wastewater-based epidemiology perspective. Water Research, 257, 121665. https://doi.org/https://doi.org/10.1016/j.watres.2024.121665 Xu, L., Chen, H., Canales, M., & Ciric, L. (2019). Use of synthesized double-stranded gene fragments as qPCR standards for the quantification of antibiotic resistance genes. Journal of Microbiological Methods, 164, 105670. https://doi.org/https://doi.org/10.1016/j.mimet.2019.105670 Xu, L., Zhang, C., Xu, P., & Wang, X. C. (2018). Mechanisms of ultraviolet disinfection and chlorination of Escherichia coli: Culturability, membrane permeability, metabolism, and genetic damage. Journal of Environmental Sciences, 65, 356-366. https://doi.org/https://doi.org/10.1016/j.jes.2017.07.006 Xu, Y., Guo, C., Luo, Y., Lv, J., Zhang, Y., Lin, H., Wang, L., & Xu, J. (2016). Occurrence and distribution of antibiotics, antibiotic resistance genes in the urban rivers in Beijing, China. Environmental Pollution, 213, 833-840. https://doi.org/https://doi.org/10.1016/j.envpol.2016.03.054 Yang, H., Li, X., Li, X., Wang, X., Ma, H., & Zheng, X. (2024). The fate of antibiotic resistance genes and their correlation with microbial communities and wastewater quality/parameters in a wastewater treatment plant under different seasons. Journal of Water Process Engineering, 60, 105156. https://doi.org/https://doi.org/10.1016/j.jwpe.2024.105156 Yang, H., Liu, R., Liu, H., Wang, C., Yin, X., Zhang, M., Fang, J., Zhang, T., & Ma, L. (2021). Evidence for Long-Term Anthropogenic Pollution: The Hadal Trench as a Depository and Indicator for Dissemination of Antibiotic Resistance Genes. Environmental Science & Technology, 55(22), 15136-15148. https://doi.org/10.1021/acs.est.1c03444 Yang, Y., Li, B., Zou, S., Fang, H. H. P., & Zhang, T. (2014). Fate of antibiotic resistance genes in sewage treatment plant revealed by metagenomic approach. Water Research, 62, 97-106. https://doi.org/https://doi.org/10.1016/j.watres.2014.05.019 Yeung, M., Saingam, P., Xu, Y., & Xi, J. (2021). Low-dosage ozonation in gas-phase biofilter promotes community diversity and robustness. Microbiome, 9(1), 14. https://doi.org/10.1186/s40168-020-00944-4 Yoon, Y., Dodd, M. C., & Lee, Y. (2018). Elimination of transforming activity and gene degradation during UV and UV/H2O2 treatment of plasmid-encoded antibiotic resistance genes [10.1039/C8EW00200B]. Environmental Science: Water Research & Technology, 4(9), 1239-1251. https://doi.org/10.1039/C8EW00200B Yoshino, H., Van Phan, H., Mori, N., Ohkuma, N., Kawakami, M., Nihei, M., Hashimoto, S., Wakabayashi, K., Hori, T., & Terada, A. (2024). Anti-biofouling performance and microbial communities of an integrated fixed-film activated sludge membrane bioreactor with a fibrous carrier material: Pilot-scale demonstration. Science of The Total Environment, 918, 170291. https://doi.org/https://doi.org/10.1016/j.scitotenv.2024.170291 Yuanwei, L., Hao, K., Guo, M., You, J., & Zong, Y. (2021). Characteristics of the community-structure of A2O processes under different dissolved oxygen conditions in plateau areas. IOP Conference Series: Earth and Environmental Science, 657(1), 012030. https://doi.org/10.1088/1755-1315/657/1/012030 Zhang, H., Liu, Y.-Q., Mao, S., Steinberg, C. E. W., Duan, W., & Chen, F. (2022). Reproducibility of Aerobic Granules in Treating Low-Strength and Low-C/N-Ratio Wastewater and Associated Microbial Community Structure. Processes, 10(3), 444. https://www.mdpi.com/2227-9717/10/3/444 Zhang, M., Yuan, Z., Yang, H., Zhang, L., Guo, J., & Ji, S. (2024). A novel three-dimensional biofilm-electrode/anoxic-oxic process for nitrogen and phosphorus removal: Performance, mechanism and microbial community. Journal of Water Process Engineering, 65, 105853. https://doi.org/https://doi.org/10.1016/j.jwpe.2024.105853 Zhang, T., Breitbart, M., Lee, W. H., Run, J.-Q., Wei, C. L., Soh, S. W. L., Hibberd, M. L., Liu, E. T., Rohwer, F., & Ruan, Y. (2005). RNA Viral Community in Human Feces: Prevalence of Plant Pathogenic Viruses. PLOS Biology, 4(1), e3. https://doi.org/10.1371/journal.pbio.0040003 Zhang, X.-X., & Zhang, T. (2011). Occurrence, Abundance, and Diversity of Tetracycline Resistance Genes in 15 Sewage Treatment Plants across China and Other Global Locations. Environmental Science & Technology, 45(7), 2598-2604. https://doi.org/10.1021/es103672x Zhang, X., Li, J., Yu, Y., Xu, R., & Wu, Z. (2016). Biofilm characteristics in natural ventilation trickling filters (NVTFs) for municipal wastewater treatment: Comparison of three kinds of biofilm carriers. Biochemical Engineering Journal, 106, 87-96. https://doi.org/https://doi.org/10.1016/j.bej.2015.11.009 Zhao, Y., Zhu, S., Fan, X., Zhang, X., Ren, H., & Huang, H. (2022). Precise portrayal of microscopic processes of wastewater biofilm formation: Taking SiO2 as the model carrier. Science of The Total Environment, 849, 157776. https://doi.org/https://doi.org/10.1016/j.scitotenv.2022.157776 Zheng, T., Wang, Q., Zhang, T., Shi, Z., Tian, Y., Shi, S., Smale, N., & Wang, J. (2015). Microbubble enhanced ozonation process for advanced treatment of wastewater produced in acrylic fiber manufacturing industry. Journal of Hazardous Materials, 287, 412-420. https://doi.org/https://doi.org/10.1016/j.jhazmat.2015.01.069 Zheng, W., Huyan, J., Tian, Z., Zhang, Y., & Wen, X. (2020). Clinical class 1 integron-integrase gene – A promising indicator to monitor the abundance and elimination of antibiotic resistance genes in an urban wastewater treatment plant. Environment International, 135, 105372. https://doi.org/https://doi.org/10.1016/j.envint.2019.105372 Zhou, H., & Smith, D. W. (2000). Ozone mass transfer in water and wastewater treatment: experimental observations using a 2D laser particle dynamics analyzer. Water Research, 34(3), 909-921. https://doi.org/https://doi.org/10.1016/S0043-1354(99)00196-7 Zhou, Y., Kiely, P. D., Kibbee, R., & Ormeci, B. (2021). Effect of polymeric support material on biofilm development, bacterial population, and wastewater treatment performance in anaerobic fixed-film systems. Chemosphere, 264, 128477. https://doi.org/https://doi.org/10.1016/j.chemosphere.2020.128477 Zhu, L., Yuan, H., Shi, Z., Deng, L., Yu, Z., Li, Y., & He, Q. (2022). Metagenomic insights into the effects of various biocarriers on moving bed biofilm reactors for municipal wastewater treatment. Science of The Total Environment, 813, 151904. https://doi.org/https://doi.org/10.1016/j.scitotenv.2021.151904 Zhuang, H., Han, H., Jia, S., Zhao, Q., & Hou, B. (2014). Advanced treatment of biologically pretreated coal gasification wastewater using a novel anoxic moving bed biofilm reactor (ANMBBR)–biological aerated filter (BAF) system. Bioresource Technology, 157, 223-230. https://doi.org/https://doi.org/10.1016/j.biortech.2014.01.105 Ziegler, A. S., McIlroy, S. J., Larsen, P., Albertsen, M., Hansen, A. A., Heinen, N., & Nielsen, P. H. (2016). Dynamics of the Fouling Layer Microbial Community in a Membrane Bioreactor. PLOS ONE, 11(7), e0158811. https://doi.org/10.1371/journal.pone.0158811 Zimdahl, R. L. (2015). Chapter 9 - Antibiotics. In R. L. Zimdahl (Ed.), Six Chemicals That Changed Agriculture (pp. 165-182). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-800561-3.00009-2 Zuccato, E., Chiabrando, C., Castiglioni, S., Calamari, D., Bagnati, R., Schiarea, S., & Fanelli, R. (2005). Cocaine in surface waters: a new evidence-based tool to monitor community drug abuse. Environmental Health, 4(1), 14. https://doi.org/10.1186/1476-069X-4-14 丁施文. (2023). COVID-19對微生物產生抗生素抗藥性的影響. 《感控雜誌》, 42-49. https://doi.org/https://doi.org/10.6526/ICJ.10.6526/ICJ.202306_33(3).0004 張科. (2013). 加護病房多重抗藥性鮑氏不動桿菌群突發:強調群突發時需控制醫院環境之汙染. 感染控制雜誌, 23:1 2013.02[民102.02], 頁1-13. https://tpl.ncl.edu.tw/NclService/JournalContentDetail?SysId=A13017052 許家瑜. (2022). 都市污水與醫院廢水之抗生素抗性基因組成以及臭氧微米氣泡於廢水處理之應用 國立臺灣大學]. https://doi.org/10.6342%2fNTU202203536 衛福部疾管署. (2021). 台灣抗生素使用量監視年報(2021年). Retrieved 2024/10/14 from https://www.cdc.gov.tw/File/Get?q=t9WnCInvvVMS9kUboNEwGxg6Wz06Vl_3pqwG-6wXNXhRYqzREMV2Mpas-S8dphE_XEZxGhM_s_y5VdmHrXUFGDJ3qMTUv1vKb6Sz3hYrwxYy5H6REYsbbn28VHEO3RFnRp3_nEbX9R8LfBcEIFEm8w 衛福部疾管署. (2022). 台灣抗生素抗藥性監視年報(2022年). Retrieved 2024/12/2 from https://www.cdc.gov.tw/File/Get?q=t9WnCInvvVMS9kUboNEwGyMfnSzrqO4tEVYcbEZsVLnR7hPkUmheUtD50yW8tzmYiakHjarykF0UpfwrV8ODg_7g2L-camSpNkEs4Hrbg9JsGmIW7fezB8l_w5Uq6WAs7r122uMTvYSTTnjVJm_dDA 簡鈺庭. (2023). 應用臭氧微米氣泡串聯生物載體模組降解汙水抗生素抗藥性基因之實場研究 國立臺灣大學]. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96740 | - |
| dc.description.abstract | 抗生素濫用引發的抗藥性問題對人類健康及環境構成重大威脅,抗藥性細菌和抗藥性基因(Antibiotic Resistance Genes, ARGs)的增長已成為全球公共衛生的挑戰。本研究首先聚焦新北市淡水區污水環境,分析多種目標ARGs的時空分布與變化,特別關注污水下水道與都市污水處理廠的熱點區域。結果顯示,sul1、tetA、tetX及整合酶基因intl1在污水中呈現時間與地點的一致性變化,並在污水處理廠中富集。且鄰近醫院排放點(S1)中,醫院後線用抗生素mcr-1與vanA基因濃度偏高,突顯醫療污水排放對特定ARGs的影響。接著進一步以污水流行病學方法(Wastewater-Based Epidemiology, WBE),評估16S rRNA與糞便生物標記在ARGs監測中的標準化表現。結果表明,糞便生物標記能有效克服由非人類貢獻所引起的細菌總數波動,具備更高的穩定性與準確性,並揭示ARGs與人類活動的關聯。為解決醫療污水中ARGs的處理問題,本研究探討了臭氧微奈米氣泡技術結合生物膜載體系統的應用。結果顯示,臭氧微奈米氣泡技術能有效降低污水中ARGs濃度,並在載體生物膜中達到0.5至2.3 log的ARGs抑制效果。儘管不同載體材料對生物膜中ARGs的影響無顯著性差異,但菌相分析結果顯示,臭氧處理能提升微生物多樣性,卻同時提高潛在致病菌(如鮑氏不動桿菌Acinetobacter baumannii)比例,證實臭氧微奈米氣泡技術在控制ARGs方面的應用潛力,但也強調需進一步評估其長期環境影響與安全性。從數據分析結果顯示,COVID-19病例數與ARGs豐度間存在遲滯相關性,尤其在鄰近醫院排放點(S1)的ARGs相對人口豐度的變化情況較早出現,顯示醫療污水排放可能反映人口抗藥性風險的早期變化趨勢。整體而言,本研究為國內抗生素抗藥性監測與標準化方法的建立提供科學依據,並為未來抗藥性基因管控策略的制定與公共衛生保護措施的推動提供支援。 | zh_TW |
| dc.description.abstract | The overuse of antibiotics has led to the growing issue of antibiotic resistance, posing significant threats to human health and the environment. The rise of antibiotic-resistant bacteria and resistance genes (ARGs) has become a critical global public health concern. This study analyzes the spatiotemporal distribution of target ARGs in the wastewater environment of Tamsui District, with a focus on hotspots in sewer systems and urban wastewater treatment plants. The results show consistent temporal and spatial variations in the concentrations of sul1, tetA, tetX, and integrase gene intl1, which accumulate in wastewater treatment plants. Higher concentrations of hospital-specific ARGs, including mcr-1 and vanA, were found near hospital discharge points (S1), highlighting the impact of medical wastewater.
The study also applied Wastewater-Based Epidemiology (WBE) methods to assess the performance of 16S rRNA and fecal biomarkers in ARG monitoring. Fecal biomarkers were found to offer greater stability and accuracy, effectively addressing bacterial fluctuations caused by non-human contributions and revealing correlations between ARGs and human activities. To address the treatment of ARGs in medical wastewater, the study explored ozone micro-nano bubble technology combined with a biofilm carrier system. The results showed that ozone micro-nano bubble effectively reduced ARG concentrations, achieving 0.5 to 2.3 log reductions. While there was no significant difference in the impact of various carrier materials on ARGs in biofilms, microbial analysis revealed an increase in microbial diversity, alongside a higher proportion of potential pathogens (e.g., Acinetobacter baumannii) under ozone treatment. This highlights ozone micro-nano bubble' potential for ARG control, but further assessment of long-term environmental impact is needed. Finally, the study identified a lag correlation between COVID-19 case numbers and ARG abundance, indicating that medical wastewater could reflect early trends in antibiotic resistance risks. This research provides key insights for domestic ARG monitoring and supports the development of control strategies and public health measures. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-21T16:20:21Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-02-21T16:20:21Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 i
摘要 ii ABSTRACT iii 目次 v 圖次 viii 表次 x 第一章 前言 1 1.1 研究背景 1 1.2 研究假說、目的與目標 2 第二章 文獻回顧 3 2.1 抗生素抗藥性的威脅 3 2.1.1 抗生素的作用機制 3 2.1.2 細菌的抗生素抗藥性機制 4 2.1.3 抗生素抗性基因的來源與傳播途徑 5 2.1.4 抗生素抗性基因在環境監測中的選擇依據與應用意義 6 2.2 抗生素抗藥性基因在污水環境中的累積與挑戰 7 2.2.1 污水流行病學概述與應用 8 2.2.2 抗生素抗藥性基因(ARGs)標準化 9 2.2.3 糞便指標與人口標準化 9 2.2.4 抗生素抗藥性基因對污水處理廠的挑戰 11 2.2.5 醫療廢水中ARGs的危險性 12 2.3 醫療污水中ARGs的滅活應用 13 2.3.1 消毒程序 13 2.3.2 臭氧化醫療污水 14 2.3.3 臭氧微米氣泡運用於醫療污水的ARGs降解 14 2.4 生物膜處理系統 16 2.4.1 生物膜形成 16 2.4.2 生物膜載體及其材料特性對豐度的影響 16 2.5 本研究知識缺口(knowledge gap) 18 第三章 材料與研究方法 19 3.1 研究架構 19 3.2 污水下水道採樣 20 3.3 基本水質分析 21 3.4 生物載體材料 22 3.5 連續流式好氧生物膜培養實驗 23 3.5.1 醫院實場模組設計 23 3.5.2 載體採樣與預處理 26 3.5.3 載體附著生物質量(Attached growth biomass, AGBS) 26 3.6 分子生物技術 26 3.6.1 核酸萃取(DNA Extraction) 26 3.6.2 數位化聚合酶連鎖反應(Digital PCR, dPCR) 26 3.7 ARGs標準化方法 30 3.8 生物膜群落分析 31 3.9 數據分析與統計方法 31 第四章 研究結果 32 4.1 醫院污水放流對ARGs的影響 32 4.1.1 抗生素抗藥性基因濃度變化 32 4.1.2 相對菌群豐度(ARGs/16S rRNA)的時空變化 35 4.2 糞便生物標記的人口標準化應用 40 4.2.1 糞便生物標記作為標準化ARGs參數的適用性篩選 40 4.2.2 污水下水道的基因負荷量差異 44 4.2.3 相對人口豐度(ARGs/fecal biomarker gene) 46 4.3 城市污水處理廠對ARGs的進出流變化 53 4.3.1 污水廠ARGs的絕對濃度之去除效率 53 4.3.2 污水廠ARGs的相對菌群豐度變化 55 4.4 臭氧微奈米氣泡串聯好氧生物膜系統 57 4.4.1 載體材料對細菌黏附與附著生物量的影響 57 4.4.2 臭氧微米氣泡系統對醫院污水的影響 59 4.4.3 連續流式生物膜模組實驗—以醫院污水為研究對象 62 第五章 討論 81 5.1 國內抗生素用藥與污水下水道基因豐度 81 5.2 污水ARGs標準化的應用比較 83 5.3 水質參數應用於ARGs標準化之潛力 84 5.4 污水處理程序對出流水 ARGs 相對豐度影響的成因探討 85 5.5 COVID-19的時空背景下醫院污水放流ARGs的變化與遲滯效應 88 5.6 臭氧預處理對醫院實場生物處理載體生物膜的影響 94 第六章 結論與建議 96 6.1 結論 96 6.2 建議 97 參考文獻 98 附錄 119 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 抗生素抗藥性基因 | zh_TW |
| dc.subject | 污水流行病學方法 | zh_TW |
| dc.subject | 醫院污水 | zh_TW |
| dc.subject | 糞便生物標記 | zh_TW |
| dc.subject | 臭氧微奈米氣泡技術 | zh_TW |
| dc.subject | 載體生物膜 | zh_TW |
| dc.subject | 菌相分析 | zh_TW |
| dc.subject | Microbiome Analysis | en |
| dc.subject | Antibiotic Resistance Genes | en |
| dc.subject | Wastewater-based Epidemiology | en |
| dc.subject | Hospital Wastewater | en |
| dc.subject | Fecal Biomarkers | en |
| dc.subject | Ozone Micro-Nano bubble Technology | en |
| dc.subject | Biofilm Carriers | en |
| dc.title | 污水中抗生素抗藥性基因分布:糞便生物標記之人口標準化應用與臭氧微奈米氣泡系統對生物膜菌相的影響 | zh_TW |
| dc.title | Distribution of Antibiotic Resistance Genes in Wastewater: Application of Fecal Biomarkers for Population-Based Normalization & Effects of Ozone Micro-Nano Bubbles on Biofilm Microbial Community. | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 吳佳真;陳佩貞 | zh_TW |
| dc.contributor.oralexamcommittee | Chia-Chen Wu;Pei-Jen Chen | en |
| dc.subject.keyword | 抗生素抗藥性基因,污水流行病學方法,醫院污水,糞便生物標記,臭氧微奈米氣泡技術,載體生物膜,菌相分析, | zh_TW |
| dc.subject.keyword | Antibiotic Resistance Genes,Wastewater-based Epidemiology,Hospital Wastewater,Fecal Biomarkers,Ozone Micro-Nano bubble Technology,Biofilm Carriers,Microbiome Analysis, | en |
| dc.relation.page | 122 | - |
| dc.identifier.doi | 10.6342/NTU202404768 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-12-26 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 環境工程學研究所 | - |
| dc.date.embargo-lift | 2029-12-22 | - |
| 顯示於系所單位: | 環境工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-1.pdf 未授權公開取用 | 6.68 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
