請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96649完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳肇欣 | zh_TW |
| dc.contributor.advisor | Chao-Hsin Wu | en |
| dc.contributor.author | 薩莫古 | zh_TW |
| dc.contributor.author | Mukul Kumar | en |
| dc.date.accessioned | 2025-02-20T16:22:12Z | - |
| dc.date.available | 2026-01-05 | - |
| dc.date.copyright | 2025-02-20 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-01-20 | - |
| dc.identifier.citation | [1] J. Bardeen and W. H. Brattain, “The transistor, a semi-conductor triode,” Phys. Rev., vol. 74, no. 2, pp. 230–231, Jul. 1948, doi: 10.1103/PhysRev.74.230.
[2] W. Shockley, “The theory of p-n junctions in semiconductors and p-n junction transistors,” Bell System Technical Journal, vol. 28, no. 3, pp. 435–489, Jul. 1949, doi: 10.1002/j.1538-7305.1949.tb03645.x. [3] W. Shockley, M. Sparks, and G. K. Teal, “𝑝-𝑛 junction transistors,” Phys. Rev., vol. 83, no. 1, pp. 151–162, Jul. 1951, doi: 10.1103/PhysRev.83.151. [4] W. Shockley, “Circuit element utilizing semiconductive material.” United States of America Patent 2,569,347, 26 June 1948. [5] H. Kroemer, “Theory of a wide-gap emitter for transistors,” Proc. of the IRE, vol. 45, no. 11, pp. 1535–1537, 1957, doi: 10.1109/JRPROC.1957.278348. [6] W. Snodgrass, W. Hafez, N. Harff, and M. Feng, “Pseudomorphic InP/InGaAs heterojunction bipolar transistors (PHBTs) experimentally demonstrating fT = 765 GHz at 25℃ increasing to fT = 845 GHz at -55℃,” in Intern. Electron Devices Meeting, 2006, pp. 1–4. doi: 10.1109/IEDM.2006.346853. [7] Y. Shiratori, T. Hoshi, and H. Matsuzaki, “InGaP/GaAsSb/InGaAsSb/InP double heterojunction bipolar transistors with record ft of 813 GHz,” IEEE Electron Device Lett., vol. 41, no. 5, pp. 697–700, May 2020, doi: 10.1109/LED.2020.2982497. [8] R. N. Hall, G. E. Fenner, J. D. Kingsley, T. J. Soltys, and R. O. Carlson, “Coherent light emission from GaAs junctions,” Phys. Rev. Lett., vol. 9, no. 9, pp. 366–368, Nov. 1962, doi: 10.1103/PhysRevLett.9.366. [9] N. Holonyak and S. F. Bevacqua, “Coherent (visible) light emission from Ga(As1-xPx) junctions,” Appl. Phys. Lett., vol. 1, no. 4, pp. 82–83, Dec. 1962, doi: 10.1063/1.1753706. [10] M. Feng, N. Holonyak, and W. Hafez, “Light-emitting transistor: Light emission from InGaP/GaAs heterojunction bipolar transistors,” Appl. Phys. Lett., vol. 84, no. 1, pp. 151–153, Jan. 2004, doi: 10.1063/1.1637950. [11] M. Feng, N. Holonyak, and R. Chan, “Quantum-well-base heterojunction bipolar light-emitting transistor,” Appl. Phys. Lett., vol. 84, no. 11, pp. 1952–1954, Mar. 2004, doi: 10.1063/1.1669071. [12] C. H. Wu, G. Walter, H. W. Then, M. Feng, and N. Holonyak, “Scaling of light emitting transistor for multigigahertz optical bandwidth,” Appl. Phys. Lett., vol. 94, no. 17, Apr. 2009, Art. no. 171101, doi: 10.1063/1.3126642. [13] M. Feng, N. Holonyak, A. James, K. Cimino, G. Walter, and R. Chan, “Carrier lifetime and modulation bandwidth of a quantum well AlGaAs∕InGaP∕GaAs∕InGaAs transistor laser,” Appl. Phys. Lett., vol. 89, no. 11, Sep. 2006, Art. no. 113504, doi: 10.1063/1.2346369. [14] G. Walter, C. H. Wu, H. W. Then, M. Feng, and N. Holonyak, “4.3 GHz optical bandwidth light emitting transistor,” Appl. Phys. Lett., vol. 94, no. 24, Jun. 2009, Art. no. 241101, doi: 10.1063/1.3153146. [15] M. Feng, N. Holonyak, G. Walter, and R. Chan, “Room temperature continuous wave operation of a heterojunction bipolar transistor laser,” Appl. Phys. Lett., vol. 87, no. 13, Sep. 2005, Art no. 131103, doi: 10.1063/1.2058213. [16] M.-K. Wu, M. Feng, and N. Holonyak, “Surface emission vertical cavity transistor laser,” IEEE Photonics Technology Lett., vol. 24, no. 15, pp. 1346–1348, Aug. 2012, doi: 10.1109/LPT.2012.2203356. [17] M. Feng, C.-H. Wu, M. K. Wu, C.-H. Wu, and N. Holonyak, “Resonance-free optical response of a vertical cavity transistor laser,” Appl. Phys. Lett., vol. 111, no. 12, Sep. 2017, Art. no. 121106, doi: 10.1063/1.5004133. [18] C.-H. Wu and C.-H. Wu, “12 GHz spontaneous optical bandwidth tunnel junction light-emitting transistor,” Appl. Phys. Lett., vol. 115, no. 18, Oct. 2019, Art. no. 181102, doi: 10.1063/1.5124959. [19] U. Cisco, “Cisco annual internet report (2018–2023) white paper,” San Jose, CA, USA, Mar. 2020. [20] H.-T. Cheng, Y.-T. Liang, Y.-T. Huang, S.-J. Hsu, W.-H. Lin, M. Feng, and C. H. Wu, “Electro-optical logics by three-terminal quantum-well-light-emitting transistors integration,” Photon. Res., vol. 12, no. 8, p. A51-A62, Aug. 2024, doi: 10.1364/PRJ.516274. [21] H.-H. Chen, C.-W. Wang, and C.-H. Wu, “Monolithically integrated optical NAND gate using light-emitting transistors,” in 23rd Opto-Electronics and Commun. Conf., Jul. 2018, pp. 1–2. doi: 10.1109/OECC.2018.8729956. [22] A. Winoto, J. Qiu, D. Wu, Y.-T. Peng, and M. Feng, “Integrated photonics of transistor laser, detector and active load for all optical NOR gate,” in Inter. Symp. on VLSI Techn. Syst. and Appl., Apr. 2019, pp. 1–5. doi: 10.1109/VLSI-TSA.2019.8804656. [23] A. Winoto, J. Qiu, D. Wu, and M. Feng, “Transistor laser-integrated photonics for optical logic: Unlocking unique electro-optical integration potential to open up new possibilities for logic processors,” IEEE Nanotech. Mag., vol. 13, no. 2, pp. 27–34, Apr. 2019, doi: 10.1109/MNANO.2019.2891978. [24] Y.-T. Liang, Y.-T. Huang, C.-H. Wu, and H.-Y. Lin, “Monolithically integrated opto-electrical NOR gate using light emitting transistors,” in Opto-Electronics and Commun. Conf. (OECC), Oct. 2020, pp. 1–3. doi: 10.1109/OECC48412.2020.9273560. [25] Y.-T. Chen, Y.-T. Liang, and C.-H. Wu, “Monolithically integrated optoelectronic multiplexer circuit using light emitting transistors,” in Proc. Opto-Electron. Commun. Conf. (OECC), Jul. 2021, pp. 1-3, doi: 10.1364/OECC.2021.T3E.2. [26] M. Feng, A. Winoto, J. Qiu, Y.-T. Peng, and N. Holonyak, “All optical NOR gate via tunnel-junction transistor lasers for high speed optical logic processors,” in Intern. Symp. on VLSI Techn., Syst. and Appl. (VLSI-TSA), Apr. 2018, pp. 1–2. doi: 10.1109/VLSI-TSA.2018.8403847. [27] Y. Xiao Y. Xiao, T.-Z. Wu, S.-J. Dang, Y.-L. Gao, Y. Lin, L.-H. Zhu, Z.-Q. Guo, Y.-J. Lu, and Z. Chen, “Determining junction temperature of LEDs by the relative reflected intensity of the incident exciting light,” IEEE Trans. Electron Devices, vol. 64, no. 5, pp. 2257–2260, May 2017, doi: 10.1109/TED.2017.2678513. [28] G. C. M. Meijer, “Thermal sensors based on transistors,” Sens. and Actuat., vol. 10, pp. 103–125, Sep. 1986, doi: 10.1016/0250-6874(86)80037-3. [29] J. P. Bentley, “Temperature sensor characteristics and measurement system design,” J. Phys. E, vol. 17, no. 6, pp. 430–439, Jun. 1984, doi: 10.1088/0022-3735/17/6/002. [30] A. Bakker, “CMOS smart temperature sensors-An overview,” in Proc. SENSORS, Vol. 2, Jun. 2002, pp. 1423–1427, doi: 10.1109/ICSENS.2002.1037330. [31] K. A. A. Makinwa, “Smart temperature sensors in standard CMOS,” Proc. Eng., vol. 5, pp. 930–939, 2010, doi: 10.1016/j.proeng.2010.09.262. [32] I. M. Dmitrenko, S. P. Logvinenko, N. I. Ivanov, and Z. M. Kolot, “Thermometric characteristics of semiconductor diodes,” Cryogenics, vol. 6, no. 6, pp. 357–358, Dec. 1966, doi: 10.1016/0011-2275(66)90137-8. [33] K. Souri, Y. Chae, Y. Ponomarev, and K. A. A. Makinwa, “A precision DTMOST-based temperature sensor,” in Proc. ESSCIRC, Sep. 2011, pp. 279–282. doi: 10.1109/ESSCIRC.2011.6044961. [34] M. A. P. Pertijs, A. Niederkorn, Xu Ma, B. McKillop, A. Bakker, and J. H. Huijsing, “A CMOS smart temperature sensor with a 3 sigma inaccuracy of +/-0.5 degrees C to 120 degrees C,” IEEE J. Solid-State Circuits, vol. 40, no. 2, pp. 454–461, Feb. 2005, doi: 10.1109/JSSC.2004.841013. [35] F. Sebastiano, L. J. Breems, K. A. A. Makinwa, S. Drago, D. M. W. Leenaerts, and B. Nauta, “A 1.2-V 10-μ W NPN-based temperature sensor in 65-nm CMOS with an inaccuracy of 0.2℃ (3σ) from -70℃ to 125℃,” IEEE J. Solid-State Circuits, vol. 45, no. 12, pp. 2591–2601, Dec. 2010, doi: 10.1109/JSSC.2010.2076610. [36] Z. Shenghua and W. Nanjian, “A novel ultra low power temperature sensor for UHF RFID tag chip,” in IEEE Asian Solid-State Circuits Conf., Nov. 2007, pp. 464–467. doi: 10.1109/ASSCC.2007.4425731. [37] A. L. Aita, M. Pertijs, K. Makinwa, and J. H. Huijsing, “A CMOS smart temperature sensor with a batch-calibrated inaccuracy of ±0.25℃ (3σ) from -70℃ to 130℃,” in IEEE Inter. Solid-State Circuits Conf., Feb. 2009, pp. 342-343,343a. doi: 10.1109/ISSCC.2009.4977448. [38] M. A. P. Pertijs and J. H. Huijsing, Precision temperature sensors in CMOS technology. Doedrecht, Netherlands: Springer, 2006. [39] C. Cahoon and R. J. Baker, “Low-voltage CMOS temperature sensor design using schottky diode-based references,” in IEEE Workshop on Microelectronics and Electron Devices., Apr. 2008, pp. 16–19. doi: 10.1109/WMED.2008.4510657. [40] P. Chen, C.-C. Chen, C.-C. Tsai, and W.-F. Lu, “A time-to-digital-converter-based CMOS smart temperature sensor,” IEEE J. Solid-State Circuits, vol. 40, no. 8, pp. 1642–1648, Aug. 2005, doi: 10.1109/JSSC.2005.852041. [41] S. Park, C. Min, and S. Cho, “A 95nW ring oscillator-based temperature sensor for RFID tags in 0.13 μm CMOS,” in IEEE Intern. Symp. on Circuits and Systems, May 2009, pp. 1153–1156. doi: 10.1109/ISCAS.2009.5117965. [42] C. P. L. van Vroonhoven, D. d’Aquino, and K. A. A. Makinwa, “A thermal-diffusivity-based temperature sensor with an untrimmed inaccuracy of ±0.2℃ (3s) from -55℃ to 125℃,” in IEEE Inter. Solid-State Circuits Conf.-(ISSCC), Feb. 2010, pp. 314–315. doi: 10.1109/ISSCC.2010.5433900. [43] B. Razavi, Design of analog CMOS integrated circuits. New York, NY, USA: McGraw-Hill, 2005. [44] L. Lu, B. Vosooghi, J. Chen, and C. Li, “A subthreshold-MOSFETs-based scattered relative temperature sensor front-end with a non-calibrated ±2.5℃ 3σ relative inaccuracy from -40℃ to 100℃,” IEEE Trans. on Circuits and Systems I: Regular Papers, vol. 60, no. 5, pp. 1104–1112, May 2013, doi: 10.1109/TCSI.2013.2249131. [45] G. Giustolisi, G. Palumbo, M. Criscione, and F. Cutri, “A low-voltage low-power voltage reference based on subthreshold MOSFETs,” IEEE J. Solid-State Circuits, vol. 38, no. 1, pp. 151–154, Jan. 2003, doi: 10.1109/JSSC.2002.806266. [46] N. Chand, R. Fischer, T. Henderson, J. Klem, W. Kopp, and H. Morkoç, “Temperature dependence of current gain in AlGaAs/GaAs heterojunction bipolar transistors,” Appl. Phys. Lett., vol. 45, no. 10, pp. 1086–1088, Nov. 1984, doi: 10.1063/1.95024. [47] H. Ito, T. Ishibashi, and T. Sugeta, “Current gain enhancement in graded base AlGaAs/GaAs HBTs associated with electron drift motion,” Jpn. J. Appl. Phys., vol. 24, no. 4A, p. L241, Apr. 1985, doi: 10.1143/JJAP.24.L241. [48] K. Ikossi-Anastasiou, A. Ezis, K. R. Evans, and C. E. Stutz, “Low-temperature characterization of high-current-gain graded-emitter AlGaAs/GaAs narrow-base heterojunction bipolar transistor,” IEEE Electron Device Lett., vol. 13, no. 8, pp. 414–417, Aug. 1992, doi: 10.1109/55.192776. [49] W. Liu, S.-K. Fan, T. Henderson, and D. Davito, “Temperature dependences of current gains in GaInP/GaAs and AlGaAs/GaAs heterojunction bipolar transistors,” IEEE Trans. Electron Devices, vol. 40, no. 7, pp. 1351–1353, Jul. 1993, doi: 10.1109/16.216446. [50] L. L. Liou and B. Bayraktaroglu, “Thermal stability analysis of AlGaAs/GaAs heterojunction bipolar transistors with multiple emitter fingers,” IEEE Trans. Electron Devices, vol. 41, no. 5, pp. 629–636, May 1994, doi: 10.1109/16.285008. [51] Y.-S. Lin and J.-J. Jiang, “Temperature dependence of current gain, ideality factor, and offset voltage of AlGaAs/GaAs and InGaP/GaAs HBTs,” IEEE Trans. Electron Devices, vol. 56, no. 12, pp. 2945–2951, Dec. 2009, doi: 10.1109/TED.2009.2033325. [52] E. S. Yang, C. C. Hsu, H. B. Lo, and Y.-F. Yang, “Modeling of current gain’s temperature dependence in heterostructure-emitter bipolar transistors,” IEEE Trans. Electron Devices, vol. 47, no. 7, pp. 1315–1319, Jul. 2000, doi: 10.1109/16.848270. [53] Y.-H. Chang, Y.-L. Chou, S.-W. Chang, and C.-H. Wu, “Thermally-enhanced current gain of quantum-well heterojunction bipolar transistor,” J. Appl. Phys., vol. 126, no. 1, Jul. 2019, Art. no. 014503, doi: 10.1063/1.5091050. [54] H. Karan and A. Biswas, “Improving performance of light-emitting diodes using InGaN/GaN MQWs with varying trapezoidal bottom well width,” Otik, vol. 247, Dec. 2021, Art. no. 167888, doi: 10.1016/j.ijleo.2021.167888. [55] K. Souri and K. A. Makinwa, “Readout methods for BJT-based temperature sensors,” in Energy-Efficient Smart Temperature Sensors in CMOS Technology (Analog Circuit and Signal Processing), 1st ed. Cham, The Netherland: Springer, Oct. 2017, pp. 19–36, doi: 10.1007/978-3- 319-62307-8_2. [56] H. W. Then, M. Feng, N. Holonyak, and C. H. Wu, “Experimental determination of the effective minority carrier lifetime in the operation of a quantum-well n-p-n heterojunction bipolar light-emitting transistor of varying base quantum-well design and doping,” Appl. Phys. Lett., vol. 91, no. 3, Jul. 2007, Art. no. 033505, doi: 10.1063/1.2759263. [57] M. Feng, N. Holonyak, H. W. Then, and G. Walter, “Charge control analysis of transistor laser operation,” Appl. Phys. Lett., vol. 91, no. 5, Jul. 2007, Art. no. 053501, doi: 10.1063/1.2767172. [58] B. Faraji, W. Shi, D. L. Pulfrey, and L. Chrostowski, “Analytical modeling of the transistor laser,” IEEE J. of Sel. Topics Quantum Electron., vol. 15, no. 3, pp. 594–603, May/Jun. 2009, doi: 10.1109/JSTQE.2009.2013178. [59] L. Zhang and J.-P. Leburton, “Modeling of the transient characteristics of heterojunction bipolar transistor lasers,” IEEE J. Quantum Electron., vol. 45, no. 4, pp. 359–366, Apr. 2009, doi: 10.1109/JQE.2009.2013215. [60] I. Taghavi, H. Kaatuzian, and J.-P. Leburton, “Bandwidth enhancement and optical performances of multiple quantum well transistor lasers,” Appl. Phys. Lett., vol. 100, no. 23, Jun. 2012, Art. no. 231114, doi: 10.1063/1.4727898. [61] R. Basu, B. Mukhopadhyay, and P. K. Basu, “Modeling of current gain compression in common emitter mode of a transistor laser above threshold base current,” J. Appl. Phys., vol. 111, no. 8, Apr. 2012, Art no. 083103, doi: 10.1063/1.4703926. [62] Y. Li and J.-P. Leburton, “Quantum well capture and base carrier lifetime in light emitting transistor,” Appl. Phys. Lett., vol. 113, no. 17, Oct. 2018, Art. no. 171110, doi: 10.1063/1.5044758. [63] L. Yang, S.-W. Chang, and C.-H. Wu, “A four-port model of light-emitting transistors for circuit simulation and application,” IEEE Trans. Electron Devices, vol. 67, no. 12, pp. 5572–5580, Dec. 2020, doi: 10.1109/TED.2020.3028326. [64] C.-T. Tung, H.-Y. Lin, S.-W. Chang, and C.-H. Wu, “Analytical modeling of tunnel-junction transistor lasers,” IEEE J. of Sel. Topics Quantum Electron., vol. 28, no. 1: semiconductor lasers, pp. 1–8, Jan.-Feb. 2022, Art no. 1501008, doi: 10.1109/JSTQE.2021.3090527. [65] H. Schneider and K. V. Klitzing, “Thermionic emission and Gaussian transport of holes in a GaAs/ AlxGa1−xAs multiple-quantum-well structure,” Phys. Rev. B, Condens. Matter, vol. 38, no. 9, pp. 6160–6165, Sep. 1988, doi: 10.1103/PhysRevB.38.6160. [66] R. Nagarajan, “Carrier transport effects in quantum well lasers: An overview,” Opt. Quantum Electron., vol. 26, no. 7, pp. S647–S666, Jul. 1994, doi: 10.1007/BF00326653. [67] J. Nelson, M. Paxman, K. W. J. Barnham, J. S. Roberts, and C. Button, “Steady-state carrier escape from single quantum wells,” IEEE J. Quantum Electron., vol. 29, no. 6, pp. 1460–1468, Jun. 1993, doi: 10.1109/3.234396. [68] M. Mosko and K. Kálna, “Carrier capture into a GaAs quantum well with a separate confinement region: comment on quantum and classical aspects,” Semicond Sci. Technol., vol. 14, no. 9, pp. 790–796, Sep. 1999, doi: 10.1088/0268-1242/14/9/308. [69] S. Tiwari and S. L. Wright, “Material properties of p-type GaAs at large dopings,” Appl. Phys. Lett., vol. 56, no. 6, pp. 563–565, Feb. 1990, doi: 10.1063/1.102745. [70] M. L. Lovejoy, M. R. Melloch, and M. S. Lundstrom, “Temperature dependence of minority and majority carrier mobilities in degenerately doped GaAs,” Appl. Phys. Lett., vol. 67, no. 8, pp. 1101–1103, Aug. 1995, doi: 10.1063/1.114974. [71] G. W.’t Hooft, M. R. Leys, and H. J. Talen-v.d. Mheen, “Temperature dependence of the radiative recombination coefficient in GaAs(Al, Ga)As quantum wells,” Superlattices Microstructures, vol. 1, no. 4, pp. 307–310, Jan. 1985, doi: 10.1016/0749-6036(85)90092-8. [72] Y. Arakawa, H. Sakaki, M. Nishioka, J. Yoshino, and T. Kamiya, “Recombination lifetime of carriers in GaAs-GaAlAs quantum wells near room temperature,” Appl. Phys. Lett., vol. 46, no. 5, pp. 519–521, Mar. 1985, doi: 10.1063/1.95578. [73] P. T. Landsberg, “The band-band Auger effect in semiconductors,” Solid State Electron, vol. 30, no. 11, pp. 1107–1115, Nov. 1987, doi: 10.1016/0038-1101(87)90074-8. [74] D. McDonald and R. F. O’Dowd, “Comparison of two- and three-level rate equations in the modeling of quantum-well lasers,” IEEE J. Quantum Electron., vol. 31, no. 11, pp. 1927–1934, Nov. 1995, doi: 10.1109/3.469272. [75] B. Faraji, W. Shi, D. L. Pulfrey, and L. Chrostowski, “Common-emitter and common-base small-signal operation of the transistor laser,” Appl. Phys. Lett., vol. 93, no. 14, Oct. 2008, Art. no. 143503, doi: 10.1063/1.2998267. [76] B. Faraji, D. L. Pulfrey, and L. Chrostowski, “Small-signal modeling of the transistor laser including the quantum capture and escape lifetimes,” Appl. Phys. Lett., vol. 93, no. 10, Sep. 2008, Art. no. 103509, doi: 10.1063/1.2981799. [77] I. Taghavi, H. Kaatuzian, and J.-P. Leburton, “Multiple versus single quantum well transistor laser performances,” in Proc. Integer. Photon. Res., Silicon Nanophoton., Washington, DC, USA, Jun. 2012, pp. 1-3, doi: 10.1364/IPRSN.2012.IM4B.5. [78] I. Taghavi, H. Kaatuzian, and J.-P. Leburton, “Performance optimization of multiple quantum well transistor laser,” IEEE J. Quantum Electron., vol. 49, no. 4, pp. 426–435, Apr. 2013, doi: 10.1109/JQE.2013.2250488. [79] R. Ranjan, P. Pareek, S. S. Anwer Askari, and M. K. Das, “Small signal analysis of tin-incorporated group-IV alloys based multiple quantum well transistor laser,” in Proc. Int. Conf. Numer. Simulation Optoelectron. Devices (NUSOD), Nov. 2018, pp. 73–74. doi: 10.1109/NUSOD.2018.8570273. [80] R. Basu, B. Mukhopadhyay, and P. K. Basu, “Modeling resonance-free modulation response in transistor lasers with single and multiple quantum wells in the base,” IEEE Photon. J., vol. 4, no. 5, pp. 1572–1581, Oct. 2012, doi: 10.1109/JPHOT.2012.2211075. [81] R. Basu, B. Mukhopadhyay, and P. K. Basu, “Analytical model for threshold‐base current of a transistor laser with multiple quantum wells in the base,” IET Optoelectron., vol. 7, no. 3, pp. 71–76, Jun. 2013, doi: 10.1049/iet-opt.2012.0039. [82] R. Ranjan, P. Pareek, S. S. A. Askari, and M. K. Das, “Performance analysis of GeSn-alloy-based multiple quantum well transistor laser,” in Proc. Phys. Simulation Optoelectron. Devices XXVI, Feb. 2018, p. 85. doi: 10.1117/12.2290570. [83] I. Taghavi, B. Namvar, M. Hosseini, and H. Kaatuzian, “Large signal analysis of multiple quantum well transistor laser: Investigation of imbalanced carrier and photon density distribution,” J. Appl. Phys., vol. 127, no. 13, Apr. 2020, Art. no. 133102, doi: 10.1063/5.0003290. [84] R. Ranjith, S. Piramasubramanian, and M. Ganesh Madhan, “Effect of number of quantum wells on modulation and distortion characteristics of transistor laser,” Opt. Laser Technol., vol. 147, Mar. 2022, Art. no. 107655, doi: 10.1016/j.optlastec.2021.107655. [85] R. Ranjan, M. K. Das, and S. Kumar, “Performance analysis of tin-incorporated group-IV alloy based transistor laser,” Opt. Laser Technol., vol. 106, pp. 228–233, Oct. 2018, doi: 10.1016/j.optlastec.2018.04.010. [86] I. Taghavi, H. Kaatuzian, and J.-P. Leburton, “A nonlinear gain model for multiple quantum well transistor lasers,” Semicond. Sci. Technol., vol. 28, no. 2, Feb. 2013, Art. no. 025022, doi: 10.1088/0268-1242/28/2/025022. [87] R. Basu, B. Mukhopadhyay, and P. K. Basu, “Performance study of a tunnel injection transistor laser with multiple quantum-wells in the base,” in Proc. 12th Int. Conf. Fiber Opt. Photon., Dec. 2014, p. 1-3, doi: 10.1364/PHOTONICS.2014.M4A.4. [88] S. Piramasubramanian, M. Ganesh Madhan, V. Radha, S. M. S. Shajithaparveen, and G. Nivetha, “Effect of quantum well position on the distortion characteristics of transistor laser,” Opt. Commun., vol. 414, pp. 22–28, May 2018, doi: 10.1016/j.optcom.2017.12.055. [89] M. Kumar, S.-J. Hsu, S.-Y. Ho, S.-W. Chang, and C.-H. Wu, “Current gain enhancement of heterojunction bipolar light-emitting transistors using staircase InGaAs quantum well,” IEEE Trans. Electron Devices, vol. 70, no. 10. Pp. 5177-5183, Oct 2023, doi: 10.1109/TED.2023.3305355. [90] H.-H. Yang, W.-C. Tu, H.-L. Wang, and C.-H. Wu, “Investigation of effective base transit time and current gain modulation of light-emitting transistors under different ambient temperatures,” Appl. Phys. Lett., vol. 105, no. 18, Nov. 2014, Art., no. 181119, doi: 10.1063/1.4901338. [91] H.-L. Wang, P.-H. Chou, and C.-H. Wu, “Microwave determination of quantum-well capture and escape time in light-emitting transistors,” IEEE Trans. Electron Devices, vol. 60, no. 3, pp. 1088–1091, Mar. 2013, doi: 10.1109/TED.2013.2242330. [92] H.-L. Wang, Y.-J. Huang, and C.-H. Wu, “Optical frequency response analysis of light-emitting transistors under different microwave configurations,” Appl. Phys. Lett., vol. 103, no. 5, Jul. 2013, Art. no. 051110, doi: 10.1063/1.4817545. [93] H.-L. Wang, H.-H. Yang, and C.-H. W. Wu, “Quantum well saturation effect on the reduction of base transit time in light-emitting transistors,” IEEE Trans. Electron Devices, vol. 61, no. 10, pp. 3472–3476, Oct. 2014, doi: 10.1109/TED.2014.2349922. [94] H. R. Mojaver and H. Kaatuzian, “Analysis and improvement of optical frequency response in a long wavelength transistor laser,” Opt. Quantum Electron., vol. 44, nos. 1–2, pp. 45–54, May 2012, doi: 10.1007/s11082-011-9531-2. [95] L. Zhang and J.-P. Leburton, “Modeling of the transient characteristics of heterojunction bipolar transistor lasers,” IEEE J. Quantum Electron., vol. 45, no. 4, pp. 359–366, Apr. 2009, doi: 10.1109/JQE.2009.2013215. [96] C.-Y. Tsai, L. F. Eastman, Y.-H. Lo, and C.-Y. Tsai, “Breakdown of thermionic emission theory for quantum wells,” Appl. Phys. Lett., vol. 65, no. 4, pp. 469–471, Jul. 1994, doi: 10.1063/1.112339. [97] C.-Y. Tsai, C.-Y. Tsai, Y.-H. Lo, R. M. Spencer, and L. F. Eastman, “Nonlinear gain coefficients in semiconductor quantum-well lasers: Effects of carrier diffusion, capture, and escape,” IEEE J. Sel. Topics in Quantum Electron., vol. 1, no. 2, pp. 316–330, Jun. 1995, doi: 10.1109/2944.401211. [98] M. S. Frost, M. Riches, and T. Kerr, “A p‐n‐p AlGaAs heterojunction bipolar transistor for high‐temperature operation,” J. Appl. Phys., vol. 60, no. 6, pp. 2149–2153, Sep. 1986, doi: 10.1063/1.337168. [99] M. H. Perrott M. H. Perrott, J. C. Salvia, F. S. Lee, A. Partridge, S. Mukherjee, C. Arft, J. Kim, N. Arumugam, P. Gupta, S. Tabatabaei, S. Pamarti, H. Lee, and F. Assaderaghi, “A temperature-to-digital converter for a MEMS-based programmable oscillator with < ±0.5-ppm frequency stability and < 1-ps integrated jitter,” IEEE J. Solid-State Circuits, vol. 48, no. 1, pp. 276–291, Jan. 2013, doi: 10.1109/JSSC.2012.2218711. [100] W. Tian, B. Bas, D. Harmsen, K. Williams, and X. Leijtens, “Temperature sensing diode in InP-based photonic integration technology,” IEEE Photon. J., vol. 16, no. 2, pp. 1–8, Apr. 2024, doi: 10.1109/JPHOT.2024.3374266. [101] M. A. P. Pertijs, K. A. A. Makinwa, and J. H. Huijsing, “A CMOS smart temperature sensor with a 3σ inaccuracy of 0.1℃ from -55℃ to 125℃,” IEEE J. Solid-State Circuits, vol. 40, no. 12, pp. 2805–2815, Dec. 2005, doi: 10.1109/JSSC.2005.858476. [102] Z. Huang, Z. Tang, X.-P. Yu, Z. Shi, L. Lin, and N. N. Tan, “A BJT-based CMOS temperature sensor with duty-cycle-modulated output and ±0.5℃ (3s) inaccuracy from −40 ℃ to 125 ℃,” IEEE Trans. on Circuits Syst. II: Exp. Briefs, vol. 68, no. 8, pp. 2780–2784, Aug. 2021, doi: 10.1109/TCSII.2021.3068283. [103] S. Xie and A. J. P. Theuwissen, “On-chip smart temperature sensors for dark current compensation in CMOS image sensors,” IEEE Sensors J., vol. 19, no. 18, pp. 7849–7860, Sep. 2019, doi: 10.1109/JSEN.2019.2919655. [104] I. Vikulin, V. Gorbachev, A. Gorbacheva, V. Krasova, and V. Litvinenko, “Radiation resistant FET-based temperature sensor for end devices of IoT,” in Proc. 3rd Int. Conf. Adv. Inf. and Commu. Technol. (AICT), Jul. 2019, pp. 272–277. doi: 10.1109/AIACT.2019.8847905. [105] B. Wu, J. M. Dallesasse, and J.-P. Leburton, “Design and novel turn-off mechanism in transistor lasers,” J. Phys., Photon., vol. 3, no. 3, Jul. 2021, Art. no. 034018, doi: 10.1088/2515-7647/ac0b4d. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96649 | - |
| dc.description.abstract | 本論文全面研究了光發射晶體管 (Light-Emitting Transistors, LETs) 的設計、製造、開發與優化,作為下一代智慧熱感測技術的先進裝置。基於III-V族化合物半導體的LETs作為創新且高速的三端口裝置,集光學與電子功能於單一元件內。透過先進的量子阱 (Quantum-Well, QW) 結構, LETs展現出在高速光通訊、光電整合電路(Optoelectronic Integrated Circuits, OEICs)以及先進熱感測應用方面的卓越潛力,特別是由於其量子阱的熱電子發射特性。通過系統性研究與創新的元件架構,本論文證明了基於LETs的裝置在超高熱敏感度與下一代熱感測解決方案中的非凡潛力,超越了傳統熱感測技術的熱敏感度限制。
本論文首先探討了使用LETs於智慧熱感測技術中的動機,介紹了針對熱感測應用所設計與製造的單量子阱異質結雙極性電晶體(Single Quantum Well-Based Heterojunction Bipolar Transistors, SQW-HBTs)。初步研究強調了在HBTs基區內整合階梯式單量子阱 (SQW) 結構,實現了在25℃到85℃溫度範圍內集電極電流提升72.23%的顯著進步。此提升歸因於增強的熱電子發射動力學,促進了電子從量子阱中的快速逃逸。與傳統HBTs的熱行為相反,該進展得到基於熱電子發射理論的修正電荷控制模型的支持,不僅解釋了觀察到的現象,還促進了QW-HBT結構在熱感測應用中的優化設計。 在這些研究基礎上,研究擴展至多量子阱(MQW)及三量子阱(TQW)HBTs,展示了熱敏感度的進一步提升。一種修正電荷控制模型被開發以考量量子阱參數(如數量與位置)對電流增益的影響。該模型經實驗結果驗證後,用於設計TQW-HBTs,其在相同溫度範圍內實現了集電極電流200%的顯著增加,以及每℃ 7 μA的電流敏感度。這些見解建立了一個優化MQW-HBT及TQW-HBT配置以提升裝置熱性能的穩健框架,用於下一代熱感測器。 儘管MQWs實現了顯著的熱敏感度增強,但由於電子捕獲多重量子阱導致的電流減少,提出了一個突破性的設計,即將光發射晶體管級聯於達靈頓電晶體中。該創新達靈頓電晶體配置利用LET的熱電子發射機制實現了卓越的熱敏感度。LET在操作溫度從25℃上升到85℃ 時集電極電流增加了153%,而達靈頓電晶體在相同偏壓和溫度條件下增加了210%。此外, LET的集電極電流對溫度信號比為8.53 μA/℃, 而在達靈頓配置中此比率提升至26.2 μA/℃, 展示了熱敏感度的顯著改善。此外,輸出電壓的電壓對溫度信號敏感度達到9.12 mV/℃, 超越了傳統熱感測器。 儘管取得了這些進步,本研究探討了解決實現線性電壓對溫度響應的挑戰,並提供了優化QW結構以平衡敏感度與線性的建議。本論文進一步詳細研究了QW寬度對熱性能的影響,突顯了敏感度與線性之間的權衡。實驗與模擬研究揭示,較窄的量子阱顯示出更高的熱敏感度,而較寬的量子阱則確保了更好的線性度。最佳的量子阱寬度為90 Å, 其在100℃ 時實現了每 ℃ 1.34 mA的熱敏感度與優異的線性度。這些發現為開發高性能熱感測器提供了關鍵見解。 最後,本論文強調了包括SQW-HBTs, MQW-HBTs和TQW-HBTs在內的基於LET裝置在智慧熱感測應用中的變革潛力。本研究中報導的新穎配置,例如與光發射晶體管級聯的達靈頓電晶體,展現了超高的熱敏感度。這些進步為下一代智慧熱感測技術奠定了堅實的基礎,提供了超高熱性能的前端元件。 | zh_TW |
| dc.description.abstract | This dissertation presents a comprehensive study on the design, fabrication, and optimization of Light-Emitting Transistors (LETs) as advanced devices for next-generation smart thermal sensing technologies. LETs, based on III-V compound semiconductors, emerge as innovative, high-speed three-port devices integrating optical and electronic functionalities. Leveraging state-of-the-art quantum-well (QW) structures, LETs demonstrate exceptional potential for high-speed optical communication, enhanced performance in optoelectronic integrated circuits (OEICs), and advanced thermal sensing applications, particularly due to their thermionic emission properties. These findings position LETs as strong candidates for next-generation smart thermal sensing technologies, surpassing traditional thermal sensor technologies in thermal sensitivity.
The study begins with the design and fabrication of single-quantum-well heterojunction bipolar transistors (SQW-HBTs), designed to enhance thermal sensitivity. The innovative incorporation of a staircase QW into the base region of HBTs achieved a 72.23% increase in collector current across a temperature range of 25℃ to 85℃, attributed to faster electron escape dynamics from the QW. A modified charge-control model incorporating thermionic emission theory effectively explains this behavior and provides a foundation for optimizing SQW-HBT structures for thermal sensing applications. Building on these initial results, the research advances to multi-quantum-well (MQW) and triple-quantum-well (TQW) HBTs to further improve thermal sensitivity. A newly modified charge-control model for MQW-HBTs is developed to account for the influence of quantum-well parameters, such as number and position, on the current gain. This model, validated against experimental results, guides the design of TQW-HBTs, which exhibit a remarkable 200% increase in collector current over the same temperature range and achieving a current sensitivity of 7 μA/℃. These findings highlight the potential of MQW-HBTs such as TQW-HBTs for applications requiring ultra-high thermal sensitivity. To address the challenges of reduced current due to electron trapping in MQWs, the dissertation introduces a groundbreaking idea developed in the optoelectronics thermal technology by successful design and fabrication of the world’s first Darlington transistor configuration cascaded with LETs. This innovative approach combines the thermionic emission properties of LETs with the amplification benefits of the Darlington design, achieving a 153% increase in LET collector current from 25℃ to 85℃ and a further enhancement to 210% in the Darlington configuration. The collector current-to-temperature sensitivity improves from 8.53 μA/℃ in LETs to 26.2 μA/℃ in the Darlington configuration, with a voltage-to-temperature sensitivity reaching 9.12 mV/℃ surpassing conventional thermal sensor. Despite these advancements, challenges in achieving linear voltage-to-temperature responses are addressed, with recommendations for optimizing QW structures to balance sensitivity and linearity. Further investigations into the effect of QW width reveal critical trade-offs between thermal sensitivity and linearity. Narrower QWs exhibit higher sensitivity, while wider QWs improve linearity. An optimal QW width of 90 Å achieves a thermal sensitivity of 1.34 mA/℃ at 100°C while maintaining excellent linearity, providing essential insights for designing high-performance thermal sensors. Finally, this dissertation work highlights the transformative potential of LET-based devices, including SQW-HBTs, MQW-HBTs, and TQW-HBTs, for smart thermal sensing applications. The novel configurations, such as the Darlington transistor cascaded with Light-emitting transistor, reported ultra-high thermal sensitivity in this studied. These advancements lay strong ultra-high-thermal performance front-end components for next-generation for smart thermal sensing technologies. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-20T16:22:12Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-02-20T16:22:12Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Certificate of Thesis/Dissertation Approval from the Oral Defense Committee i
Acknowledgements ii Abstract (Chinese) vii Abstract (English) x Table of Contents xiii List of Figures xviii List of Tables xxvii Chapter 1 Introduction to Light-Emitting Transistor for Smart Thermal Sensing Technology 1 1.1 Introduction 1 1.2 Era of Transistor to Light-Emitting Transistors 4 1.3 Applications of Light-Emitting Transistors 8 1.4 Traditional Temperature Sensor Devices 11 1.5 Thermal Sensing Mechanism of QW-Based HBTs 18 1.6 Thesis Organization 20 Chapter 2 Design and Fabrication of Single QW-HBTs for Thermal Sensing Technology 24 2.1 Introduction 24 2.2 Motivation Behind SQW-HBTs for Thermal Sensing Application 27 2.3 Device Design and Fabrication of SQW-HBTs 29 2.4 Device Characterization at Different Substrate Temperature 41 2.5 Development of Charge-Control Models in LETs and TLs 45 2.6 Necessity to Modified the Charge-Control Model for the Design of Highly Efficient SQW-HBTs Layer Structure 50 2.7 Modified Thermionic Emission Model 56 2.8 Validation of Experimental Results Using Modified Charge- Control Model for SQW-HBTs 62 2.9 Carrier Dynamics and Charge Analysis in QW and Base Regions 65 2.10 Conclusion 72 Chapter 3 From Analytical Modeling of MQW-HBTs to Design and Fabrication of TQW-HBTs for Thermal Sensing Applications 74 3.1 Introduction 74 3.2 Motivation Behind Analytical Modeling for MQW-HBTs and Development of Highly Thermal Sensitive TQW-HBTs 76 3.3 Development of Charge-Control Models in MQW-Based LETs and TLs 79 3.4 Modified Charge-Control Model and Current Gain Analysis for MQW-HBTs 82 3.5 Effect of QW Position and Number on Current Gain and Charge Analysis in MQW-HBTs 93 3.6 Device Layer Structure Design and Fabrication Process for TQW-HBTs 100 3.7 Device Characterization at Different Substrate Temperatures 104 3.8 Modified Charge-Control Model for TQW-HBTs 108 3.9 Modified Thermionic Emission Model, Carrier Dynamics and Charge Analysis in TQW Structures 113 3.10 Experimental Validation of Simulated Current Gain in TQW-HBT: Results and Discussion 122 3.11 Conclusion 125 Chapter 4 Design and Fabrication of Novel Darlington Transistor Using LET for Smart Thermal Sensor Technology 128 4.1 Introduction 128 4.2 Motivation Behind Novel Darlington Transistor Design by Cascading of SQW-HBTs 131 4.3 Device Design and Layer Structure of Darlington Transistor 132 4.4 Device Fabrication Process for Darlington Transistor 135 4.5 Device Characterization at Different Substrate Temperature 145 4.6 ADS Modeling of Darlington Transistor: Converting Current Sensitivity to Voltage Sensitivity for Comparison with Existing Technologies 152 4.7 Conclusion 158 Chapter 5 Thermal Sensitivity and Linearity Analysis of Quantum Well HBTs 161 5.1 Introduction 161 5.2 Motivation Behind Thermal Sensitivity and Linearity Study for QW-Based HBTs 163 5.3 Device Design, Fabrication, and Characterization at Different Substrate Temperatures 166 5.4 Thermionic Modified Charge-Control Model 170 5.5 Effect of QW Width on Escape Time, Charge Storage, and Temperature-Dependent Current Characteristics 177 5.6 Conclusion 185 Chapter 6 Conclusion 187 6.1 Summary and Key Contributions of the Thesis 187 6.2 Recommendations and Future Research Directions 190 References 194 APPENDIX A 214 List of Publications 214 APPENDIX B 219 List of Abbreviations 219 List of Symbols 223 APPENDIX C 232 Summary of Oral Defense Discussion 232 APPENDIX D 248 學位論文學術倫理暨原創性聲明書 248 APPENDIX E 252 About the Author 252 | - |
| dc.language.iso | en | - |
| dc.subject | 量子阱(QW) | zh_TW |
| dc.subject | 超高熱敏感度與線性度 | zh_TW |
| dc.subject | 智慧熱感測器 | zh_TW |
| dc.subject | 高溫 | zh_TW |
| dc.subject | 熱電子發射 | zh_TW |
| dc.subject | 溫度相關電流增益 | zh_TW |
| dc.subject | 修正電荷控制模型 | zh_TW |
| dc.subject | 達靈頓電晶體 | zh_TW |
| dc.subject | HBLET | zh_TW |
| dc.subject | TQW-HBT | zh_TW |
| dc.subject | MQW-HBT | zh_TW |
| dc.subject | 單量子阱異質結雙極性電晶體(SQW-HBT) | zh_TW |
| dc.subject | 三量子阱(TQW) | zh_TW |
| dc.subject | 多量子阱(MQW) | zh_TW |
| dc.subject | 光發射晶體管(LET) | zh_TW |
| dc.subject | linearity | en |
| dc.subject | Light-emitting transistor (LET) | en |
| dc.subject | quantum-well (QW) | en |
| dc.subject | multiple-QW (MQW) | en |
| dc.subject | triple-QW (TQW) | en |
| dc.subject | single-QW-based heterojunction bipolar transistor (SQW-HBT) | en |
| dc.subject | MQW-HBT | en |
| dc.subject | TQW-HBT | en |
| dc.subject | HBLET | en |
| dc.subject | Darlington transistor | en |
| dc.subject | modified charge-control model | en |
| dc.subject | temperature dependent current gain | en |
| dc.subject | thermionic emission | en |
| dc.subject | high temperature | en |
| dc.subject | smart thermal sensor | en |
| dc.subject | smart sensing technologies | en |
| dc.subject | ultra-high thermal sensitivity | en |
| dc.title | 超高靈敏度熱感測元件之設計與製造:基於發光電晶體於智慧科技應用 | zh_TW |
| dc.title | Design and Fabrication of Ultra-High Sensitivity Thermal Sensing Devices Using Light-Emitting Transistors for Smart Technologies | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-1 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 林浩雄;林宗賢;吳育任;陳奕君;張書維;黃建璋 | zh_TW |
| dc.contributor.oralexamcommittee | Hao-Hsiung Lin;Tsung-Hsien Lin;Yuh-Renn Wu;I-Chun Cheng;Shu-Wei Chang;Jian-Jang Huang | en |
| dc.subject.keyword | 光發射晶體管(LET),量子阱(QW),多量子阱(MQW),三量子阱(TQW),單量子阱異質結雙極性電晶體(SQW-HBT),MQW-HBT,TQW-HBT,HBLET,達靈頓電晶體,修正電荷控制模型,溫度相關電流增益,熱電子發射,高溫,智慧熱感測器,超高熱敏感度與線性度, | zh_TW |
| dc.subject.keyword | Light-emitting transistor (LET),quantum-well (QW),multiple-QW (MQW),triple-QW (TQW),single-QW-based heterojunction bipolar transistor (SQW-HBT),MQW-HBT,TQW-HBT,HBLET,Darlington transistor,modified charge-control model,temperature dependent current gain,thermionic emission,high temperature,smart thermal sensor,smart sensing technologies,ultra-high thermal sensitivity,linearity, | en |
| dc.relation.page | 254 | - |
| dc.identifier.doi | 10.6342/NTU202500212 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-01-21 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 光電工程學研究所 | - |
| dc.date.embargo-lift | 2026-01-05 | - |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-1.pdf | 11.64 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
