請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96444完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 柯佳吟 | zh_TW |
| dc.contributor.advisor | Chia-Ying Ko | en |
| dc.contributor.author | Kristina Kryzhova | zh_TW |
| dc.contributor.author | Kristina Kryzhova | en |
| dc.date.accessioned | 2025-02-18T16:09:49Z | - |
| dc.date.available | 2026-01-01 | - |
| dc.date.copyright | 2025-02-18 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-01-22 | - |
| dc.identifier.citation | 1. Allouche, O., Tsoar, A., & Kadmon, R. (2006). Assessing the accuracy of species distribution models: prevalence, kappa, and the true skill statistic (TSS). Journal of Applied Ecology, 43(6), 1223-1232. https://doi.org/10.1111/j.1365-2664.2006.01214.x
2. Anderson, C.J. (2010). Central Limit Theorem. In The Corsini Encyclopedia of Psychology (eds I.B. Weiner and W.E. Craighead). https://doi.org/10.1002/9780470479216.corpsy0160 3. Anderson, H.S. (2021). North Sea Continental Shelf Cases. In: Gray, K.W. (eds) Global Encyclopedia of Territorial Rights. Springer, Cham. https://doi.org/10.1007/978-3-319-68846-6_581-1 4. Araújo M.B., Peterson A.T. (2012) Uses and misuses of bioclimatic envelope modeling. Ecology. Jul;93(7):1527-39. doi: 10.1890/11-1930.1. PMID: 22919900. 5. Araújo, M. B., Anderson, R. P., Márcia Barbosa, A., Beale, C. M., Dormann, C. F., Early, R., Garcia, R. A., Guisan, A., Maiorano, L., Naimi, B., O’Hara, R. B., Zimmermann, N. E. and Rahbek, C. 2019. Standards for distribution 6. Araújo, M. B., New, M. (2007). Ensemble forecasting of species distributions. – Trends Ecol. Evol. 22: 42–47. 7. Assis, J., Tyberghein, L., Bosch, S., Verbruggen, H., Serrão, E. A. and De Clerck, O. 2018. Bio-ORACLE v2.0: extending marine data layers for bioclimatic modelling. – Global Ecol. Biogeogr.27: 277–284. 8. Bandara, R. M. W. J., Curchitser, E., & Pinsky, M. L. (2024). The importance of oxygen for explaining rapid shifts in a marine fish. Global Change Biology, 30, e17008. https://doi.org/10.1111/gcb.17008 9. Barange, M., Merino, G., Blanchard, J. L., et al. (2014). Impacts of climate change on marine ecosystem production in societies dependent on fisheries. Nature Climate Change, 4(3), 211-216. https://doi.org/10.1038/nclimate2119 10. Barange, M., Merino, G., Blanchard, J., Scholtens, J., Harle, J., Allison, E. H., Allen, J. I., Holt, J., & Jennings, S. (2014). Impacts of climate change on marine ecosystem production in societies dependent on fisheries. Nature Climate Change, 4(3), 211-216. https://doi.org/10.1038/nclimate2119 11. Barbet-Massin, M., Jiguet, F., Albert, C.H. and Thuiller, W. (2012), Selecting pseudo-absences for species distribution models: how, where and how many? Methods in Ecology and Evolution, 3: 327-338. https://doi.org/10.1111/j.2041-210X.2011.00172.x 12. Barbet-Massin, M., Jiguet, F., Albert, C.H. and Thuiller, W. (2012), Selecting pseudo-absences for species distribution models: how, where and how many? Methods in Ecology and Evolution, 3: 327-338. https://doi.org/10.1111/j.2041-210X.2011.00172.x 13. Bastardie, F., Feary, D. A., Kell, L., Brunel, T., Metz, S., Döring, R., Eigaard, O. R., & Basurko, O. C. (2022). Climate change and the Common Fisheries Policy: Adaptation and building resilience to the effects of climate change on fisheries and reducing emissions of greenhouse gases from fishing (Final Report, EASME/EMFF/2020/3.2.6 - Lot1/SC07, EASME/EMFF/2020/3.2.6 - Lot2/SC08). Luxembourg: Publications Office of the European Union. https://doi.org/10.2926/155626 14. Baudron, A.R., Needle, C.L., Rijnsdorp, A.D., Marshall, C.T. (2014) Warming temperatures and smaller body sizes: synchronous changes in growth of North Sea fishes. Global Change Biology, 20, 1023–1031. 15. Ben Lamine, E., Schickele, A., Goberville, E. et al. (2022). Expected contraction in the distribution ranges of demersal fish of high economic value in the Mediterranean and European Seas.Sci Rep 12, 10150 https://doi.org/10.1038/s41598-022-14151-8 16. Blanchard, J. L., Jennings, S., Holmes, R., Harle, J., Merino, G., Allen, J. I., Holt, J., Dulvy, N. K., & Barange, M. (2012). Potential consequences of climate change for primary production and fish production in large marine ecosystems. Philosophical Transactions of the Royal Society B: Biological Sciences, 367(1605), 2979–2989. https://doi.org/10.1098/rstb.2012.0231 17. Bosch, S., Tyberghein, L., Deneudt, K., Hernandez, F. and De Clerck, O. 2018. In search of relevant predictors for marine species distribution modelling using the Marine SPEED bench-mark dataset. – Divers. Distrib. 24: 144–157 18. Böttinger, M., & Kasang, D. (2024). The SSP Scenarios. DKRZ. https://www.dkrz.de/en/communication/climate-simulations/cmip6-en/the-ssp-scenario 19. Boucher O., Servonnat J., Albright A.L., Aumont O., Balkanski Y., Bastrikov V., et al. 2020. Presentation and evaluation of the IPSL-CM6A-LR climate model. Journal of Advances in Modeling Earth Systems, 12: e2019MS002010. 20. Boucher, O., Servonnat, J., Albright, A. L., Aumont, O., Balkanski, Y., Bastrikov, V., ... & Vuichard, N. (2020). Presentation and evaluation of the IPSL‐CM6A‐LR climate model. Journal of Advances in Modeling Earth Systems, 12(7), e2019MS002010. 21. Boucher, Olivier; Denvil, Sébastien; Levavasseur, Guillaume; Cozic, Anne; Caubel, Arnaud; Foujols, Marie-Alice; Meurdesoif, Yann; Cadule, Patricia; Devilliers, Marion; Ghattas, Josefine; Lebas, Nicolas; Lurton, Thibaut; Mellul, Lidia; Musat, Ionela; Mignot, Juliette; Cheruy, Frédérique (2018). IPSL IPSL-CM6A-LR model output prepared for CMIP6 CMIP. Version 2024/10/12. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.1534 22. Boyce, D. G., Frank, K. T., Worm, B. & Leggett, W. C. (2015). Spatial patterns and predictors of trophic control across marine ecosystems. Ecol. Lett. 18, 1001–1011 23. Boyce, D.G., Tittensor, D.P., Garilao, C. et al. A climate risk index for marine life. Nat. Clim. Chang. 12, 854–862 (2022). https://doi.org/10.1038/s41558-022-01437-y 24. Bradie, J. and Leung, B. 2017. A quantitative synthesis of the importance of variables used in MaxEnt species distribution models. – J. Biogeogr. 44: 1344–1361. 25. Brotons, L., Thuiller, W., Araújo, M. B., & Hirzel, A. H. (2004). Presence–absence versus presence-only modeling methods for predicting bird habitat suitability. Ecography, 7(4), 437–448. https://doi.org/10.1111/j.0906-7590.2004.03764.x 26. Bruno, J.F., Bates, A.E., Cacciapaglia, C. et al. Climate change threatens the world’s marine protected areas. Nature Clim Change 8, 499–503 (2018). https://doi.org/10.1038/s41558-018-0149-2 27. Büchner M. (2024): ISIMIP3b ocean input data (v1.5). ISIMIP Repository. https://doi.org/10.48364/ISIMIP.575744.5 28. Büchner, M. (2024). ISIMIP3b ocean input data (v1.5). ISIMIP Repository. https://doi.org/10.48364/ISIMIP.575744.5 29. Buisson, L., Thuiller, W., Casajus, N., Lek, S. & Grenouillet, G. Uncertainty in ensemble forecasting of species distribution. Glob. Change Biol. 16, 1145–1157 (2010). 30. Burrows, M., Schoeman, D., Richardson, A. et al. Geographical limits to species-range shifts are suggested by climate velocity. Nature 507, 492–495 (2014). https://doi.org/10.1038/nature12976 31. Campana, S.E., Stefánsdóttir, R.B., Jakobsdóttir, K. et al. Shifting fish distributions in warming sub-Arctic oceans. Sci Rep 10, 16448 (2020). https://doi.org/10.1038/s41598-020-73444-y 32. Chen, D. et al. in Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press 2021). 33. Cheng L., von Schuckmann K., Abraham, J.P. et al. Past and future ocean warming. Nature Review Earth Environment 3, 776–794 (2022). https://doi.org/10.1038/s43017-022-00345-1 34. Cheung W.L., Brodeur R. D., Okey T. A., Pauly D., (2014) Projecting future changes in distributions of pelagic fish species of Northeast Pacific shelf seas, Progress in Oceanography, Volume 130, 2015, Pages 19-31, ISSN 0079-6611 https://doi.org/10.1016/j.pocean.2014.09.003 35. Christin, S., Hervet, É. and Lecomte, N. (2019). Applications for deep learning in ecology. – Methods Ecol. Evol. 10: 1632–1644. 36. Clarke, T. M., Wabnitz, C. C. C., Frölicher, T. L., Reygondeau, G., Pauly, D., & Cheung, W. W. L. (2022). Linking observed changes in pelagic catches to temperature and oxygen in the Eastern Tropical Pacific. Fish and Fisheries, 23, 1371–1382. https://doi.org/10.1111/faf.12694 37. Copernicus Marine Service. (2024). Mean sea water pH time series and trend from Multi-Observations Reprocessing. Marine Data Store. https://doi.org/10.48670/moi-00224 38. Davies, S. C., Thompson, P. L., Gomez, C., Nephin, J., Knudby, A., Park, A. E., Friesen, S. K., Pollock, L. J., Rubidge, E. M., Anderson, S. C., Iacarella, J. C., Lyons, D. A., MacDonald, A., McMillan, A., Ward, E. J., Holdsworth, A. M., Swart, N., Price, J., & Hunter, K. L. 39. De Hauwere, N. (2025). Marine Regions Organisations Maps - North Sea Maps. Marine Regions. https://www.marineregions.org/maps.php?album=3747&pic=115812 40. Deser, C., Hurrell, J.W. & Phillips, A.S. The role of the North Atlantic Oscillation in European climate projections. Clim Dyn 49, 3141–3157 (2017). https://doi.org/10.1007/s00382-016-3502-z 41. Dulvy, N.K., Rogers, S.I., Jennings, S., Stelzenmüller, V., Dye, S.R. and Skjoldal, H.R. (2008), Climate change and deepening of the North Sea fish assemblage: a biotic indicator of warming seas. Journal of Applied Ecology, 45: 1029-1039. https://doi.org/10.1111/j.1365-2664.2008.01488.x 42. Duncanson, L., Liang, M., Leitold, V. et al. The effectiveness of global protected areas for climate change mitigation. Nat Commun 14, 2908 (2023). https://doi.org/10.1038/s41467-023-38073-9 43. Elith, J., Leathwick, J.R. and Hastie, T. (2008), A working guide to boosted regression trees. Journal of Animal Ecology, 77: 802-813. https://doi.org/10.1111/j.1365-2656.2008.01390.x 44. Engelhard G. H., Pinnegar J. K., Kell L. T., Rijnsdorp A. D., Nine decades of North Sea sole and plaice distribution, ICES Journal of Marine Science, Volume 68, Issue 6, July 2011, Pages 1090–1104, https://doi.org/10.1093/icesjms/fsr031 45. Essington, T. E., Anderson, S. C., Barnett, L. A. K., Berger, H. M., Siedlecki, S. A. and Ward, E. J. 2022. Advancing statistical models to reveal the effect of dissolved oxygen on the spatial distribution of marine taxa using thresholds and a physiologically based index. – Ecography 2022: e06249. 46. European Commission. (2022). The EU Blue Economy Report 2022. Publications Office of the European Union. 47. European Marine Observation and Data Network. (2024). River inputs database. EMODnet Data Portal. 48. Fielding, A. H., & Bell, J. F. (1997). A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation, 24(1), 38-49. https://doi.org/10.1017/S0376892997000088 49. Food and Agriculture Organization. FAO (2023). GLOBEFISH Highlights – International markets for fisheries and aquaculture products. https://doi.org/10.4060/cc7781en 50. Food and Agriculture Organization. FAO (2024b). Major Fishing Areas: Atlantic, Northeast (Major Fishing Area 27). CWP Data Collection. https://www.fao.org/fishery/en/area/fao:27/en 51. Food and Agriculture Organization. FAO(2024a). The State of World Fisheries and Aquaculture 2024 – Blue Transformation in action. https://doi.org/10.4060/cd0683en 52. Franklin, J., Davis, F., Ikegami, M., Syphard, A., Flint, L., Flint, A. and Hannah, L. 2013. Modeling plant species distributions under future climates: how fine scale do climate projections need to be? – Global Change Biol. 19: 473–483. 53. Fredston, A.L., Cheung, W.W.L., Frölicher, T.L. et al. Marine heatwaves are not a dominant driver of change in demersal fishes. Nature 621, 324–329 (2023). https://doi.org/10.1038/s41586-023-06449-y 54. Free, C. M., Thorson, J. T., Pinsky, M. L., Oken, K. L., Wiedenmann, J., & Jensen, O. P. (2019). Impacts of historical warming on marine fisheries production. Science, 363(6430), 979–983. https://doi.org/10. 1126/science.aau1758 55. Froese, R., & Pauly, D. (Eds.). (2024). FishBase. World Wide Web electronic publication. www.fishbase.org 56. Gattuso, J.-P. et al. (2018). Ocean solutions to address climate change and its effects on marine ecosystems. Front. Mar. Sci .5, 337 57. Giomi Folco et al. (2019). Oxygen supersaturation protects coastal marine fauna from ocean warming. Sci. Adv.5, eaax1814 DOI:10.1126/sciadv.aax1814 58. Godbold J.A., Calosi P. (2013). Ocean acidification and climate change: advances in ecology and evolution. Philos Trans R Soc Lond B Biol Sci. Aug 26;368(1627):20120448. doi: 10.1098/rstb.2012.0448. PMID: 23980247; PMCID: PMC3758178. 59. González-Santana, D., Segovia, M., González-Dávila, M., Ramírez, L., González, A. G., Pozzo-Pirotta, L. J., Arnone, V., Vázquez, V., Riebesell, U., and Santana-Casiano, J. M.: Ocean alkalinity enhancement using sodium carbonate salts does not lead to measurable changes in Fe dynamics in a mesocosm experiment, Biogeosciences, 21, 2705–2715, https://doi.org/10.5194/bg-21-2705-2024, 2024. 60. Gordó-Vilaseca, C., Costello, M.J., Coll, M. et al. Future trends of marine fish biomass distributions from the North Sea to the Barents Sea. Nat Commun 15, 5637 (2024). https://doi.org/10.1038/s41467-024-49911-9 61. Gregorie M. et. al. A Global Ocean Oxygen Database and Atlas for Assessing and Predicting Deoxygenation and Ocean Health in the Open and Coastal Ocean review article Front. Mar. Sci., 21 December 2021, Sec. Ocean Observation, Volume 8 – 202, https://doi.org/10.3389/fmars.2021.724913 62. Hanley J. A., McNeil B. J. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology. 1982 Apr;143(1):29-36. doi: 10.1148/radiology.143.1.7063747. PMID: 7063747. 63. Harris, R. M. B. et al. (2018). Biological responses to the press and pulse of climate trends and extreme events. Nat. Clim. Change 8, 579–587 64. Hilborn R., Amoroso R., Collie J., Hiddink J. G., Kaiser M. J., Mazor T., McConnaughey R. A., Parma A. M., Pitcher C. R., Sciberras M., Suuronen P., Evaluating the sustainability and environmental impacts of trawling compared to other food production systems, ICES Journal of Marine Science, Volume 80, Issue 6, August 2023, Pages 1567–1579, https://doi.org/10.1093/icesjms/fsad115 65. Hoegh-Guldberg O., Bruno J.F. (2010). The impact of climate change on the world's marine ecosystems. Science. Jun 18;328(5985):1523-8. doi: 10.1126/science.1189930. PMID: 20558709. 66. Holt J., Icarus Allen J., Anderson T. R., Brewin R., Butenschön M., James Harle, Huse G., Lehodey P., Lindemann C., Memery L., Salihoglu B., Senina I.,Yool A., (2014) Challenges in integrative approaches to modelling the marine ecosystems of the North Atlantic: Physics to fish and coasts to ocean, Progress in Oceanography, Volume 129, Part B, Pages 285-313, ISSN 0079-6611, https://doi.org/10.1016/j.pocean.2014.04.024. 67. Høyer, J. L., and I. Karagali, 2016: Sea Surface Temperature Climate Data Record for the North Sea and Baltic Sea. J. Climate, 29, 2529–2541, https://doi.org/10.1175/JCLI-D-15-0663.1. 68. Hughes K, Bellis MA, Hardcastle KA, Sethi D, Butchart A, Mikton C, Jones L, Dunne M.P. (2017). The effect of multiple adverse childhood experiences on health: a systematic review and meta-analysis. Lancet Public Health. Aug;2(8):e356-e366. doi: 10.1016/S2468-2667(17)30118-4. Epub 2017 Jul 31. PMID: 29253477. 69. Huthnance, J. et al. (2016). Recent Change—North Sea. In: Quante, M., Colijn, F. (eds) North Sea Region Climate Change Assessment. Regional Climate Studies. Springer, Cham. https://doi.org/10.1007/978-3-319-39745-0_3 70. ICES. (2020). Manual for the North Sea International Bottom Trawl Surveys. Series of ICES Survey Protocols SISP 10-IBTS 10, Revision 11. https://doi.org/10.17895/ices.pub.7562 71. ICES. (2021). Working Group for the Assessment of Demersal Stocks in the North Sea and Skagerrak (WGNSSK). ICES Scientific Reports. https://doi.org/10.17895/ices.pub.8211 72. ICES. (2022). Greater North Sea ecoregion – fisheries overview. ICES Advice: Fisheries Overviews. https://doi.org/10.17895/ices.advice.21641360.v1 73. ICES (2023). Working Group on the Assessment of Demersal Stocks in the North Sea and Skagerrak (WGNSSK). ICES Scientific Reports. Report. https://doi.org/10.17895/ices.pub.22643143.v1 74. IPCC (2022). Climate change 2022 impacts, adaptation and vulnerability: summary for policymakers. – Cambridge Univ.Press. 75. Isah RR, Enochs IC and San Diego-McGlone ML (2022). Sea surface carbonate dynamics at reefs of Bolinao, Philippines: Seasonal variation and fish mariculture-induced forcing. Front. Mar. Sci. 9:858853. doi: 10.3389/fmars.2022.858853 76. Jarnevich, C. S., Stohlgren, T. J., Kumar, S., Morisette, J. T. and Holcombe, T. R. (2015). Caveats for correlative species distribu- tion modeling. – Ecol. Inform. 29: 6–15. 77. Jickells, T. D. (1998). Nutrient biogeochemistry of the coastal zone. Science, 281(5374), 217–222. 78. Jones, M. C., Dye, S. R., Pinnegar, J. K., Warren, R., & Cheung, W. W. L. (2012). Modelling commercial fish distributions: Prediction and assessment using different approaches. Ecological Modelling, 225, 133–145. https://doi.org/10.1016/j.ecolmodel.2011.11.003 79. Kléparski L, Beaugrand G, Edwards M. (2021) Plankton biogeography in the North Atlantic Ocean and its adjacent seas: Species assemblages and environmental signatures. Ecol Evol; 11: 5135–5149. https://doi.org/10.1002/ece3.7406 80. Koenigstein, S., Mark, F.C., Gößling-Reisemann, S., Reuter, H. and Poertner, H.-O. (2016), Modelling climate change impacts on marine fish populations: process-based integration of ocean warming, acidification and other environmenal drivers. Fish Fish, 17: 972-1004. https://doi.org/10.1111/faf.12155 81. Lai, Y.-Z., Lin, Y.-C., & Ko, C.-Y. (2024). How would estimation of geographic range shifts of marine fishes be different when using occurrence and abundance data? Diversity and Distributions, 30, e13919. https://doi.org/10.1111/ddi.13919 82. Lange, S., Büchner, M., Volkholz, J., Wohland, J., Geiger, T., Akoğlu, E., & Frieler, K. (2020). ISIMIP3 simulation protocol. https://protocol.isimip.org 83. Lange, S., Volkholz, J., Geiger, T., Zhao, F., Vega, I., Veldkamp, T., et al. (2020). Projecting exposure to extreme climate impact events across six event categories and three spatial scales. Earth's Future, 11, e2020EF001616. https://doi.org/10.1029/2020EF001616 84. Laruelle, G. G., Cai, W. J., Hu, X., Gruber, N., Mackenzie, F. T., & Regnier, P. (2018). Continental shelves as a variable but increasing global sink for atmospheric carbon dioxide. Nature Communications, 9(1), 11. https://hdl.handle.net/10.1038/s41467-017-02738-z 85. Lasram F. B. R., Hattab T., Nogues Q. et. al. (2020). An open-source framework to model present and future marine species distributions at local scale, Ecological Informatics, Volume 59, 101130, ISSN 1574-9541, https://doi.org/10.1016/j.ecoinf.2020.101130. 86. Le Quesne, W.J.F. and Pinnegar, J.K. (2012). The potential impacts of ocean acidification: scaling from physiology to fisheries. Fish and Fisheries, 13: 333-344. https://doi.org/10.1111/j.1467-2979.2011.00423.x 87. Ma, D., Gregor, L., & Gruber, N. (2023). Four decades of trends and drivers of global surface ocean acidification. Global Biogeochemical Cycles, 37, e2023GB007765. https://doi.org/10.1029/2023GB007765 88. Martinez-Lopez, B., Quintanar, A. I., Cabos-Narvaez, W. D., & Moreles, E. (2024). On the non-linear nature of long-term sea surface temperature global trends. Earth and Space Science, 11, e2023EA003302. https://doi.org/10.1029/2023EA003302 89. Mathis M., Elizalde A., Mikolajewicz U., Pohlmann T. (2015). Variability patterns of the general circulation and sea water temperature in the North Sea, Progress in Oceanography, Volume 135, Pages 91-112, ISSN 0079-6611, https://doi.org/10.1016/j.pocean.2015.04.009. 90. Maynou, F., Sabatés, A., Ramirez-Romero, E. et al. (2020). Future distribution of early life stages of small pelagic fishes in the northwestern Mediterranean. Climatic Change161, 567–589. https://doi.org/10.1007/s10584-020-02723-4 91. McHenry, J., Welch, H., Lester, S. E., & Saba, V. (2019). Projecting marine species range shifts from only temperature can mask climate vulnerability. Global Change Biology, 25(12), 4208–4221. https://doi. org/10.1111/gcb.14828 92. Meyer-Gutbrod, E., Kui, L., Miller, R., Nishimoto, M., Snook, L., & Love, M. (2021). Moving on up: Vertical distribution shifts in rocky reef fish species during climate-driven decline in dissolved oxygen from 1995 to 2009. Global Change Biology, 27, 6280–6293. https://doi.org/10.1111/gcb.15821 93. Meyer, J. and Riebesell, U. (2015). Reviews and Syntheses: Responses of coccolithophores to ocean acidification: a meta-analysis, Biogeosciences, 12, 1671–1682, https://doi.org/10.5194/bg-12-1671-2015. 94. Morée, A. L., Clarke, T. M., Cheung, W. W. L., and Frölicher, T. L. (2023). Impact of deoxygenation and warming on global marine species in the 21st century, Biogeosciences, 20, 2425–2454, https://doi.org/10.5194/bg-20-2425-2023 95. Nagelkerken I., Munday P.L. (2015). Animal behaviour shapes the ecological effects of ocean acidification and warming: moving from individual to community-level responses. Glob Chang Biol. 2016 Mar;22(3):974-89. doi: 10.1111/gcb.13167. Epub Dec 23. PMID: 26700211. 96. Nagelkerken, I., Russell, B., Gillanders, B. et al. (2016). Ocean acidification alters fish populations indirectly through habitat modification. Nature Clim Change 6, 89–93 https://doi.org/10.1038/nclimate275 97. Neuenfeldt, Stefan & Righton, David & Neat, Francis & Wright, Peter & Svedäng, Henrik & Michalsen, Kathrine & Subbey, Sam & P, Steingrund & V, Thorsteinsson & Pampoulie, Christophe & Andersen, Ken & Pedersen, Martin & Metcalfe, J. (2013). Analysing migrations of Atlantic cod Gadus morhua in the North-East Atlantic Ocean: then, now and the future. Journal of Fish Biology. 82. 741-763.10.1111/jfb.12043. 98. Nisin Mohamed K.M.N., Sreenath K.R., Miriam Paul Sreeram (2023). Change in habitat suitability of the invasive Snowflake coral (Carijoa riisei) during climate change: An ensemble modelling approach, Ecological Informatics, Volume 76, 102145, ISSN 1574-9541, https://doi.org/10.1016/j.ecoinf.2023.102145. 99. NOAA National Centers for Environmental Information. (2022). ETOPO 2022 15 Arc-Second Global Relief Model. https://doi.org/10.25921/fd45-gt74 100. NOAA National Ocean Service. (2024). What is the difference between latitude and longitude? National Oceanic and Atmospheric Administration, U.S. Department of Commerce. https://oceanservice.noaa.gov/facts/longitude.html 101. O'Neill, B. C., Tebaldi, C., van Vuuren, D. P., Eyring, V., Friedlingstein, P., Hurtt, G., Knutti, R., Kriegler, E., Lamarque, J.-F., Lowe, J., Meehl, G. A., Moss, R., Riahi, K., and Sanderson, B. M. (2016): The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6, Geosci. Model Dev., 9, 3461–3482, https://doi.org/10.5194/gmd-9-3461-2016. 102. Omstedt, A., et al. (2004). The Skagerrak and Kattegat. Deep Sea Research Part II, 51(21-22), 2645-2654. 103. OSPAR Commission. (2000). Quality Status Report 2000. OSPAR Commission. 104. OSPAR Commission. (2023). Fish Thematic Assessment. In Quality Status Report 2023. https://oap.ospar.org/en/ospar-assessments/quality-status-reports/qsr-2023/thematic-assessments/fish/ 105. Otto, L., Zimmerman, J. T. F., Furnes, G. K., Mork, M., Sætre, R., & Becker, G. (1990). Review of the physical oceanography of the North Sea. Netherlands Journal of Sea Research, 26 (2–4), 161–238. https://doi.org/10.1016/0077-7579(90)90091-T 106. Pauly, D. (2021). The gill-oxygen limitation theory (GOLT) and its critics. Science Advances, 7(2), eabc6050. https://doi.org/10.1126/sciadv. abc6050 107. Pauly, D., Christensen, V., Dalsgaard, J., Froese, R., & Torres, F. Jr. (1998). Trophic levels of marine consumers. Marine Ecology Progress Series, 171, 19-34. 108. Peck M. A., Pinnegar J., (2018). Impacts of climate change on fisheries and aquaculture: Synthesis of current knowledge, adaptation and mitigation options. FAO Fisheries and aquaculture technical paper, Chapter 5, P. 87-111, ISSN 2070-7010 109. Pérez Roda, M.A. (ed.), Gilman, E., Huntington, T., Kennelly, S.J., Suuronen, P., Chaloupka, M. and Medley, P. (2019) A third assessment of global marine fisheries discards. FAO Fisheries and Aquaculture Technical Paper No. 633. Rome, FAO. 78 pp. 110. Phillips, S. J., Anderson, R. P. and Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. – Ecol. Model. 190: 231–259. DOI: 10.1016/j.ecolmodel.2005.03.026 111. Piet G. J., van Hal R., Greenstreet S. P. R. (2009) Modelling the direct impact of bottom trawling on the North Sea fish community to derive estimates of fishing mortality for non-target fish species, ICES Journal of Marine Science, Volume 66, Issue 9, Pages 1985–1998, https://doi.org/10.1093/icesjms/fsp162 112. Pingree, R. D., & Griffiths, D. K. (1978). Tidal fronts on the shelf seas around the British Isles. Journal of Geophysical Research, 83(C9), 4615-4622. 113. Pinsky, M. L., Eikeset, A. M., Helmerson, C., Bradbury, I. R., Bentzen, P., Morris, C., Gondek-Wyrozemska, A. T., Baalsrud, H. T., Brieuc, M. S. O., Kjesbu, O. S., Godiksen, J. A., Barth, J. M. I., Matschiner, M., Stenseth, N. C., Jakobsen, K. S., Jentoft, S., & Star, B. (2021). Genomic stability through time despite decades of exploitation in cod on both sides of the Atlantic. Proceedings of the National Academy of Sciences, 118 (15), https://doi.org/10.1073/pnas.2025453118 114. Pinsky, M. L., et al. (2018). Preparing ocean governance for species on the move. Science, 360(6394), 1189–1191. https://doi.org/10.1126/science.aat2360 115. Pinsky, M.L., Eikeset, A.M., McCauley, D.J. et al. (2019). Greater vulnerability to warming of marine versus terrestrial ectotherms. Nature 569, 108–111 https://doi.org/10.1038/s41586-019-1132-4 116. Poloczanska, E., Brown, C., Sydeman, W. et al. (2013). Global imprint of climate change on marine life. Nature Clim Change 3, 919–925. https://doi.org/10.1038/nclimate1958 117. Pontius, R. G., & Millones, M. (2011). Death to Kappa: Birth of quantity disagreement and allocation disagreement for accuracy assessment. International Journal of Remote Sensing, 32(15), 4407-4429. https://doi.org/10.1080/01431161.2011.552923 118. Pörtner, H. O., & Knust, R. (2007). Climate change affects marine fishes through the oxygen limitation of thermal tolerance. Science, 315(5808), 95–97. https://doi.org/10.1126/science.1135471 119. Quante, M.; Colijn, F.; Bakker, J.P.; Härdtle, W.; Heinrich, H.; Lefebvre, C.; Nöhren, I.; Olesen, J.E.; Pohlmann, T.; Sterr, H.; Sündermann, J.; Tölle, M.H. (2016). Introduction to the assessment - characteristics of the region, in North Sea region climate change assessment. Regional Climate Studies: pp. 1-52. http://dx.doi.org/10.1007/978-3-319-39745-0_1 120. Radach, G., Pätsch, J. (2007). Variability of continental riverine freshwater and nutrient inputs into the North Sea for the years 1977–2000 and its consequences for the assessment of eutrophication. Estuaries and Coasts: J ERF 30, 66–81 https://doi.org/10.1007/BF02782968 121. Raftery, A. E., Zimmer, A., Frierson, D. M. W., Startz, R., & Liu, P. (2017). Less than 2 °C warming by 2100 unlikely. Nature Climate Change, 7, 637–641. https://doi.org/10.1038/nclimate3352 122. Salt, L. A., H. Thomas, A. E. F. Prowe, A. V. Borges, Y. Bozec, and H. J. W. de Baar (2013). Variability of North Sea pH and CO2 in response to North Atlantic Oscillation forcing, J. Geophys. Res. Biogeosci., 118, 1584–1592, doi:10.1002/2013JG002306. 123. Saraji, S., Akindipe, D. (2024). The Role of the Oil and Gas Industry in the Energy Transition. In: Walker, T., Barabanov, S., Michaeli, M., Kelly, V. (eds) Sustainability in the Oil and Gas Sector. Palgrave Macmillan, Cham. https://doi.org/10.1007/978-3-031-51586-6_3 124. Sarofim, M.C., Smith, C.J., Malek, P. et al. (2024). High radiative forcing climate scenario relevance analyzed with a ten-million-member ensemble. Nat Commun 15, 8185 https://doi.org/10.1038/s41467-024-52437-9 125. Schulte P. M., (2015). The effects of temperature on aerobic metabolism: Towards a mechanistic understanding of the responses of ectotherms to a changing environment. J. Exp. Biol. 218, 1856 –1866 126. Seo, C., Thorne, J., Hannah, L. and Thuiller, W. (2008). Scale effects in species distribution models: implications for conservation planning under climate change. – Biol. Lett. 5: 39–43. 127. Shelton, A. O., Thorson, J. T., Ward, E. J. and Feist, B. E. (2014). Spatial semiparametric models improve estimates of species abundance and distribution. – Can. J. Fish. Aquat. Sci. 71: 1655–1666. 128. Shiogama, H., Fujimori, S., Hasegawa, T. et al. (2023). Important distinctiveness of SSP3–7.0 for use in impact assessments. Nat. Clim. Chang. 13, 1276–1278 https://doi.org/10.1038/s41558-023-01883-2 129. Simon P.R. Greenstreet, Stuart I. Rogers, Indicators of the health of the North Sea fish community (2006): identifying reference levels for an ecosystem approach to management, ICES Journal of Marine Science, Volume 63, Issue 4, Pages 573–593, https://doi.org/10.1016/j.icesjms.2005.12.009 130. Smale, D.A., Wernberg, T., Oliver, E.C.J. et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Chang. 9, 306–312 (2019). https://doi.org/10.1038/s41558-019-0412-1 131. Smith, K. E., Burrows, M. T., Hobday, A. J., King, N. G., Moore, P. J., Sen Gupta, A., Thomsen, M. S., Wernberg, T., & Smale, D. A. (2023). Biological impacts of marine heatwaves. Annual Review of Marine Science, 15, 119–145. https://doi.org/10.1146/annurev-marine-032122-121437 132. Sofaer, H. R., Jarnevich, C. S. and Flather, C. H. (2018). Misleading prioritizations from modelling range shifts under climate change. – Global Ecol. Biogeogr. 27: 658–666 133. Stenberg, Claus & Støttrup, J.G. & Deurs, Mikael & Berg, C. & Dinesen, Grete & Mosegaard, Henrik & Grome, T. & Leonhard, S.(2015). Long-term effects of an offshore wind farm in the North Sea on fish communities. Marine Ecology Progress Series. 528. 257–265,10.3354/meps11261. 134. Sunday, J.M., Pecl, G.T., Frusher, S., Hobday, A.J., Hill, N., Holbrook, N.J., Edgar, G.J., Stuart-Smith, R., Barrett, N., Wernberg, T., Watson, R.A., Smale, D.A., Fulton, E.A., Slawinski, D., Feng, M., Radford, B.T., Thompson, P.A. and Bates, A.E. (2015), Species traits and climate velocity explain geographic range shifts in an ocean-warming hotspot. Ecol Lett, 18: 944-953. https://doi.org/10.1111/ele.12474 135. Sündermann, J., & Pohlmann, T. (2011). A brief analysis of North Sea physics. Oceanologia, 53 (3), 663–689. https://doi.org/10.5697/oc.53-3.663 136. Tai TC, Sumaila UR and Cheung WWL (2021) Ocean Acidification Amplifies Multi-Stressor Impacts on Global Marine Invertebrate Fisheries. Front. Mar. Sci. 8:596644. doi: 10.3389/fmars.2021.596644 137. Thuiller, W., Lafourcade, B., Engler, R. and Araújo, M.B. (2009), BIOMOD – a platform for ensemble forecasting of species distributions. Ecography, 32: 369-373. https://doi.org/10.1111/j.1600-0587.2008.05742.x 138. Thuiller, W., Damie, G., Robin, E., Frank, F. Biomod2: Ensemble Platform for Species Distribution Modeling (2016). 139. Thuiller, W., Georges, D., Gueguen, M., Engler, R., Breiner, F., Lafourcade, B., Patin, R., & Blancheteau, H. (2024). biomod2: Ensemble Platform for Species Distribution Modeling [R package]. https://doi.org/10.32614/CRAN.package.biomod2 140. Tishchenko P., et al. (2022) - Revisiting the Carbonate Chemistry of the Sea of Japan (East Sea): From Water Column to Sediment – Marine Science and Engineering, MDPI. 141. Tittensor, D. P., Novaglio, C., Harrison, C. S., et al. (2021). Next-generation ensemble projections reveal higher climate risks for marine ecosystems. Nature Climate Change, 11, 973–981. https://doi.org/10.1038/s41558-021-01173-9 142. Townhill B. L., Couce E., Tinker J., Kay S., & Pinnegar, J. K. (2023). Climate change projections of commercial fish distribution and suitable habitat around northwestern Europe. Fish and Fisheries, 24, 848–862. https://doi.org/10.1111/faf.12773 143. Turrell, W. R., Henderson, E. W., Slesser, G., Payne, R., & Adams, R. D. (1992). Seasonal changes in the circulation of the northern North Sea. Continental Shelf Research, 12 (2–3), 257–286. https://doi.org/10.1016/0278-4343(92)90032-F 144. UNESCO. (2024). New UNESCO report: Rate of ocean warming doubled in 20 years, rate of sea level rise doubled in 30 years. https://www.unesco.org/en/articles/new-unesco-report-rate-ocean-warming-doubled-20-years-rate-sea-level-rise-doubled-30-years 145. Urban M.C.(2019). Projecting biological impacts from climate change like a climate scientist. WIREs Clim Change; 10:e585. https://doi.org/10.1002/wcc.585 146. Valavi, R., G. Guillera-Arroita, J. J. Lahoz-Monfort, and J. Elith. (2022). Predictive performance of presence-only species distribution models: a benchmark study with reproducible code. Ecological Monographs 92(1):e01486. 10.1002/ecm.1486 147. van Aken, H. M., G. J. van Heijst, and L. R. Maas. (1987). "Observations of fronts Journal of Marine Research 45, (3). https://elischolar.library.yale.edu/journal_of_marine_research/1862 148. van Leeuwen, S., P. Tett, D. Mills, and J. van der Molen (2015). Stratified and nonstratified areas in the North Sea: Long-term variability and biological and policy implications, J. Geophys. Res. Oceans, 120, 4670–4686, doi:10.1002/2014JC010485. 149. Van Vuuren et al. (2013). A new scenario framework for Climate Change Research: scenario matrix architecture, Climatic Change, volume 122, pages373–386(2014), doi:10.1007/s10584-013-0906-1 150. Vargas, C., Lagos, N., Lardies, M. et al. (2017). Species-specific responses to ocean acidification should account for local adaptation and adaptive plasticity. Nat Ecol Evol 1, 0084 https://doi.org/10.1038/s41559-017-0084 151. Vergés A., Doropoulos C., Malcolm H.A., Skye M., Garcia-Pizá M., Marzinelli E.M., Campbell A.H., Ballesteros E., Hoey A.S., Vila-Concejo A., Bozec Y., Steinberg P.D., (2016). Long-term empirical evidence of ocean warming leading to tropicalization of fish communities, increased herbivory, and loss of kelp, Proc. Natl. Acad. Sci. U.S.A. 113 (48) 13791-13796, https://doi.org/10.1073/pnas.1610725113 152. Wahl, T., Haigh, I., Albrecht, F., Dillingh, D., Jensen, J., Nicholls, R., Weisse, R., Woodworth, P.L., Wöppelmann, G. (2013). Observed mean sea level changes around the North Sea coastline from 1800 to present, Earth Science Reviews, 124, 51–67. 153. Wang, H., Hu, X., Cai, W.-J., Sterba-Boatwright, B. (2017). Decadal fCO2 trends in global ocean margins and adjacent boundary current-influenced areas. Geophysical Research Letters,44,8962–8970. https://doi.org/10.1002/2017GL074724 154. Whittaker, R. J., Araújo, M. B., Jepson, P., Ladle, R. J., Watson, J.E. M. and Willis, K. J. (2005). Conservation biogeography: assessment and prospect. – Divers. Distrib. 11: 3–23. 155. Willis, K.J. and Bhagwat, S.A. (2009). Biodiversity and Climate Change. Science, 326, 806-807. http://dx.doi.org/10.1126/science.1178838 156. Wolff G. J. L. Sarmiento & N. Gruber (2006). Ocean Biogeochemical Dynamics. xiii + 503 pp. Princeton, Woodstock: Princeton University Press. Price £48.95 (hard covers). 0 691 01707 7. Geological Magazine. 2007;144(6):1034-1034. doi:10.1017/S0016756807003755 157. Woods PJ, Macdonald JI, Bárðarson H, et al. (2022). A review of adaptation options in fisheries management to support resilience and transition under socio-ecological change. ICES J Mar Sci.79(2):463-479. doi:10.1093/icesjms/fsab244. 158. Wright, P. J., Millar, C. P. & Gibb, F. M. (2011). Intra-stock differences in maturation schedules of Atlantic cod Gadus morhua in the North Sea. ICES Journal of Marine Science 86, 1918–1927. 159. Yates K.L., Bouchet P.J., Caley M.J. et al. (2018). Outstanding Challenges in the Transferability of Ecological Models. Trends Ecol Evol. Oct;33(10):790-802. doi: 10.1016/j.tree.2018.08.001. Epub 2018 Aug 27. PMID: 30166069. 160. Yates, L. A., Aandahl, Z., Richards, S. A. and Brook, B. W. (2023) – Cross validation for model selection: a primer with examples from ecology. Ecol. Monogr. 93: e1557. 161. Young, M. and Carr, M. H. (2015). Application of species distribution models to explain and predict the distribution, abundance and assemblage structure of nearshore temperate reef fishes. – Divers. Distrib. 21: 1428–1440. 162. Zangiabadi S., Zaremaivan H., Brotons L, Mostafavi H., Ranjbar H. (2021). Using climatic variables alone overestimate climate change impacts on predicting distribution of an endemic species. PLoS ONE 16(9): e0256918. https://doi.org/10.1371/journal.pone.0256918 163. Zhang S., Heck P.R., Meyer M.N., Chabris C.F., Goldstein D.G., Hofman J.M., (2023). An illusion of predictability in scientific results: Even experts confuse inferential uncertainty and outcome variability, Proc. Natl. Acad. Sci. U.S.A. 120 (33) e2302491120, https://doi.org/10.1073/pnas.2302491120 164. Zhu, Y., Lin, Y., Chu, J. et al. (2022). Modelling the variation of demersal fish distribution in Yellow Sea under climate change. J. Ocean. Limnol. 40, 1544–1555 https://doi.org/10.107/s00343-021-1126-6 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96444 | - |
| dc.description.abstract | None | zh_TW |
| dc.description.abstract | The increasing impact of climate change on marine ecosystems requires robust modeling approaches to project future species distributional shifts. These biogeographical reorganizations are fundamentally transforming the global fishing industry, as traditional fishing grounds experience declining productivity or ecological regime shifts toward novel species assemblages, while simultaneously creating emerging opportunities in previously marginal areas, though these new fishing frontiers often lack the necessary infrastructure and regulatory frameworks to support sustainable resource exploitation. Some projections that rely solely on temperature as the main parameter may fail to capture the complex interplay of multiple environmental stressors, including dissolved oxygen, pH, and their complex effects on marine ecosystems, potentially leading to oversimplified or inaccurate future projections. This study aims to investigate if adding dissolved oxygen concentration, and pH as predictor variables, can better predict the distribution shifts of 16 demersal and 5 pelagic fish species in the North Sea. To project marine fish response to abiotic factors under SSP1-2.6, SSP2-4.5, SSP5-8.5 scenarios for 2050 and 2100, the ensemble of Species Distribution Models (SDMs) was implemented. While SSP5-8.5 scenario incorporated declining oxygen levels (projected decrease of 31-34% from when to when) and ocean acidification (pH decrease of 5-6% from when to when under which scenarios) by 2100, model performance analysis revealed that temperature alone created the best ensemble model, with the best validation metrics (TSS = 0.950±0.001). Under the most pessimistic scenario - SSP5-8.5, temperature-driven models projected mean north-west shifts of distributional centroids at 245±223 km for most demersal species and eastwards 193±62 km shifts for pelagic species by 2100, while combination of parameters projected generally south and south-eastwards movements for both functional groups up to 143±57 km. When comparing single-factor and multi-factor models, the similarity comes in projection up to 2050 when the southern and central areas tend to be the most suitable ones, however later projections for 2100 showed disparity in direction and magnitude of distributional shifts, especially for the demersal species, seeking refugia in different locations. These findings suggest that while numerous stressors affect marine ecosystems, statistically, temperature’s impact is the strongest for selected species in the North Sea region based on the applied data. The findings reveal significant implications for improving climate impact assessments of marine wildlife through the integration of species distribution models into unified frameworks that enable robust analysis of migration patterns. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-18T16:09:49Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-02-18T16:09:49Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Master’s Thesis Acceptance Certificate i
Abstract ii 1. Introduction 1 1.1 Concept of fish distributions 2 1.1 Impact of ocean warming on fish 4 1.2 Impact of acidification on fish 6 1.3 Impact of oxygen depletion on fish 7 1.4 Study Area 9 1.4.1 Geographical characteristics 9 1.4.1.1 Hydrological Characteristics 10 1.4.1.2 Currents 12 1.4.1.3 Frontal Systems 13 1.4.1.4 Atmospheric circulation 14 1.4.1.5 Temperature Regime 14 1.4.2 Current Ecological Issues 15 1.4.3 Economical Importance 18 1.4.4 Fishery Regulations in the North Sea 19 2. Materials and methods 21 2.1. Data source 21 2.1.1. Biological data 21 2.1.2 Environmental data 25 2.2 Statistical methods 28 2.2.1 Species Distribution Models 28 2.2.2 Data processing 32 2.2.3 Ensemble modelling 36 2.2.4 Future predictions 39 3. Results 41 3.1. SDMs performance 41 3.2. Projected distributional shift based on sea temperate 44 3.2.1 Distributional Centroids based on sea temperate 46 3.3 Projected distributional shift based multi-factor models 47 3.3.1 Distributional Centroids based multi-factor models 48 4. Discussion 49 4.1 Comparison of the different model experiments 52 4.2 Uncertainties about using SDMs 55 4.3 Global Fisheries’ challenges 57 5. Conclusion 61 Final results 63 References 64 Illustrations 77 Supplementary materials 97 | - |
| dc.language.iso | en | - |
| dc.subject | Model comparison | zh_TW |
| dc.subject | Climate change | zh_TW |
| dc.subject | Fishery | zh_TW |
| dc.subject | North Sea | zh_TW |
| dc.subject | Species distribution modelling | zh_TW |
| dc.subject | Climate change | en |
| dc.subject | Species distribution modelling | en |
| dc.subject | North Sea | en |
| dc.subject | Fishery | en |
| dc.subject | Model comparison | en |
| dc.title | Modelling Fish Species Distributions Under Ocean Acidification and Hypoxia in the North Sea | zh_TW |
| dc.title | Modelling Fish Species Distributions Under Ocean Acidification and Hypoxia in the North Sea | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 丁宗蘇;張俊偉 | zh_TW |
| dc.contributor.oralexamcommittee | Tzung-Su Ding;Chun-Wei Chang | en |
| dc.subject.keyword | Species distribution modelling,North Sea,Fishery,Model comparison,Climate change, | zh_TW |
| dc.subject.keyword | Species distribution modelling,North Sea,Fishery,Model comparison,Climate change, | en |
| dc.relation.page | 140 | - |
| dc.identifier.doi | 10.6342/NTU202500202 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-01-23 | - |
| dc.contributor.author-college | 共同教育中心 | - |
| dc.contributor.author-dept | 生物多樣性國際碩士學位學程 | - |
| dc.date.embargo-lift | 2026-01-01 | - |
| 顯示於系所單位: | 生物多樣性國際碩士學位學程 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-1.pdf | 25.49 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
