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Abstract  
The increasing impact of climate change on marine ecosystems requires robust modeling 

approaches to project future species distributional shifts. These biogeographical 

reorganizations are fundamentally transforming the global fishing industry, as traditional 

fishing grounds experience declining productivity or ecological regime shifts toward 

novel species assemblages, while simultaneously creating emerging opportunities in 

previously marginal areas, though these new fishing frontiers often lack the necessary 

infrastructure and regulatory frameworks to support sustainable resource exploitation. 

Some projections that rely solely on temperature as the main parameter may fail to capture 

the complex interplay of multiple environmental stressors, including dissolved oxygen, 

pH, and their complex effects on marine ecosystems, potentially leading to oversimplified 

or inaccurate future projections. This study aims to investigate if adding dissolved oxygen 

concentration, and pH as predictor variables, can better predict the distribution shifts of 

16 demersal and 5 pelagic fish species in the North Sea. To project marine fish response 

to abiotic factors under SSP1-2.6, SSP2-4.5, SSP5-8.5 scenarios for 2050 and 2100, the 

ensemble of Species Distribution Models (SDMs) was implemented. While SSP5-8.5 

scenario incorporated declining oxygen levels (projected decrease of 31-34% from when 

to when) and ocean acidification (pH decrease of 5-6% from when to when under which 

scenarios) by 2100, model performance analysis revealed that temperature alone created 

the best ensemble model, with the best validation metrics (TSS = 0.950±0.001). Under 

the most pessimistic scenario - SSP5-8.5, temperature-driven models projected mean 

north-west shifts of distributional centroids at 245±223 km for most demersal species and 

eastwards 193±62 km shifts for pelagic species by 2100, while combination of parameters 

projected generally south and south-eastwards movements for both functional groups up 

to 143±57 km. When comparing single-factor and multi-factor models, the similarity 
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comes in projection up to 2050 when the southern and central areas tend to be the most 

suitable ones, however later projections for 2100 showed disparity in direction and 

magnitude of distributional shifts, especially for the demersal species, seeking refugia in 

different locations. These findings suggest that while numerous stressors affect marine 

ecosystems, statistically, temperature’s impact is the strongest for selected species in the 

North Sea region based on the applied data. The findings reveal significant implications 

for improving climate impact assessments of marine wildlife through the integration of 

species distribution models into unified frameworks that enable robust analysis of 

migration patterns. 

 

Key words: Species distribution modelling, North Sea, fishery, model comparison, 
climate change 
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1. Introduction 
Marine organisms and their ecosystem services face unprecedented challenges 

due to climate change. The ecological impacts arise from both long-term shifts in climate 

patterns and short-term extreme events, leading to significant disruptions in marine 

environments (Harris et al., 2018). While ocean ecosystems face various threats, 

including chemical pollution and habitat destruction, environmental condition 

transformations remain a key factor determining species' suitable habitats. 

These changes significantly affect fisheries and coastal economies, threatening 

both food security and the livelihoods of millions dependent on marine resources (FAO, 

2024). As environmental conditions approach critical thresholds, species either relocate 

or decline when unable to tolerate changes. Even surviving species face challenges from 

shifts in food availability, predation patterns, and competition within altered ecosystems. 

Additionally, climate change may accelerate the introduction and establishment of 

invasive species, leading to further alterations in food web dynamics and community 

composition (Nisin, 2023). 

This dissertation applied predictive modeling tools to understand which marine 

water physico-chemical characteristics most significantly influence the occurrence and 

distribution of pelagic and demersal fish in the North Sea. Using ensembles of Species 

Distribution Models (SDMs) driven by Earth System Models (ESMs), I simulate various 

biochemical conditions under three different Shared Socioeconomic Pathways (SSPs). 

Including commercially valuable species such as mackerel (Scomber scombrus) and hake 

(Merluccius merluccius) provide crucial insights into future fishery sustainability. 

The scientific novelty of this research lies in addressing current research gaps by: 

(1) considering dissolved oxygen and pH levels' impact on fish distribution, moving 

beyond temperature-only effects; (2) focusing on meso-scale spatial coverage and long-
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term temporal analysis (42 years); (3) integrating multiple environmental variables to 

improve model accuracy, as research indicates that temperature-only models tend to 

produce less reliable and unrealistically optimistic predictions (McHenry et al., 2019). 

Study Objectives: 

● To assess climate change impacts on fish species distribution; 

● To investigate the role of ocean acidification, oxygen depletion, and ocean 

warming in shaping distributional shifts; 

● To model potential yearly fish distribution shifts using past records and future 

projections under climate scenarios (SSP1-2.6, SSP3-7.0 & SSP5-8.5) through 

2100. 

This comprehensive approach will enhance understanding of how marine species 

interact with their environment and improve ability to predict ecosystem responses to 

climate change. Such knowledge is crucial for developing effective conservation 

strategies and ensuring sustainable fisheries management in the face of global 

environmental change. 

1.1 Concept of fish distributions  
Fish distributions in marine ecosystems are governed by complex interactions 

between environmental conditions and biological requirements. These distribution 

patterns reflect species-specific physiological tolerances and preferences, which 

determine their fundamental niche (Hutchinson, 1957). Within marine environments, fish 

distributions are primarily influenced by temperature regimes, which affect metabolic 

rates and energy budgets (Pörtner and Farrell, 2008), while the realized niche is further 

shaped by oxygen availability, pH levels, food resources, and interspecific competition 

(Perry et al., 2005). 
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Oceanographic physical processes, including current systems, upwelling zones, 

and water mass boundaries, significantly influence distribution patterns by creating 

natural barriers and corridors. These physical features correlate with nutrient availability 

and primary productivity, directly affecting food availability for fish populations, with 

fish movements closely tracking primary producers' peak productivity spring waves 

(Kléparski, 2021). 

Marine species are moving poleward at an average rate of 72 kilometers per 

decade, nearly ten times faster than terrestrial species (Poloczanska et al., 2013). This 

redistribution creates novel assemblages and ecological interactions through "climate 

velocity corridors" - pathways where the speed and direction of climate change may create 

natural migration routes (Burrows et al., 2014).  

The North Sea exemplifies these dynamics, where species exhibit varying 

responses to environmental changes. For instance, cod (Gadus morhua) actively avoid 

waters above 13°C, while European seabass (Dicentrarchus labrax) prefer warmer waters 

and extend their range northward during summer months (Baudron et al. 2014). Research 

using acoustic telemetry revealed that Atlantic cod aggregate in deeper northern waters 

during winter and disperse to central and southern feeding grounds in spring, though this 

adaptation to deeper waters is limited by light availability and pressure tolerance (Rogers 

et al., 2020). 

Species demonstrate varying capacities for adaptation, with fast-growing, short-

lived species generally showing greater capacity for range shifts, while species with 

specific habitat requirements face greater challenges. Notably, pelagic species typically 

demonstrate more rapid distribution changes compared to demersal species (Pinsky et al., 

2019). These shifts in commercially valuable species' distributions create significant 

management challenges, often crossing jurisdictional boundaries (Pinsky et al., 2018). 
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Traditional static marine protected areas may become less effective as species ranges shift 

(Bruno et al., 2018), while fishing pressure can amplify climate effects on fish populations 

by reducing their adaptive capacity and resilience to environmental change (Free et al., 

2019). 

Understanding these distribution mechanisms is crucial for predicting future 

species ranges and implementing effective conservation strategies (Cheung et al., 2009). 

While species generally shift poleward in response to changing climates, the speed, range, 

and direction of movement for each species remain highly unpredictable (IPCC, 2022). 

1.1 Impact of ocean warming on fish 

Ocean temperatures are experiencing unprecedented acceleration in their warming 

trajectory, with the heating rate increasing significantly compared to two decades ago. 

The State of the Ocean Report shows that 2023 marked one of the most substantial 

temperature increases since the 1950s, with ocean temperatures rising 1.45°C above pre-

industrial levels (UNESCO, 2024). Between 1958 and 2019, the upper ocean layers 

accumulated heat equivalent to 351 Zettajoules, with marked acceleration in the past 

decade (Cheng et al., 2022). 

Temperature serves as a primary driver of marine species distribution, with each 

species having optimal thermal ranges that influence their survival, growth, and 

reproduction. Marine heatwaves—discrete periods of anomalously warm ocean 

temperatures—significantly affect marine ecosystems (Smale et al., 2019). Rising 

temperatures influence physiological functioning of marine species, impacting growth, 

size, reproductive success, and population numbers (Pauly, 2021). Species with faster life 

histories show stronger responses to temperature changes, particularly populations at the 

warm edges of their thermal ranges (Free et al., 2019). 
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The warming of ocean waters has led to "tropicalization" of temperate regions, 

where tropical species moving into temperate waters fundamentally alter ecosystem 

structure (Vergés et al., 2016). Temperature effects manifest through both direct 

physiological impacts and indirect ecosystem effects, with species' thermal limits closely 

matching their realized temperature ranges (Sunday et al., 2015). Changes in temperature 

alter food web dynamics, as warming-induced changes in plankton communities’ cascade 

through marine food webs (Hoegh-Guldberg and Bruno, 2010). 

In the North Sea, seasonal temperature fluctuations (5°C in winter to 16°C in 

summer) create distinct seasonal habitats (Dulvy et al., 2018). While some species like 

cod actively avoid waters above 13°C, others such as European seabass prefer warmer 

waters and extend their range northward during summer months (Baudron et al. 2020). 

Fish biomass shows complex responses, with the North Sea experiencing a 97% increase 

in 2011, preceded by a 6% decline during anomalously high temperatures (Fredston et 

al., 2023). 

Climate projections under aggressive emission pathways indicate that 

approximately 90% of marine life could face severe survival challenges (Boyce, et al., 

2022). Effects are particularly pronounced at higher trophic levels, where apex predators 

exhibit greater sensitivity to climate-induced changes (Boyce et al, 2015). Rising ocean 

temperatures have reduced marine fisheries productivity and limited sustainable fishery 

yields (Gattuso et al., 2015, Cheung et al., 2016), with overfished populations showing 

increased susceptibility to warming impacts (Free et al., 2019). While some cold-region 

populations initially benefited from warming, these advantages are diminishing as 

temperatures continue to rise (Pörtner, 2007), leading to a 4.1% decrease in maximum 

sustainable yield from the 1930s to 2010 (Free et al., 2019). 
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1.2 Impact of acidification on fish  
Ocean acidification (OA) represents a significant anthropogenic perturbation of 

marine chemical equilibria, primarily driven by atmospheric carbon dioxide (CO2) 

absorption into oceanic systems. The fundamental process initiates when atmospheric 

CO2 dissolves in seawater, forming carbonic acid (H2CO3) which dissociates into 

hydrogen ions (H+) and bicarbonate ions (HCO3-). This process has led to a measurable 

decline in seawater pH from pre-industrial levels of approximately 8.2 to current levels 

of 8.1, representing a 30% increase in acidity due to the logarithmic nature of the pH scale 

(NOAA). 

The impacts of OA on fish are both direct and indirect, manifesting through 

multiple physiological and behavioral pathways. Fish experience fundamental disruptions 

to their acid-base regulation mechanisms, which affects their overall metabolic 

functioning and aerobic capacity. Their sensory capabilities, crucial for survival 

behaviors such as predator avoidance and food location, become compromised. 

Furthermore, both reproductive success and developmental processes, such as gamete 

maturation (egg/sperm development), fertilization success rates, egg hatching success, 

embryonic development are significantly impaired (Le Quesne and Pinnegar, 2012). As 

well as sensory capability impacts, leading to affecting species ability to: detect predators, 

locate food sources and navigate their environment due to the changes in otolith (ear 

bones used for balance and orientation) development (Le Quesne and Pinnegar, 2012). 

These physiological alterations cascade into broader population-level effects, influencing 

growth rates, survival probabilities, and reproductive output (Kroeker et al., 2013). 

Behavioral changes are particularly pronounced in reef species, where OA impairs 

neurological function, affecting habitat selection and migration patterns, which in turn 

influences species distribution (Nagelkerken and Munday, 2016). Studies have 
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documented species-specific impairment of physiological functions, particularly 

regarding organisms' aerobic performance capabilities (Tai et al., 2021; Vargas et al., 

2017). Research has revealed significant alterations in behavioral patterns and cognitive 

processes among various fish species, potentially affecting their ability to survive in their 

changing environments (Moreira et al., 2022). 

The situation becomes more complex when considering the interaction between 

OA and other climate change stressors. For ectothermic organisms, rising ocean 

temperatures create increased oxygen demands as they struggle to maintain basic 

metabolic functions (Pörtner and Lannig, 2009). This elevated oxygen requirement 

significantly reduces their aerobic scope—the crucial capacity to increase metabolic rate 

above baseline maintenance levels. This reduced aerobic capacity has far-reaching 

implications for life-history characteristics, including growth trajectories and maximum 

attainable body sizes (Pauly and Cheung, 2017), which ultimately influence large-scale 

population dynamics and ecosystem structure (Cheung et al., 2011). 

1.3 Impact of oxygen depletion on fish  
When oxygen levels drop in marine waters, fish face immediate physiological 

challenges. Fish require dissolved oxygen to sustain their cellular respiration. Under 

hypoxic conditions (typically defined as dissolved oxygen levels below 2 mg/L), fish 

struggle to extract sufficient oxygen through their gills. This directly leads to increased 

mortality rates (Tai et al. 2021), particularly among species that cannot quickly relocate 

to better-oxygenated waters, as even brief exposure to severe hypoxia can cause 

widespread fish die-offs in affected areas. 

The ability to sustain efficient aerobic performance, meaning the capacity to meet 

metabolic oxygen needs, is crucial for ectothermic animals to maintain their energy 

balance, survive, and prevent a decline in fitness as temperatures rise. 
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Fish response to low oxygen conditions are reflected in the metabolic impacts. 

Rising ocean temperatures go along with the decrease of dissolved oxygen concentration 

(Clarke et al. 2022). Metabolic rates increase with rising temperatures, which results in a 

higher oxygen demand to sustain aerobic processes in warmer waters. The increased need 

for oxygen may exceed the capacity of certain fish species to meet these demands, even 

in pelagic zones with abundant oxygen (Deutsch et al., 2015). This imbalance can reduce 

the aerobic scope—the difference between standard and maximum metabolic rates—

potentially triggering trade-offs among essential physiological functions reliant on 

oxygen, such as growth and reproduction. When fish detect declining oxygen levels, their 

bodies initiate a series of compensatory mechanisms. Under hypoxic stress shows reduced 

swimming activity and feeding behavior to conserve energy (Moreira et al., 2022). Their 

bodies shift toward anaerobic metabolism - a less efficient way of producing energy that 

can't be sustained long-term. This metabolic stress has far-reaching consequences for their 

overall health and survival. These effects compound each other: metabolic stress makes 

it harder for fish to escape predators or find food, reduced reproduction rates mean 

populations recover more slowly from losses, and the energy costs of relocating further 

strain already stressed individuals. The resulting changes in fish distribution and 

abundance can fundamentally alter marine ecosystems through bottom-up controls in a 

food web.  

The effects on growth and reproduction are equally concerning. It was revealed 

that fish in oxygen-depleted waters show significantly reduced growth rates because they 

must divert energy from growth to basic survival functions (Clarke et al., 2022). 

Reproduction becomes particularly challenging - fish need substantial energy reserves to 

produce eggs or sperm, and under hypoxic conditions, many species either delay 
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spawning or produce fewer, less viable offspring. This creates a troubling feedback loop 

where populations become less resilient over time.  

In response to changing water conditions species tend to relocate to oxygen-rich 

areas (Campana et al., 2020, Cheung, et al., 2015, Meyer-Gutbrod et al., 2021). When 

fish move to new areas, they may face different predators, compete with resident species 

for resources, or become unavailable to fishing communities that have historically 

depended on them. 

1.4 Study Area 

1.4.1 Geographical characteristics 

The North Sea is a shallow marginal sea located on the continental shelf of the 

Atlantic Ocean. It is bordered to the west by the British Isles, including the Orkney and 

Shetland Islands, to the east by the Scandinavian and Jutland peninsulas, and to the south 

by the European coastline. It is surrounded by the Norwegian Sea in the north, in the east 

- by the Baltic Sea through the straits Skagerrak, Kattegat, Eresund, Great Belt and Small 

Belt, in the south-west - by the straits Pas de Calais, La Manche and in the north-west - 

by the Atlantic Ocean by inter-island straits. It washes the coasts of several European 

countries: the United Kingdom, France, Belgium, the Netherlands, Germany, Denmark 

and Norway. The boundaries are the following: 61°N (connecting Norway to the Shetland 

Islands), Southern boundary: 51°N (the Dover Strait), Western boundary: 4°W (along 

British coast), Eastern boundary: 7°E (along Danish and Norwegian coasts). Its area is 

565 thousand km2, with a surface area of 565 thousand km2, with the Atlantic Ocean in 

the north-west. It is considered to be a rather shallow basin, as its mean depth is about 30 

m, deepening up to 200 m in the northwest (OSPAR, 2000).However, it's important to 

note that the depth varies significantly across different regions of the sea: the southern 
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part is generally shallower (20-30 meters); the central region has moderate depths (50-

100 meters); the northern area, particularly near the Norwegian trench, is much deeper 

(reaching depths of over 700 meters) (GEBCO). The deepest point is 725 m, located by 

the Norwegian Trench, which serves as the main deepwater exchange with the North 

Atlantic gyre (Sündermann and Pohlmann, 2011). Cyclones happen during winter months, 

bringing more turbulent sea conditions.  Oceanic forces that govern the North Sea's 

conditions are closely tied to the polar jet stream, a major atmospheric current that 

influences the trajectory and intensity of weather systems, shaping the overall wind and 

wave dynamics in the area.  

Regarding the separation of the North Sea according to the fishing region. it falls 

within FAO Major Fishing Area 27, specifically designated as the Northeast Atlantic 

region in the FAO's global marine classification system. Within this broader area, the 

North Sea comprises Subarea 4, which is further subdivided into distinct divisions for 

more precise fisheries management and data collection. The specific divisions within 

FAO Subarea (Fig. 1) 4 include three divisions: division 4.a: Northern North Sea, division 

4.b: Central North Sea Division 4.c: Southern North Sea (FAO, 2024). 

1.4.1.1 Hydrological Characteristics 

The intrusion of high-salinity Atlantic Waters changes the overall hydrological 

properties of the North Sea. Through two pathways: the Fair Isle Current between Orkney 

and Shetland, and the East Shetland Atlantic Inflow along the western edge of the 

Norwegian Trench with greater than 35 psu water masses enter the North Sea basin (Salt 

et al., 2013). The inflowing Atlantic water follows distinct pathways: the northern inflow 

follows the western slope of the Norwegian Trench, the central North Sea branch crosses 

the North Sea plateau and the southern inflow enters through the English Channel (Otto 

et al., 2022).  

https://www.fao.org/fishery/en/area/search
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Coastal regions, particularly in the southern and eastern North Sea, show reduced 

salinity (30-34 PSU) due to riverine input (Radach and Pätsch, 2007). The North Sea 

receives substantial freshwater input from several major rivers, including the Rhine, Elbe, 

and Thames. These rivers transport significant volumes of freshwater, sediments, and 

nutrients into the marine environment, influencing salinity levels and nutrient dynamics. 

The average annual freshwater discharge into the North Sea is approximately 300 cubic 

kilometers, with the Rhine contributing about 70 cubic kilometers per year (Radach, G., 

& Pätsch, J., 2007). In shelf seas along continental margins, powerful tidal movements 

are frequently observed, generating significant turbulent mixing. These tidal forces are 

often so intense in certain regions that they prevent any seasonal surface buoyancy 

changes from creating layered water columns, effectively blocking stratification from 

developing. However, in locations where tidal mixing is less powerful, the water column 

can separate into distinct temperature layers during spring and summer months, as solar 

radiation warms the surface waters. Between these two distinct zones - the mixed and 

stratified areas - lies a narrow boundary region known as the 'tidal mixing front' (van 

Aken, et al. 1987). 

The influx of freshwater from these rivers leads to the formation of river plumes—

areas where freshwater mixes with seawater—creating regions of reduced salinity and 

elevated nutrient concentrations. These plumes are particularly prominent near river 

mouths and can extend considerable distances offshore, depending on river discharge 

rates and prevailing oceanographic conditions. For instance, the Rhine River plume can 

influence salinity and nutrient levels over large areas of the southern North Sea 

(EMODnet, 2000). 

The presence of large river plumes significantly impacts the marine ecosystem. 

The nutrient-rich freshwater promotes phytoplankton growth, forming the base of the 



doi:10.6342/NTU202500202  12 

marine food web. However, excessive nutrient input can lead to eutrophication, causing 

algal blooms and subsequent oxygen depletion, which adversely affects marine life 

(Jickells, 1998). In summary, riverine inputs as well as the ocean currents play a crucial 

role in shaping the North Sea's hydrology and biology.  

1.4.1.2 Currents 

The North Sea's circulation system exhibits a complex pattern of surface and 

bottom currents that play a crucial role in ecosystem functioning and species distribution. 

The primary surface circulation follows a counterclockwise pattern, with Atlantic water 

entering from the north between Scotland and Norway, and through the English Channel 

in the south (Turrell et al., 1992). This inflow creates two main branches: the Norwegian 

Coastal Current flowing northward along the Norwegian coast, and the central North Sea 

circulation moving southward along the British coast (Otto et al., 1990). In can be seen 

on Fig. 2. The surface currents are significantly influenced by wind patterns, particularly 

during winter storms, which can temporarily alter circulation patterns and mixing depths. 

Bottom currents follow a different pattern, with dense Atlantic water moving along the 

Norwegian Trench, creating important pathways for nutrient transport and larval dispersal 

(Sündermann and Pohlmann, 2011). The interaction between surface and bottom currents 

becomes particularly important in areas of upwelling and downwelling, where nutrient 

exchange supports high biological productivity (Hill et al., 2008). These circulation 

patterns demonstrate significant seasonal and interannual variability, influenced by 

atmospheric forcing, freshwater input, and larger-scale oceanic processes such as the 

North Atlantic Oscillation (NAO), which affects the strength and position of the main 

current systems (Mathis et al., 2015). Understanding these current patterns is crucial for 

predicting changes in marine ecosystems and managing fisheries resources, particularly 

as climate change influences oceanic circulation patterns (Holt et al., 2018). 
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1.4.1.3 Frontal Systems 

The North Sea's hydrography is characterized by several permanent and seasonal 

frontal systems that significantly influence biological productivity and marine species 

distribution. These fronts arise from differences in temperature, salinity, and water 

column stratification (Huthnance et al. 2016). The Flamborough Head Front, located off 

England's east coast, forms through interaction between mixed coastal and stratified 

central North Sea waters, enhancing primary productivity through nutrient exchanges. 

The Central North Sea Front develops in deeper regions during summer when solar 

heating creates a sharp thermocline, supporting high biological productivity through the 

combination of nutrient-rich bottom waters and light availability in upper layers (Pingree 

& Griffiths, 1978). 

The Skagerrak front, forming where saline North Sea waters meet fresher Baltic 

waters, maintains a strong year-round salinity gradient that supports substantial plankton 

growth and provides critical spawning habitat (Omstedt et al., 2004). The Norwegian 

Coastal Current Front flows northward along the eastern edge, showing seasonal 

variability influenced by riverine freshwater input, particularly during spring and early 

summer. These frontal systems exhibit seasonal variations in intensity and structure due 

to changes in solar radiation, freshwater input, and wind-driven mixing, while interannual 

variability is modulated by climate fluctuations such as the North Atlantic Oscillation 

(Holt et al. 2014). 

The significance of these frontal systems extends to both biological productivity 

and fisheries, with enhanced planktonic food availability sustaining fish stocks. However, 

anthropogenic pressures, including climate change and eutrophication, threaten to alter 

frontal dynamics, potentially affecting the entire marine ecosystem (Piet et al, 2009). 

Seasonal stratification patterns are particularly pronounced in central and northern 
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regions between May and September, creating a two-layer system crucial for nutrient 

cycling and biological production, while southern regions remain well-mixed due to tidal 

forces and shallow depths (Mathis et al., 2015). 

1.4.1.4 Atmospheric circulation 

Strong westerly winds play a critical role in wave generation across the North Sea, 

producing powerful waves and swells that significantly impact shipping, fisheries, and 

coastal erosion. This wave activity is further intensified when the Cyclones happen during 

winter months, bringing more turbulent sea conditions. The wind patterns in the North 

Sea are also closely tied to the polar jet stream, a major atmospheric current that 

influences the trajectory and intensity of weather systems, shaping the overall wind and 

wave dynamics in the area. These combinations of factors emphasize the intricate 

interplay of atmospheric and oceanic forces that govern the North Sea's conditions.  

1.4.1.5 Temperature Regime 

The North Sea exhibits complex thermal dynamics characterized by distinct 

spatial and temporal patterns. In its northern reaches, water temperatures demonstrate 

remarkable stability, maintaining a range of 6-8°C near the seafloor throughout the annual 

cycle. This thermal consistency stems from the significant influence of Atlantic water 

masses and the greater depths in this region. The southern portion, however, presents a 

more dynamic thermal regime owing to its shallower bathymetry and reduced mixing 

processes (Anderson 2021). 

The thermal structure varies significantly between seasons. During winter months, 

surface temperatures fluctuate from a minimum of 2°C in northern waters to 

approximately 7°C in southern regions. This gradient reflects the combined influence of 

Arctic water intrusion in the north and the moderating effect of continental Europe's 
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landmass in the south. Summer conditions bring more pronounced variations, with 

surface waters warming to 12-19°C, following a distinct latitudinal gradient (Martinez-

Lopez et al. 2024). Bottom water temperatures are more stable but show spatial variation, 

with the northern North Sea maintaining temperatures of 6-8°C year-round, while 

southern regions experience greater seasonal fluctuation (Quante et al., 2016). 

Climate change has emerged as a significant driver of long-term thermal 

modifications in the North Sea ecosystem. Observations indicate a warming trend of 1-

2°C in mean annual temperatures since the mid-twentieth century, with the most 

pronounced effects observed in the southern and central basins where shallower waters 

respond more readily to atmospheric heating (Martinez-Lopez et al. 2024).   

The interaction between temperature patterns and water column structure creates 

distinct stratification regimes. The deeper northern sector maintains relatively uniform 

vertical mixing due to strong tidal influences and wind-driven processes. Conversely, the 

southern region develops marked seasonal stratification during summer months, 

characterized by a well-defined thermocline separating warmer surface waters from 

cooler bottom layers. This stratification pattern fundamentally influences nutrient cycling 

and biological productivity throughout the ecosystem. 

These physical parameters have profound implications for ecosystem functioning. 

Enhanced stratification can restrict vertical nutrient transport, potentially affecting 

primary productivity patterns. Additionally, the warming trend has triggered 

biogeographical shifts, with warm-water species expanding their range northward while 

cold-adapted organisms retreat to maintain their preferred temperature ranges. 

1.4.2 Current Ecological Issues 

The marine ecosystem of the North Sea has undergone profound transformations 

in recent decades, revealing patterns that demand careful scientific scrutiny. Thermal 
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measurements across multiple observation stations demonstrate an unprecedented 

acceleration in warming rates since the late twentieth century. Data analysis reveals that 

the water masses experience thermal enhancement at approximately 0.1°C annually, 

transforming the traditional temperature regime of this continental shelf sea (Høyer & 

Karagali, 2016). 

Ocean current dynamics within the North Sea basin have experienced notable 

modifications. The influx patterns of Atlantic waters, which historically maintained 

consistent routes, now demonstrate altered trajectories and intensities. These circulation 

shifts potentially reorganize nutrient distribution patterns and influence larval transport 

mechanisms, thereby affecting ecosystem functionality at multiple trophic levels. 

Stronger and longer-lasting stratification periods have been observed, potentially 

affecting nutrient cycling and primary production (Mathis et al., 2015). 

Contemporary research indicates an increasing frequency of extreme weather 

events affecting the North Sea region. Storm patterns show greater intensity and modify 

seasonal timing, leading to enhanced mixing events that temporarily disrupt established 

stratification patterns. These meteorological changes contribute to altered sediment 

transport dynamics and coastal erosion processes. 

Stronger and longer-lasting stratification periods have been observed, potentially 

affecting nutrient cycling and primary production (Mathis et al., 2015). Modifications in 

Atlantic inflow patterns have been documented, with potential implications for ecosystem 

functioning (Quante et al., 2016). 

The North Sea has been experiencing a gradual rise in sea level, consistent with 

global trends driven by climate change (Calafat et al., 2022). Sea level changes in this 

region are influenced by a combination of global factors, such as thermal expansion and 
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glacial melting, and regional dynamics, including land subsidence and variations in ocean 

circulation. 

Over the 20th century, sea levels in the North Sea rose at an average rate of 

approximately 1–2 mm per year (Wahl et al. 2013). This rate has accelerated in recent 

decades, with recent studies estimating a rise of around 3–4 mm per year since the early 

1990s. The increasing rate of rise aligns with global observations, reflecting heightened 

contributions from melting ice sheets in Greenland and Antarctica and the expansion of 

warmer ocean waters. 

Regional studies reveal that the rate of sea-level rise varies across different parts 

of the North Sea due to local factors such as land subsidence, which is more pronounced 

in the southern areas, particularly along the coasts of the Netherlands and Belgium. In 

contrast, some northern regions are experiencing relative stability due to post-glacial 

rebound, where landmasses previously compressed by ice sheets are slowly rising.  

The southern North Sea, characterized by shallow waters and densely populated 

coastlines, is particularly vulnerable to sea-level rise. Coastal areas such as the 

Netherlands and eastern England are already facing challenges from rising sea levels 

combined with land subsidence. In the northern parts of the North Sea, near Norway and 

Scotland, relative sea level rise is slower due to ongoing land uplift from post-glacial 

rebound (OSPAR, 2009). However, even these regions are not immune to the impacts of 

global sea-level rise over longer timescales. 

Seasonal and interannual variations in sea level, driven by wind patterns, 

atmospheric pressure, and storm surges, may amplify the impacts of long-term sea-level 

rise. For example, storm surges combined with higher baseline sea levels are likely to 

increase the frequency and severity of extreme flooding events, particularly during winter 

months (OSPAR, 2009). 
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Other ecological threats that the North Sea experiences are pollution with the 

plastics from fishing nets and other hazardous substances and form river discharge, 

Significant Reduction of Nutrients, oil spills and pollution from the vessels: touristic, 

cargo, fishery and military (OSPAR, 2009). 

The given overview of the list of unresolved problems that are happening in the 

North Sea region and overfishing, and ecosystem change are among the most important 

ones.  

1.4.3 Economical Importance 

The North Sea represents one of Europe's most vital marine ecosystems, 

characterized by exceptional ecological and economic significance in the Northeast 

Atlantic region (Engelhard et al, 2011). This semi-enclosed sea harbors over 200 fish 

species (ICES, 2021) and generates approximately €3 billion annually through its 

fisheries sector, establishing itself as a cornerstone of European maritime commerce 

(ICES).  

While overall fishing effort of commercial species decreased from 4 million 

tonnes in the 1970s to about 2 million tonnes in 2020s, many high-value species maintain 

stable population levels. The landing has seen a slight recovery after 2011, with species 

such as cod (Gadus morhua), saithe (Pollachius virens), mackerel (Scomber scombrus), 

blue whiting (Micromesistius poutassou), and sole (Solea solea) representing sustainable 

commercial fish populations in the North Sea (ICES, 2022). However, demersal non-

target fish species face dramatic population decline, raising concerns as their conservation 

is not a top priority for the fishery sector. For instance, the European Union has not 

implemented specific fishing regulations for Atlantic wolffish (Anarhichas lupus) 

populations in North Sea waters (Bluemel et al. 2021). 



doi:10.6342/NTU202500202  19 

The North Sea has emerged as a climate change hotspot, experiencing temperature 

increases at rates exceeding global averages (Hilborn et al., 2023). The most significant 

physical disruptions to the seabed are linked to mobile bottom-contacting fishing gear, 

particularly in the eastern English Channel, nearshore zones of the southeastern North 

Sea, and the central Skagerrak. Additionally, bycatch of protected species, such as 

common dolphins in the western English Channel, poses risks to long-term population 

viability (ICES, 2022). 

The region's economic landscape is evolving, with the traditional hydrocarbon 

industry operating alongside rapidly expanding renewable energy installations, 

particularly offshore wind farms (Saraji & Akindipe, 2024). Maritime transport 

infrastructure maintains crucial significance, facilitating approximately €25 billion in 

annual economic activity through major port operations (European Commission, 2022). 

Industry projections from WindEurope anticipate reaching 323 gigawatts of total wind 

capacity by 2030, with 70 gigawatts from offshore installations. 

Ocean energy presents additional growth potential, with projections of 337 

gigawatts of global wave and tidal energy capacity by 2050. European installations could 

contribute 100 gigawatts, potentially meeting 10% of European Union energy demands 

(Interreg). These developments emphasize the necessity for comprehensive monitoring 

and forecasting of the North Sea, balancing the region's bio productivity with resource 

demands through effective policy implementation and technological advancement. 

1.4.4 Fishery Regulations in the North Sea  

As mentioned previously, the North Sea, a crucial marine ecosystem bordered by 

six European nations, represents one of the world's most intensively fished waters. The 

management framework has evolved significantly since 2020, particularly following 
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Brexit, operating through a complex multi-jurisdictional system governed by the EU 

Common Fisheries Policy (CFP) and bilateral agreements with the United Kingdom. 

Current quota distributions reflect both historical rights and recent political 

developments. In the pelagic sector, Norway holds 35% of total allowable catch for 

species like herring and mackerel, while EU member states collectively manage 45%, 

with Denmark (20%) and the Netherlands (15%) holding the largest shares. The UK 

maintains 20% of pelagic quotas. Demersal quotas follow a different pattern, with the UK 

holding 30%, Norway 25%, and EU member states collectively managing 45% (ICES, 

2023). 

The regulatory framework centers on Total Allowable Catches (TACs) and 

technical measures, including gear specifications and seasonal closures. Management is 

informed by scientific advice from ICES and aims to maintain Maximum Sustainable 

Yield (MSY) levels. Recent assessments by OSPAR (2023) indicate that despite 

improvements in individual stocks, marine fish populations across coastal, pelagic, and 

demersal communities have not achieved satisfactory environmental status. 

Climate change has emerged as a critical factor influencing stock dynamics. The 

fishing industry has responded with substantial adaptations, with the pelagic sector 

investing over €500 million in fuel-efficient vessels and adaptive strategies. 

Conservation efforts focus particularly on vulnerable species. OSPAR has 

identified 22 fish species facing significant threats, with only four species - houting, long-

snouted seahorses, allis shad, and salmon - benefiting from ecologically coherent 

protected area coverage. Studies by Bastardie et al. (2022) demonstrate varied resilience 

patterns across species, with cod populations emerging as a critical limiting factor due to 

depleted stock levels. The cod's recruitment difficulties have broader ecosystem effects, 
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with its Landing Obligation requirements leading to approximately 10% reduction in 

catches of other species, demonstrating the interconnected nature of species management. 

The management framework includes specific protective measures: 

- Seasonal spawning closures (e.g., cod protection January 15 - March 31) 

- Stock recovery plans with real-time closure systems 

- Marine Protected Areas like the Dogger Bank and Fladen Ground 

- National regulations complementing international measures 

Current modeling indicates that while individual environmental disruptions show 

limited impact on overall risk profiles, multiple simultaneous challenges create significant 

risks to stock stability. However, these risks can be maintained below 20% through 

adaptive management and conservative fishing mortality targets. 

The success of this regulatory framework depends heavily on international 

cooperation and science-based management approaches. Recent initiatives emphasize 

ecosystem-based management, recognizing that effective marine conservation requires 

understanding complex ecosystem interactions and coordinated action across 

jurisdictions. This integrated approach becomes increasingly crucial as climate change 

continues to influence species distribution and ecosystem dynamics in the North Sea. 

 

2. Materials and methods 

2.1. Data source 

2.1.1. Biological data 

Initial dataset consists of 188 species observed by bottom trawl datasets North Sea 

International Bottom Trawl Survey (NS-IBTS) provided by ICES (Fig. S.1). The gear and 

sampling protocols are described in ICES (2020a) and data was obtained on the Database 
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of Trawl Surveys (DATRAS). DATRAS, maintained by the International Council for the 

Exploration of the Sea (ICES), is a vital repository of data collected through various 

national trawl surveys conducted by marine research institutions. Established in 2011, 

DATRAS plays a key role in supporting ICES scientific efforts, including fish stock 

assessments and ecological studies, while also being accessible to the broader public 

(ICES, 2011). Such data on hauls are often used in fisheries management to ensure that 

ecosystems are not overexploited. It aggregates trawl survey data from regions like the 

North Sea, the Baltic Sea, and the Northeast Atlantic, providing essential insights into the 

distribution and abundance of marine species. The main gears in the region for benthic 

and demersal fish catch are otter trawls and beam trawls (ICES, 2022). Bottom trawling 

surveys were held during the day, following individual standard operating procedures by 

using fixed mesh size nets with a 30 min trawling duration at each station (Lai, et al, 

2024). The depth range did not exceed 200 m, and since the trawling does collect fish at 

depths ranging from the surface to the seabed, which means that bottom trawls may 

occasionally capture pelagic species due to behavioral or habitat overlaps. 

Datasets were rasterized as one record per grid cell per time. Fish species were 

marine, by their habitat preferences they were divided into demersal, which were the 

dominant group, with fewer bathydemersal, pelagic, benthopelagic and benthic species 

based on “Fishbase” life-hystory tools repository (Froese, R. and D. Pauly, 2024). The 

grid consisted of 221 cells, from 49° N - 62 °N, 4°W — 13° E on 1° x 1° (60arcmin). 

Timescale included records for the 1983 - 2024 period of the first quarter of the year. The 

data consisted of presence (0) and absence (1) matrix, referring to the species occurrence 

data. Each observed cell on the map depicts the hauls’ location (Fig. 3).  

Filtering was done based on several assumptions. Firstly, only those species from 

the entire dataset were selected that had long-time observations, that was more or equal 
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to 30 years of consistent observations in the given period. It means that at least 1 grid-cell 

was observed for each year (Fig. S.1). This reduced the number of unique species from 

188 to 56. Secondly, a linear regression model for a temporal trend has been applied to 

see how the occurrence changed over time for each species. I extracted only those species 

that did show change: either increase in the number of occurrence grids or decrease 

throughout 1983-2024. It was done based on the statistical coefficients, obtained from the 

regression model with the following thresholds: slope (main coefficient) > 0.5 in absolute 

value, r2 > 0.5, the significance (*) replicate the p-values as: p-value < 0.001 ~ *** (Table 

2).  

Such a time-dependent threshold was taken as, firstly, it represents a timeframe 

long enough to capture natural climate variability while filtering out shorter-term weather 

fluctuations. The World Meteorological Organization (WMO) established this as a 

standard baseline period because it effectively balances between being long enough to 

include year-to-year natural variations and climatic cycles, but short enough to show 

longer-term climate trends. It typically spans multiple generations of most species, 

allowing for observation of population-level responses to climate variations and captures 

important climatic oscillations and cycles such as North Atlantic Oscillation (NAO), that 

has a big impact on the North Atlantic and the North Sea particularly (Stenberg, et al. 

2015).  Thus, NAO exhibits variability across multiple timescales: can fluctuate intra-

seasonally, showing changes within weeks or months. However, the most prominent and 

well-documented variations may occur inter annually: year-to-year variations that are 

significant for regional climate pattern, decadal (7-10 years) and multi-decadal: exhibits 

longer-term trends spanning 20-30 years (Deser et al., 2017). Also, The Central Limit 

Theorem states that for a sufficiently large sample size, the sampling distribution of the 

sample mean approaches a normal distribution, regardless of the population's distribution. 
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While "sufficiently large" can vary, 30 samples are widely regarded as the minimum 

threshold for the CLT to hold true, making it a standard benchmark in many statistical 

analyses (Anderson, C.J. 2010).  The graph in Fig. 5 illustrates significant shifts in species 

abundance, with notable changes in community composition indicated by crossing trend 

lines. Demersal species (e.g., Eutrigla gurnardus, Amblyraja radiata) and pelagic species 

(e.g., Engraulis encrasicolus, Sardina pilchardus) show contrasting distribution patterns, 

suggesting potential climate-driven community reorganization. 

Species were also categorised with their trophic level (Fig. 6, Table 1), based on 

the available data from Fishbase tools (Froese & Pauly, 2024). It represents species’ 

position in the food web: primary producers (~1.0) - phytoplankton and algae, which 

produce their own energy via photosynthesis; primary consumers (~2.0) - zooplanktons, 

that consume primary producers; secondary consumers (~3.0) - carnivores or omnivores 

fish that feed on herbivores; tertiary consumers (~4.0 and above) - big fish and marine 

mammals - predators that feed on other carnivores (Pauly et al, 1998). Trophic levels offer 

valuable insight into a species' ecological position, diet, and the broader dynamics of 

marine ecosystems. Species with higher trophic levels occupy top positions in the food 

chain, playing a crucial role in regulating populations of species at lower levels. 

Conversely, species at lower trophic levels often serve as prey for larger predators. Based 

on the figure I can make some notable observations. Merluccius merluccius (European 

hake) has one of the highest trophic levels, around 4.2, indicating it's a top predator. 

Sebastes viviparus (Norway redfish) shows the widest range of uncertainty in its trophic 

level. Lower trophic level species like Engraulis encrasicolus (European anchovy) and 

Buglossidium luteum (solenette) are around 3.0-3.2, suggesting they feed on smaller prey. 

Most species cluster between trophic levels 3.5-4.0, indicating they are intermediate 

predators. 
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2.1.2 Environmental data  

Earth System Models (ESMs) represent one of the most sophisticated tools for 

understanding climate change, integrating complex interactions between the atmosphere, 

oceans, land, and ice systems. These models, developed by leading climate research 

institutions, come together in the Coupled Model Intercomparison Project (CMIP), a 

collaborative initiative that has evolved through six phases over three decades to improve 

climate predictions and understanding. 

For this research, two crucial time periods were obtained: historical data from 

1983-2014, which allows us to validate model accuracy by comparing predictions with 

actual observations, and future projections spanning 2015-2100, which help us anticipate 

potential climate changes. The data, accessed through the German Climate Computing 

Centre's Inter-Sectoral Impact Model Intercomparison Project (ISIMIP), provides a 

detailed global view with a spatial resolution of 1°x1° (approximately 111 km at the 

equator), allowing for comprehensive analysis of regional climate patterns (NOAA, 

National Ocean Service, 2024). 

Here is specifically utilized climate projections from the Institute Pierre Simon 

Laplace (IPSL) Climate Model version 6A-Low Resolution (IPSL-CM6A-LR), a state-

of-the-art model developed as part of CMIP6. Since future human activities and resulting 

greenhouse gas emissions cannot be predicted with certainty, scientists have developed 

various socio-economic scenarios to explore possible futures (Davies et al., 2023). 

These scenarios, known as Shared Socioeconomic Pathways (SSPs), represent 

different possible trajectories for global development: 

● SSP1-2.6 ("Sustainability"): This optimistic scenario envisions a world that 

embraces sustainable practices and aggressive climate protection measures. It 

assumes we'll limit radiative forcing (the change in Earth's energy balance) to 2.6 
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W/m² by 2100, successfully keeping global temperature rise below 2°C. This 

pathway represents a fundamental shift away from fossil fuels toward renewable 

energy sources and sustainable development practices. 

● SSP3-7.0 ("Regional Rivalry"): This middle-range scenario portrays a more 

fragmented world where international cooperation declines and regions focus on 

achieving energy and food security within their borders. With radiative forcing 

reaching 7.0 W/m² by 2100, this pathway was specifically designed to fill a crucial 

gap in our understanding of moderate-to-high emission scenarios (O'Neill, et al., 

2016). 

● SSP5-8.5 ("Fossil-fueled Development"): This represents the most challenging 

scenario for climate change, where global development continues to rely heavily 

on fossil fuels, leading to radiative forcing of 8.5 W/m² by 2100. This pathway 

helps us understand potential worst-case outcomes if minimal climate mitigation 

efforts are implemented. 

ISIMIP3b simulation round was selected the for several key advantages: it 

incorporates these detailed SSP scenarios, uses sophisticated bias-correction techniques 

to improve the accuracy of climate model data, and provides detailed sector-specific 

simulations that are particularly valuable for understanding impacts on marine 

ecosystems and hydrology. The specific model configuration that was used (ensemble 

member r1i1p1f1) accounts for complex interactions between Earth's major systems, 

including atmospheric circulation patterns, ocean dynamics, land surface processes, and 

sea ice behavior (Boucher, O. et al, 2020). 

Here I applied the r1i1p1f1 ensemble member, employed by ISMIP3 as ocean data 

from the Earth System Model IPSL-CM6A-LR, which includes: 

● r1: First realization, 
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● i1: Initialization method, 

● p1: Physics configuration, 

● f1: Forcing configuration. 

This model integrates interactions between the atmosphere, ocean, land surface, 

and sea ice (Boucher et al., 2020). Advantages of the data include global consistency, 

high resolution, and coverage of both historical periods (e.g., pre-2015) for validation and 

future climate scenarios extending to 2100 or beyond (Büchner, 2024). The r1i1p1f1 

ensemble member includes historical forcing (1983–2014) followed by projections 

aligned with SSPs. 

It's important to note that while these models represent understanding of climate 

systems, they still face uncertainties, particularly regarding human behavior and industrial 

development. These uncertainties affect ability to precisely predict future emissions and 

land use changes (Davies et al., 2023), which is why examining multiple scenarios 

provides a more complete picture of possible future outcomes. 

The six environmental variables included Sea Surface Temperature (SST, ◦C), Sea 

Bottom Temperature (SBT, ◦C) (Fig. 7A, B), sea surface pH, sea bottom pH (Fig. 8A, B), 

sea surface concentration of dissolved oxygen and sea bottom concentration of dissolved 

oxygen (mol m−3) (Fig. 8A, B). Surface variables refer to the 1 (m), and the bottom - to 

one that follows exactly the sea bathymetry and utilizes the maximum depth of the place. 

For all the extracted data, a monthly time step was selected, filtered as the mean of the 

first quarter: January-February-March (Q1), and the selected region of the North Sea (49° 

N - 62 °N, 4°W — 13° E). Later the mean value was calculated for the Q1 and used in 

the following steps for visualization and statistical modelling. Further documentation can 

be found at ISIMIP.  

https://www.isimip.org/protocol/3/
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Considering that most of the species in the dataset are demersal and pelagic, I also 

selected bathymetry as the predictor variable from ETOPO Global Relief Model by NCEI 

NOAA. However, later experiments have shown it's not useful.  

For this thesis, the decade of 2015-2024 that had real-world trawling data, still 

had to be combined with the environmental parameters, even though ISIMIP provided 

only simulations under three SSPs for these years. In this case, I claim that the SSP3-7.0 

was the one that represented the real-world situation better than the SSP1-2.6 and SSP5-

8.5. (Sarofim et al., 2024; Shiogama & Fujimori et al., 2023).  At the same time, it is 

important to mention that significant differences between the scenarios are unforeseen for 

the current year as they start to occur only from the middle of the century 2050 from the 

simulations, and the gaps become more severe with the time, that is why for the second 

decade of the 21st century the range between provided scenarios was minor.  

The ISIMIP3b provides crucial environmental data that can be integrated into 

fisheries prediction frameworks. These variables offer high-resolution temporal and 

spatial information that can significantly enhance common understanding of fish 

distribution patterns and improve fishing location predictions. 

2.2 Statistical methods 

2.2.1 Species Distribution Models  

Species distribution models (SDMs) represent a crucial methodological approach 

for exploring the effects of future global change on biodiversity (Jones et al. 2012). This 

modeling approach synthesizes ecological theory with statistical methods to map and 

forecast species distributions across landscapes and timeframes. The theoretical 

foundation builds on Hutchinson's (1957) concept of ecological niches, where the 

fundamental niche represents the complete range of environmental conditions supporting 
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species survival, while the realized niche reflects actual species distribution constrained 

by biological interactions and competitive pressures (Austin et al., 1990; Guisan & 

Zimmermann, 2000). 

The modeling landscape encompasses two primary approaches: data-driven 

correlative models analyzing statistical patterns (Jarnevich et al. 2015), and mechanistic 

models constructed on theoretical biological principles and calibrated with empirical data 

(Essington et al. 2022). To enhance predictive capabilities, ensemble modeling strategies 

are often employed, synthesizing outputs from multiple individual models through 

methods ranging from straightforward averaging to sophisticated weighted combinations 

(Araújo & New 2007). 

The selection of appropriate modeling techniques depends significantly on data 

characteristics and research objectives. While presence-absence data traditionally 

provides robust predictions, presence-only data can effectively model potential habitat 

distribution, particularly when absence data may be unreliable due to sampling limitations 

or species mobility (Pearson & Dawson, 2003). Analysis by Valavi et al. (2021) reveals 

that model fitting methods significantly influence performance, with individually tuned 

model ensembles showing superior results compared to default framework settings. 

Model complexity presents an important consideration in SDM development. 

Studies suggest that more complex models often demonstrate superior performance at 

finer spatial resolutions (Elith et al., 2006; Wisz et al., 2008). However, increased 

complexity can reduce generalizability and transparency - crucial factors for practical 

application and peer review (Drake et al., 2006). The challenge lies in striking an optimal 

balance between model sophistication and broad applicability. 

SDMs have proven instrumental in predicting species responses to climate 

change, guiding conservation efforts, and informing policy decisions. However, future 
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projection uncertainties encompass climate model accuracy at various scales and the 

unpredictability of extreme events. Ecological uncertainties present additional challenges, 

including variations in population responses, evolving species-environment relationships, 

and potential evolutionary adaptation (Davies et al., 2023). Success in SDM 

implementation relies on acknowledging these uncertainties while maintaining scientific 

rigor throughout the modeling process. 

In this thesis I incorporated six different statistical methods (SDMs), including 

one "tree-based" method - Random Forest (RF), 3 regression methods - Generalised 

Linear Model (GLM), Generalised Boosting Model (GBM), Multivariate Adaptive 

Regression Splines (MARS) and two classification methods - Classification Tree 

Analysis (CTA), Flexible Discriminant Analysis (FDA). Initially I tested one more 

regression method - GAM, however it showed the lowest performance metrics that is why 

it was decided not to include this method in the models. Each model was run 

independently 15 times, producing 90 models for each temporal scenario. 

The Generalized Linear Model (GLM) serves as a foundational approach, 

extending traditional linear regression by accommodating non-normal response 

distributions and non-linear relationships through link functions. While GLMs excel in 

providing clear statistical inference and handling both continuous and categorical 

predictors, they may struggle to capture complex, non-linear species-environment 

relationships. Their strength lies in their interpretability and computational efficiency, 

though they work best when relationships follow assumed distribution patterns. 

The Generalized Boosting Model (GBM), also known as Boosted Regression 

Trees, represents a more sophisticated approach, building upon decision trees through a 

sequential boosting algorithm. Each new tree focuses on the residuals of previous trees, 

enabling the model to capture complex, non-linear relationships and interactions between 
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predictors automatically. While GBMs often produce more accurate predictions than 

simpler models, they require careful parameter tuning and larger datasets for stable 

performance. Their complexity can make interpretation more challenging than GLMs. 

Multivariate Adaptive Regression Splines (MARS) strikes a balance between 

GLMs and GBMs by combining regression splines with stepwise model selection. MARS 

automatically determines optimal locations for breaks in predictor variables and fits 

piece-wise linear functions between these breaks. This approach proves particularly 

effective for ecological threshold responses while maintaining better interpretability than 

GBMs. However, MARS may struggle with very complex, smooth relationships in 

species-environment interactions. 

Classification Tree Analysis (CTA) creates decision trees through recursive 

binary splitting of data based on predictor variables. While CTAs offer intuitive 

interpretation and handle non-linear relationships well, they may oversimplify complex 

ecological relationships and are prone to overfitting if not properly pruned. Their step-

function predictions can be useful for identifying ecological thresholds but may miss 

finer-scale patterns in species distributions. 

Flexible Discriminant Analysis (FDA) extends traditional linear discriminant 

analysis by incorporating non-linear transformations of predictors. This approach works 

particularly well with presence-absence data and multiple predictors, offering a good 

balance between model complexity and interpretability. FDA proves more robust to 

violations of normality than traditional discriminant analysis but may struggle with very 

sharp ecological boundaries. 

The key distinction between these models lies in how they handle complexity and 

their assumptions about species-environment relationships and the final choice of the 

model relies on the researcher – decision maker. GLMs provide a solid foundation but 
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may miss complex patterns, while GBMs excel at capturing intricate relationships but 

require careful tuning. MARS offers a middle ground, with good interpretability and 

flexibility. CTAs provide clear decision rules but may oversimplify relationships, and 

FDA extends traditional discriminant analysis to handle non-linear patterns while 

maintaining interpretability. 

2.2.2 Data processing  

The scope of investigation needs careful consideration, particularly in determining 

appropriate spatial and temporal boundaries that align with the species' biological 

characteristics. The strength of the model heavily depends on selecting appropriate 

environmental variables, which should be guided by historical climate impact analysis 

and thorough understanding of species' physiological responses to both climatic and non-

climatic factors. Overall, Davies et al. 2023 suggest selecting models in accordance with 

ecological principles, and not only with SDMs’ predictive power for contemporary 

distributions. 

I consider that the sampled areas—whether groups of cells or individual grid 

cells—may not fully represent the real-world situation. This is because it cannot be 

guaranteed that all fish being ‘present’ at the trawling stations were caught, and that 

absence of certain species might be due to random factors, but not their actual absence.  

SDMs often rely on pseudo-absence methodology when true absence data is 

unavailable due to the challenges of confirming species non-occurrence through rigorous 

sampling, particularly for mobile or elusive species. The approach involves generating 

artificial absence points to complement presence data, enhancing the model's predictive 

capabilities. Different strategies exist for creating these pseudo-absences, ranging from 

simple random selection outside known presence areas to more sophisticated 

environmental and geographical exclusion methods. Random selection, which works 
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particularly well with Generalized Linear Models (GLMs), involves randomly 

distributing points across areas where the species hasn't been recorded. More complex 

approaches combine environmental and geographical criteria, especially useful for 

machine learning techniques like Random Forests and Boosted Regression Trees. The 

choice of pseudo-absence generation method should also consider potential sampling 

biases in presence data - random selection works best with unbiased presence data, while 

stratified approaches are more suitable when dealing with geographical or climatic 

sampling biases. For optimal results, the pseudo-absence generation approach should be 

tailored to both the specific modeling technique being used and the characteristics of the 

available presence data, with regression models generally favoring random selection and 

machine learning models benefiting from combined environmental and geographical 

exclusion strategies (Barbet-Massin et al., 2012). 

That is why it was decided to apply the pseudo-absence method.  “Pseudo-

absences (PA) (sometimes also referred as background data) are NOT to be considered 

as absences and rather represent the available environment in the studied area. They will 

be used to compare observed used environments (represented by the presences) against 

what is available.” (Cran-R project). It has also been proposed that presence–absence data 

enhances an SDM's performance, as indicated by test statistics, leading to more 

dependable predictions (Brotons et al. 2004). Here was used the SRE method: a Surface 

Range Envelope model, that randomly selects PA outside this envelope, i.e. in conditions 

(combination of explanatory variables) that differ in a defined proportion from those of 

presence points. 

This strategy assumes that the realized niche of the species has been fully sampled, 

either geographically or environmentally. Also, utilizes grid cells where species 

occurrence data is unavailable (marked as N/A) as potential locations for pseudo-absence 

https://cran.r-project.org/web/packages/biomod2/vignettes/vignette_pseudoAbsences.html#:~:text=the%20SRE%20method%20%3A%20a%20Surface,from%20house%20of%20%20presence%20%20points
https://cran.r-project.org/web/packages/biomod2/vignettes/vignette_pseudoAbsences.html#:~:text=the%20SRE%20method%20%3A%20a%20Surface,from%20house%20of%20%20presence%20%20points
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generation. The protocol employs a systematic selection process whereby 3 times the 

number of presences is employed as PA through the whole 42-year period of 

observations. All “0” that were assumed as the true absence before were replaced by N/A 

that suppose possibilities of being mistaken in assuming the absence of the fish in species 

location. Eventually, the grid consists of “1” - presences, “0” - absences and N/As. The 

resampling was conducted once for each species with accordance to the certain 

environmental parameters’ combination, since the SRE method does not have random 

sampling and is aware of the environmental conditions. This approach facilitates the 

development of robust species distribution models by providing a structured framework 

for absence data generation in areas where actual species occurrence data is unavailable. 

The modeling approach was based on the initial hypothesis. Fish species were 

divided into two groups based on the habitat area: demersal (Amblyraja radiata, 

Anarhichas lupus, Arnoglossus laterna, Buglossidium luteum, Callionymus maculatus, 

Chelidonichthys cuculus, Chelidonichthys lucerna, Cyclopterus lumpus, Eutrigla 

gurnardus,  Merluccius merluccius, Mullus surmuletus, Mustelus asterias, 

Myoxocephalus scorpius, Raja montagui, Scyliorhinus canicula, Sebastes viviparus - 16 

in total) and pelagic (Argentina sphyraena, Engraulis encrasicolus,  Sardina pilchardus, 

Scomber scombrus, Trachurus trachurus - 5 in total). Environmental variables were 

grouped in accordance, respectively, having the assumption that pelagic species are more 

prone to the conditions of the surface water conditions, while demersal and benthic 

species will be firstly affected by the bottom layer water state. In accordance with this, 5 

pelagic species were put into environmental variable combinations with surface pH + 

SST, surface DO + SST, surface DO + surface pH, surface pH + surface DO + SST. 

Similarly, 16 demersal species were associated with the grouping for models bottom pH 
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+ SBT, bottom DO + SBT, bottom DO + bottom pH, bottom pH + bottom DO + SBT, 

and two single-models with SST and SBT only (Table 3).  

 Implying correlation matrix between environmental variables helped to exclude 

high collinearity between surface and bottom variables that did not allow to properly 

distinguish species’ range response to the independent influences (Bosch et al. 2018), and 

to provide more correct explanatory parameters that determine fish life cycle on a certain 

depth. As a result, strong positive correlations are observed between surface and bottom 

oxygen concentrations (o2_surf and o2_bot) as well as between surface and bottom pH 

levels (ph_surf and ph_bot) equal to 0.88, for both pairs respectively (Fig. 10A, B). This 

was so, as the model in ISIMIP used certain equations to get the bottom water 

characteristics, as well as that the deepwater conditions are a proxy of the surface 

conditions. Keeping these highly correlated variables could lead to several statistical 

issues after conducting empirical experiments. Including both surface and bottom 

variables artificially inflated the model's confidence in parameter importance and the 

model struggled to distinguish the individual effects of surface vs bottom pH and 

Dissolved Oxygen, leading to unstable coefficient estimates and inflated standard errors 

A notable negative correlation also exists between surface temperature (sst) and surface 

oxygen concentration (o2_surf) -0.91 and between bottom oxygen (o2_bot) -0.86 explain 

a clear inverse relationship: as water temperature increases, the solubility of oxygen 

decreases. At the same time I also consider that such strong negative correlation and 

means including both could mask their true individual effects, so it was important to also 

apply a single- temperature model. 

Eventually, it was decided to reject the hypothesis of using the depth parameter to 

see its impact on the species, since it brought a lot of white noise, due to the fact that the 

North Sea's relatively low depth (median is less than 90 m) makes it important to 
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distinguish the areas of different bathymetrhy, thus most of fish were caught in the area 

below 100m , so this range from the near-to-surface layers had the higher variable 

importance and remained the same for different model and different species. Moreover, 

depth displaced its importance over environmental parameters in ‘single-model’, not 

allowing for a comprehensive estimation of the real projected role of ambient 

environmental conditions (pH/DO/Temperature).  Mean depth shows moderate 

correlations with oxygen and pH variables. 

2.2.3 Ensemble modelling 

To compute Species Distribution Models (SDMs), the R package BIOMOD2 

(version 4.2-5.2, Thuiller et al., 2024) was employed within an ensemble modelling (EM) 

framework. This method minimizes prediction uncertainty caused by variations among 

individual models (Elith & Graham, 2009) by integrating outputs from 6 different 

algorithms to identify consistent patterns (Breiner et al., 2015; Marmion et al., 2009). 

I implemented an ensemble modelling framework, with the following objectives: 

to minimize sampling biases for generating pseudo-absences, to enhance model 

evaluation processes, and to account for methodological uncertainties by integrating 

various modelling techniques. The resulting predictions were rasterized, with cell values 

ranging from 0 to 1, where higher values correspond to greater habitat suitability and 

higher probabilities of species presence. To reduce uncertainties associated with the 

selection of a single algorithm, ensemble modelling was applied. To ensure the reliability 

and robustness of SDM predictions, validation metrics such as the Receiver Operating 

Characteristic (ROC) curve, Accuracy, and the True Skill Statistic (TSS) are commonly 

employed.  

The Receiver Operating Characteristic (ROC) curve is a widely used tool for 

evaluating SDM performance. It plots the true positive rate (sensitivity) against the false 
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positive rate (1-specificity) across a range of threshold values. The area under the ROC 

curve (AUC) provides a single metric that summarizes the model's discriminatory ability 

(Hanley & McNeil, 1982). An AUC value of 0.5 indicates random performance, while 

values closer to 1 reflect a highly accurate model (Fielding & Bell, 1997). For fish 

distribution studies, AUC is particularly useful because it is threshold-independent, 

making it ideal for assessing models predicting presence-absence patterns over varying 

environmental gradients. 

Accuracy is another straightforward and interpretable metric that measures the 

proportion of correctly classified observations among all predictions. It combines true 

positives and true negatives into a single value, providing a general sense of the model's 

predictive performance. In fish distribution models, where absences often outnumber 

presences, researchers may need to complement accuracy with other metrics to avoid 

biased assessments (Allouche et al., 2006). 

The True Skill Statistic (TSS) is a threshold-dependent metric that overcomes 

some of the limitations of accuracy. TSS accounts for both sensitivity (true positive rate) 

and specificity (true negative rate) and is calculated as: A TSS value of 1 indicates perfect 

performance, while a value of 0 reflects performance no better than random. Unlike 

accuracy, TSS is not affected by prevalence, making it especially valuable for ecological 

applications where species occurrences are rare. For modeling fish distributions, TSS 

ensures that the model's ability to correctly predict both presences and absences is equally 

weighted, providing a balanced evaluation (Pontius & Millones, 2011). 

The binary transformation was performed by applying the threshold that 

optimized the True Skill Statistic (TSS; Allouche, Tsoar & Kadmon, 2006). TSS is 

calculated as the sum of sensitivity and specificity minus one, where sensitivity represents 
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the proportion of correctly predicted presences, and specificity denotes the proportion of 

correctly predicted absences (Barbet-Massin et al, 2012).  

This multi-metric approach allowed us to identify potential weaknesses in model 

predictions and improve their robustness. Thus, not all the models did show good model 

allegiance and high metrics. That is why I had to include only “best” species based on the 

statistical outputs and understanding of ecological processes. I excluded SDMs with 

performance metrics lower than 0.75 and used TSS as the main performance metric.  

Cross-validation helps in evaluating model projection accuracy and confirms 

projection uncertainty intervals (Yates et al., 2022). That is why to prevent possible biases 

a k-fold cross-validation run was performed for each algorithm for 5 different groups of 

environmental variables and all selected 21 species. k-Fold Cross-Validation is a method 

used to evaluate a machine learning model's performance. Model validation typically 

employs a technique where the dataset is divided into separate portions. The model is 

trained using one segment of the data and then tested against the reserved portion to assess 

its predictive accuracy. Researchers can choose between different partitioning methods, 

such as removing individual data points one at a time ('leave-one-out' approach) or 

dividing the data into larger segments ('k-fold' method). Each approach carries distinct 

statistical consequences that must be carefully considered (Yates et al. 2022). 

The model is trained and tested k times—once on each fold as a test set while the 

remaining k−1 folds are used for training. This ensures each data point is used for both 

training and testing. If k=5 and the process is repeated 3 times, the validation procedure 

is extended as follows: Single k-Fold Execution represents the dataset randomly divided 

into 5 folds (or subsets), In each iteration, one-fold is used as the test set, and the other 4 

folds are used as the training sets. This results in 5 iterations per execution (one for each 

fold). By repeating the 5-fold cross-validation 3 times, the dataset is reshuffled differently 
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before each 5-fold split. This ensures randomness and helps provide a more robust 

estimate of model performance by reducing variability caused by a particular data split. 

In total runs it results so that Each 5-fold cross-validation involves 5 runs, summing 15 

runs for each environmental variable and 90 models in total for each species. Repeating 

k-fold cross-validation ensures the results are not overly dependent on how the dataset 

was initially split. It provides a better estimate of the model's generalization ability by 

averaging performance over multiple random splits. Other key advantages include 

reduced bias, improved stability through the Repeated runs and enhanced generalization 

by providing a comprehensive assessment of the model's ability to perform on unseen 

data. From each fold (15 iterations with 6 different SDMs) the ensemble of models was 

constructed. Within each ensemble, the mean of all model predictions was utilized. This 

process was repeated 5 times for different environmental combinations and applied to all 

21 species.  

Following the complete training process, the optimal model for each fish species 

was selected based on TSS metric scores. Individual models were compared both against 

each other and against the ensemble. The final statistics of the "winning" parameter 

combinations and models were subsequently analyzed. This comprehensive modeling 

framework enabled robust evaluation of potential habitat redistribution patterns, 

enhancing common ability to assess ecological responses to environmental change. 

2.2.4 Future predictions  

Upon selecting the most suitable combination of environmental variables - unique 

for each species, future projections were applied. A grid cell of 1x1 degree is selected, 

then environmental variables for this grid for this year are selected and prediction of 

probability is applied. It included as the inputs the projected environmental conditions, 
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and the output showed the probability of occurrence ranging from 0 - 1, showcasing the 

potentially suitable (or unsuitable) territory for species occurrence.  

Another method for explaining the species movements was distributional 

centroids. The centroid calculation in spatial ecology represents a fundamental approach 

to summarizing complex spatial distributions into a single representative point. In species 

distribution modeling, centroids serve as valuable metrics for tracking spatial shifts in 

species ranges across different environmental scenarios. When applied to species 

distribution predictions, the centroid represents the geographic center of a species' 

predicted suitable habitat, enabling researchers to quantify range shifts by comparing 

centroid positions between current and future environmental conditions. This approach is 

particularly useful for analyzing directional trends in range shifts and measuring the 

magnitude of displacement in species distributions, offering insights into potential 

environmental change impacts on species' geographic patterns. Centroid analysis can be 

applied to various types of spatial data, making it a versatile tool for studying changes in 

species distributions across different temporal and environmental contexts. For this 

analysis, I implemented centroid calculations using the terra package in R. To minimize 

the impact of potential outliers in the predictions and ensure more robust results, averaged 

centroids from the first five years (2024-2029) were used as the starting point and the last 

five years (2096-2100) as the endpoint of this temporal analysis. The distributional 

centroids shifts were recorded from year to year, and the final vector was aggregated as 

the mean tendency of movement magnitude and direction from 2024 to 2100.  
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3. Results 

3.1. SDMs performance 
The species were categorized into two ecological groups - pelagic and demersal. 

For each group, environmental variables were assigned based on their primary habitat: 

surface variables for pelagic species and bottom variables for demersal species. SDMs 

were then developed for each individual species. The analysis resulted in five distinct 

modeling experiments, reflecting the model comparisons for both pelagic and demersal 

species, that will be described in following chapters. 

Carefully conducted modeling for each species showed general good model 

alliance between different SDMs among each of the methods and for different 

experiments. Single-model (only SBT/SST) response curves and their ensemble outputs 

highlighted the most important environmental parameters and tolerance intervals of 

observed parameters during the season (Q1).  

Environmental suitability within a species' preferred parameter ranged 

consistently high, with a probability of (environmental) suitability equal to 1. When 

environmental conditions fall outside the observed minimum and maximum thresholds 

(which represent the species' critical tolerance limits), the suitability value drops to 0. 

Between these extremes, the environmental suitability demonstrates a linear decline. The 

final habitat suitability is determined by calculating the geometric mean across all 

probability distributions for each environmental predictor, where each predictor is given 

equal weight in the calculation. This approach assumes that all environmental parameters 

contribute equally to determining the overall habitat suitability for a given species (Jones 

et al., 2012).  

Comparing all the metrics for each of the SDMs for different groups of 

environmental variables for all the species was conducted. For instance, demersal species 
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(Fig. 12A) exhibited slightly different patterns, with validation scores generally ranging 

from 0.70 to 0.95. The model performance was notably stable when using SBT as the best 

predictor, like pelagic species. However, the combination of pH, bottom oxygen, and SST 

in other experiments (SST+pH_bot+O2_bot) showed more varied results across 

algorithms, suggesting that bottom-dwelling species' distributions might be influenced by 

a more complex interplay of environmental factors. GLM and RF showed lowest 

performance and highest range among lower performance, especially when combining 

multiple environmental variables, with scores occasionally dropping below 0.80. 

In contrast, for pelagic species the validation scores predominantly ranged 

between 0.75 and 0.95, with the highest performance observed when using sea surface 

temperature (SST) as a predictor variable (Fig. 12B). The ensemble mean (E) algorithm 

consistently demonstrated superior performance across different variable combinations, 

particularly when incorporating SST, with validation scores reaching 0.95. However, the 

combination of SST and surface Oxygen showed the second-best result 0,89±0,03, 

following the same pattern as the SST-model.  

 The species distribution modeling approach generates spatial predictions by 

combining multiple environmental envelopes through multiplicative integration across 

each grid cell of the study region. Each cell receives a suitability score ranging from 0 to 

1, indicating how well the local environmental conditions match the species' requirements 

(Jones, M. C., et al., 2012). The model employed a trapezoidal response curve for each of 

the species to characterize the relationship between species presence and observed 

environmental parameters. This trapezoidal shape effectively balanced the needs of both 

resident species, which typically showed single-peaked annual distribution patterns, and 

migratory species, which often displayed dual-peaked distributions. The environmental 

envelopes were constructed by analyzing the relationship between documented species 
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occurrences and corresponding environmental conditions, establishing both absolute 

tolerance limits and optimal ranges for each environmental variable which is based on the 

initial input data. The results are provided in the Supplementary materials.  

In Tables 4-5 I highlight the best combination (type) of environmental parameters 

from ensemble model results for each species in the two groups. 

The validation performance analysis of SDMs revealed distinct patterns between 

pelagic and demersal species, with both groups showing notably high TSS (True Skill 

Statistic) values across different model configurations. For the pelagic species group, 

consisting of five species, the SST (Sea Surface Temperature) configuration emerged as 

the optimal predictor, demonstrating consistently superior performance with TSS values 

ranging from 0.949 to 0.951 (Table 4-5). Particularly, Trachurus trachurus, Scomber 

scombrus, and Engraulis encrasicolus exhibited the highest validation scores (TSS = 

0.951), while Sardina pilchardus and Argentina sphyraena showed marginally lower but 

still robust performance (TSS = 0.949). 

The demersal species analysis, encompassing 16 species, demonstrated a similar 

pattern with SBT (Sea Bottom Temperature) configuration consistently outperformed 

other parameter combinations. The validation scores for demersal species ranged from 

TSS = 0.945 (Chelidonichthys lucerna) to TSS = 0.955 (Merluccius merluccius and 

Eutrigla gurnardus), indicating robust model performance. The Ensemble (E) modeling 

approach proved to be the most effective for nearly all species, however, the difference 

between CTA and Ensemble for this species is very low: Myxocephalus scorpius showed 

optimal performance under CTA with TSS = 0.949. 

Notably, for both pelagic and demersal species, single-parameter temperature-

based models (SST and SBT respectively) outperformed more complex multi-parameter 

configurations. This pattern suggests that temperature serves as the primary driver of 
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species distribution patterns in the study area, though it's important to note that other 

environmental parameters still contributed to model performance, albeit to a lesser degree. 

The high TSS values across all configurations (consistently above 0.85) indicated robust 

model performance regardless of parameter combination, suggesting that the models 

provide reliable predictions of species distributions under a single temperature-based 

model. 

I suggest prioritizing a multi-SDMs strategy (ensemble) and evaluating a range of 

potential predictions to reduce biases stemming from data uncertainties and model design. 

3.2. Projected distributional shift based on sea temperate 
The projections indicate distinct responses between pelagic and demersal species. 

Under the most optimistic scenario, SSP1-2.6, species distributions show relatively minor 

changes, with declines in the probability of presence primarily occurring in northern sea 

boundaries. Notably, the North-Northwest (NNW) border of the North Sea near the 

Norwegian Sea merge as particularly insecure regions. Even in this conservative - SSP1-

2.6 scenario, these areas face declining probabilities of presence starting from 2050, 

potentially leading to escalating decline total extinctions by the end of the century.  

Under the SSP3-7.0 scenario, both pelagic and demersal species demonstrate 

moderate responses. Pelagic species will show a general decline in probability of presence 

across the entire region, with local extinctions occurring predominantly in the northern 

and northwestern areas. Demersal species display more stability in their distribution 

boundaries, though probabilities of occurrence decline to 0.5 in northern areas, while 

southern regions remain relatively unaffected. The north (N) and north-north-west 

(NNW) border continued to experience reductions in habitat suitability, further 

emphasizing their vulnerability under this scenario. Moreover, for example, Scyliorhinus 
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canicula will exhibit its lowest probability of presence by 2100 in the whole North Sea 

basin (Fig. 13). 

The SSP5-8.5 scenario, the most severe, projected dramatic changes by 2100. 

Pelagic species faced extensive local extinctions, with only remnant populations 

persisting in a distinctive stair-like pattern in the south-southeastern region. Pelagic 

species displayed contrasting patterns: some species, such as Argentina sphryaena, (Fig. 

14) showed relatively better resilience, that other species, maintaining relatively good 

spatial coverage in entire sea, followed by a stair-like habitat suitability in the central and 

southern part of the North Sea with probability of occurrence 0.75-1.0 only by the end of 

the century under the pessimistic scenario. However, most other species experienced 

significant declines in probability of presence in the central and southern regions, with 

some faced total extinction across the North Sea even under SSP3-7.0. Maps with 

projected distributions under SST/SBT-model for all examined species can be found in 

supplementary S.2-S.22. 

Overall, this analysis highlights the stark differences in species responses to 

climate change. While pelagic species tended to show more uniform declines across their 

ranges, demersal species exhibited varied responses, reflecting their diverse habitat 

requirements and environmental tolerances. Finally, the northern areas of the North Sea 

and the Strait of Dover are identified as the most vulnerable, highly unsuitable areas, 

under all 3 scenarios starting from 2050. By 2100 under sever scenarios many species are 

projected to be eliminated from the North Sea area, meaning that the regions face 

persistent declines in habitat suitability, emphasizing the need for targeted conservation 

efforts to mitigate the impacts of climate change on marine biodiversity. 
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3.2.1 Distributional Centroids based on sea temperate 

The overall distributional change had a similar trend among all demersal species 

that differed from the similarities for pelagic specs with variations of different SSPs. 

Under SSP1-2.6, species responses are generally localized, suggesting that milder climate 

results in forcing minimal movement is observed for both species groups and relatively 

small changes to habitat suitability - fish species will in South and East to around 25-57 

km (32±12 km) (Fig. 15).  

Under SSP3-7.0 and SSP5-8.5, distributions became more pronounced, but quite 

disperse, as many species will be experiencing northward and eastwards shifts or reduced 

probabilities of presence in the whole area in total, reflecting the intensifying impacts of 

climate change. 

In the SSP3-7.0 scenario, species exhibited moderate directional shifts, with 

movement primarily toward the north and east 60-234 km (144±46 km). Demersal species 

demonstrated larger displacements (155±43 km) mostly south-eastward and eastwards. 

Whereas pelagic species will display more localized adjustments in the eastwards 

direction, moving to shorter distances 108±34 km.  

Under the SSP5-8.5 scenario, both groups showed significant displacements 15-

607 (233±196 km), and particularly demersal species with further propagation to the 

northeast reaching up to 607 km, reflecting large-scale shifts in habitat suitability. In 

contrast, pelagic species exhibited moderate displacements, 193±63km primarily along 

the eastward direction. 

A few species exhibited resilience even under severe scenarios, potentially due to 

broader environmental tolerances or habitat adaptability. For instance, Argentina 

sphyraena and Engraulis encrasicolus, exhibit greater resilience under all scenarios, with 

minimal directional changes. Other species, like Eutrigla gurnardus and Callionymus 
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maculates, show substantial shifts, particularly under SSP5-8.5, where probabilities of 

presence decreased dramatically. 

Overall, demersal species are projected to shift to north-west and south-east, while 

pelagic species will tend to shift eastwards in the future.  

3.3 Projected distributional shift based multi-factor models  
Selected model for demersal species containing sea bottom temperature and 

bottom pH (Table 4a-b), responded in showcasing under SSP1-2.6, Cyclopterus lumpus, 

Myoxocephalus scorpius, Scyliorhinus canicula, Sebastes viviparus, and Anarhichas 

lupus show zero or minimal habitat suitability in northern latitudes, particularly in the 

Strait of Dover. By 2050 under SSP3-7.0, Amblyraja radiata, Buglossidium luteum, 

Sardina pilchardus, and Sebastes viviparus demonstrate decreased presence probability 

(0.25-0) in the northern sea. By 2100, species show resilience with stable distribution 

borders, reduced presence probability (0.5-0.75) in northern areas, while southern regions 

remain suitable. 

Projections for 2050 showed almost no declines in the probabilities of presence 

for SSP1-2.6, however 2 other more severe climate scenarios showed a decreasing 

probability of occurrence (0.25-0.50) in the northern sea boarder.  The NNW region 

experiences widespread losses or significantly reduced probabilities of presence under 

SSP3-7.0 scenarios for all species, leaving the southern and central parts of the sea more 

as more suitable locations, while the SSP5-8.5 continues toward local extinctions for most 

species in the entire area by 2100. 

Following the proposed models with sea surface temperature with pH and sea 

surface temperature with dissolved oxygen (S.1b), pelagic species response was projected 

to be under SSP1-2.6 (2050-2100), minimal changes are projected, with Engraulis 

encrasicolus showing lowest presence probability in 2050. For SSP3-7.0 by 2050, 
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Argentina sphyraena, Sardina pilchardus, and Trachurus trachurus show decreased 

habitat suitability (0.25-0) in the northern sea. The 2100 projections indicate an overall 

decrease across the entire region, with total extinctions in north/northwest areas for most 

species. 

SSP5-8.5 projected two distinct patterns by 2050: better survival rates in central-

southern areas, and Anarhichas lupus, Sebastes viviparus, and Trachurus trachurus show 

expanding areas of total absence in the north-north-west (NNW) region. By 2100, species 

habitat responses varied between complete extinction, 0.25-0.5 habitat suitability in the 

NNW, with a stair-like pattern in the south-east (SE). 

Overall, including dissolved oxygen and pH in the SDM change the locations of 

potential species locations from northern areas to central and southern regions of the 

North Sea. Maps with projected distributions for all examined species under multi-factor 

experiments can be found in supplementary S.23-S.43. 

3.3.1 Distributional Centroids based multi-factor models 

Projection of distribution starting with SSP1-2.6, which represents the most 

optimistic climate scenario with lower emissions, there will be moderate displacement of 

both pelagic and demersal species (Fig. S.44). The movement vectors were small and 

clustered near the origin, with displacement of 8-87 km (30±15 km), from which pelagic 

species shifted for 14-27 km, while demersal species - Chelidonichthys cuculus - 

propagated to the distance up to 3 times further.  

Under SSP3-7.0, a moderate emissions scenario, a more pronounced movement 

pattern was observed. Both species groups showed a clear southeastward trend, but with 

different magnitudes. The shift ranged from 76-197 km (136±38 km), showing 

significantly larger displacements compared to SSP1-2.6. Demersal species generally 
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show longer displacements (98-197 km) than pelagic species (76-97 km), suggesting they 

may be more sensitive to these moderate climate changes. 

The most dramatic changes appeared under SSP5-8.5, the high-emissions 

scenario. Here, will be the longest distributional centroids vectors, ranging from 14-216 

km (144±58 km). Interestingly, under this scenario, a divergence in movement patterns 

is observed: while some species showed the southeastward trend, others had 

northeastward movement, creating a fan-like pattern of displacement vectors. This 

suggests that different species may adopt varying survival strategies under severe climate 

change conditions. 

What's particularly noteworthy is how the magnitude of displacement increases 

progressively across the scenarios, from minimal movement under SSP1-2.6 to 

substantial shifts under SSP5-8.5, almost 5 times as larger, clearly demonstrating the 

escalating impact of climate change on marine species distributions reorganization. 

4. Discussion  

The predominant influence of temperature on shaping the catch composition of 

pelagic fisheries indicates that these catches could be susceptible to the unforeseen 

impacts of future warming.  

By selecting the “winning” model I do not contradict the importance of other 

simultaneously occurring environmental factors besides water. My result just emphasizes 

that the single temperature-based model statistically proved to be the perfect fit for 

projecting the future distributions for a 21 species in the certain water body of the North 

Sea.  

The “winning” ensemble models, containing only SBT and SST achieved the 

highest validation values when incorporating a comprehensive set of environmental 
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variables. However, these variables were not included in the future projections, which 

relied primarily on temperature.  

This finding highlights two important points: 

1. Accurate prediction of future species distributions requires consideration of 

multiple environmental factors beyond temperature alone, with different species 

within the same community potentially responding to distinct combinations of 

variables. 

2. While statistical differences between models may appear moderate, the actual 

ecological consequences and resulting changes in species distribution patterns 

could be substantially more significant in real-world conditions. 

Moreover, it should be concerned that the differences between single and 

combined models are not that big, meaning that potentially testing other factors, unless 

dissolved oxygen and pH, could show different results.  

The study of Gordó-Vilaseca et al. (2024) investigated the future trends in marine 

fish biomass and distribution across the North Sea to the Barents Sea using joint species 

distribution models (JSDMs). Their key findings included an increase of species richness 

that is projected to increase significantly in Arctic regions, particularly in the Barents Sea, 

with species from warmer waters expanding northward. As well as localized declines in 

species richness in some southern and deeper areas and an overall decline in fish biomass 

in the Arctic due to the reduction of some Arctic-specific species. Species are shifting 

their ranges northward and eastward. The rate of these shifts increases with the severity 

of climate change scenarios, from 0.9 km/year under SSP1-2.6 to over 3.2 km/year under 

SSP5-8.5. These results are quite like what have been achieved in this thesis. 

Similar research was published by Bandara et al., 2023, however, here authors 

showed that multivariate model including temperature and dissolved oxygen had the best 
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model performance beyond a simple consideration of temperature (ΔAIC = 799, ΔTSS = 

0.015) that allowed for robust northwards projected distribution of Black Sea Bass in the 

Northern Atlantic. 

Enough data contributing to the effective training of models in the validation 

dataset ultimately allows achieving high accuracy values for the model. This enables us 

to conclude that future predictions can be considered reliable. However, due to low 

resolution in the case of my study (around 100 km2) the model cannot adequately predict 

which specific hauls would be the best for trawling, when serving the needs of fishery, as 

it provided probability of occurrence in a relatively large spatial quadrant. Species’ 

expansion into Arctic regions or other nearby marine water bodies cannot be predicted in 

this research due to the limitations of used data outside the North Sea region.  

Since the modelled propagation of the observed species is dependent on the input 

model environmental parameters under different climate forcing, the SDM “selects” the 

most suitable temperature for the species based on the training data. In my case, there was 

a grid cell at 6 °N 3 °W that had deviant water temperature from year to year in the future 

projections, being colder than most of the North Sea water and a bit warmer than Atlantic 

Water inflow from the northern border, followed with the significantly deeper bathymetry 

than in the North Sea basin in general.  Since the future temperature in that cell fitted well 

into the tolerance interval for the species, the model projected a far north-west distribution 

reaching that location.  

Regarding the pelagic species that will face a faster and stronger increase of 

surface water temperature, I may assume that observed species can potentially overcome 

such changes in the areas that will keep the lowest temperature in the study area, which 

are the Danish Straits and the northern regions near the Norwegian Sea.  
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Finally, my research agreed with previously published papers, discussing that 

temperature emerges as a primary factor influencing species distribution and survival, 

showcasing species respond to thermal changes through poleward migration while 

seeking cooler waters and vertical movement to deeper waters (Cheung et al., 2010, 

Campana et al., 2020, Gordó-Vilaseca  et al., 2024, Meyer-Gutbrod et al. 2021). However, 

changes in oxygen levels and pH will trigger significant ecosystem shifts, when the 

critical thresholds are exceeded (Clarke et al. 2022). These movements restructure local 

ecosystems and affect predator-prey relationships, where only 10% of energy transfers 

efficiently between trophic levels. This limitation means predatory species, requiring 

more energy for survival, maintain smaller populations than their prey species. So, their 

survival depends heavily on the stable availability of lower-trophic level prey.  

This synthesis of evidence highlights the complex interplay between 

environmental changes and marine ecosystem responses, emphasizing the need for 

comprehensive monitoring and management strategies to maintain ecosystem stability 

and fisheries sustainability. 

4.1 Comparison of the different model experiments  
In examining marine species' responses to climate change, the interplay between 

different environmental factors reveals a complex pattern of adaptation and survival. The 

comparison between single-factor and multi-factor models, despite showing only a minor 

statistical difference (DTSS = 0,2), provides crucial insights into future species 

distribution patterns. This similarity in model performance shouldn't overshadow the 

nuanced differences in their predictions about how marine life will respond to changing 

conditions. 

The ocean's chemical properties play a fundamental role in these dynamics. The 

relative stability of ocean pH, maintained through the carbonate system's buffering 
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capacity as documented by González-Santana and colleagues (2024), contrasts sharply 

with the more rapid changes in dissolved oxygen levels as temperatures rise. This 

differential rate of change creates a particularly challenging environment for demersal 

and benthopelagic fish, which inhabit the already oxygen-limited waters near the seafloor. 

However, the multi-factor analysis reveals an important survival mechanism: areas that 

might become thermally challenging could still support fish populations if other 

environmental parameters, such as oxygen levels or pH, remain within tolerable ranges. 

While the study's geographic scope excluded adjacent waters like the Norwegian, Barents, 

Baltic, Celtic Seas, and Bay of Biscay, limiting the potential prove of species distributions 

to these basins, it still can capture the well-documented trend of northward species 

migration in response to warming waters. This phenomenon, known as deborealization, 

represents a crucial survival strategy for marine species seeking cooler environments. 

However, demersal species present an interesting exception to this general pattern. These 

bottom-dwelling fish might find refuge in southern regions, where the thermal dynamics 

of deep water create stable environments. That is why demersal species shifts are not so 

unified as for the pelagic ones. Unlike surface waters that rapidly respond to atmospheric 

warming, deeper waters maintain more stable temperatures, potentially providing crucial 

habitats for spawning, feeding, and maintaining appropriate oxygen levels. Norwest shifts 

may be indicators of the most suitable temperature conditions, (which in my case serves 

as location only in 1 grid from the observed data). This may be due to the specific 

configuration of the water masses between the Orkney Island (UK) and Shetlands Islands, 

with transition and mixing water, surrounded by the fronts.  

 My evidence of future northwards shifts and temperature identification as the 

main factor, shaping future stocks assessments is similar to the one published by the EU 

in the “Climate Change and Fishery policy…” Final Report (Bastardie et al., 2022).  
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This research acknowledges the inherent uncertainties in predicting future marine 

conditions. While current modeling frameworks, particularly the SSP scenarios, represent 

our best understanding of potential future conditions, real-world developments might 

diverge from these projections. Will the actual conditions be exactly as they are projected 

by the currently available conservation frameworks or not? This is one of the most serious 

concerns that cannot be omitted.   

It is also important to mention that from my assumption adding additional 

parameter sot the model not only did not lead to higher model performance but even made 

the performance metrics worse. This could have happened, firstly, due to the curse of 

dimensionality, as with more variables (higher dimensionality), the model needs 

exponentially more training data to effectively capture patterns in the sparse feature 

space; a single-parameter model avoids this issue by operating in a much simpler feature 

space where patterns may be more easily learned from limited data. Secondly, the multi-

variable model has higher model complexity and more parameters to tune. This increased 

flexibility makes it more prone to fitting noise in the training data rather than learning 

generalizable patterns, so the simpler single-parameter model was naturally more 

regularized without overfitting. Thirdly, the problem could arise with the environmental 

data itself, as pH, for instance, did not change as gradually, as temperature during the 

projected time period, also, single parameter might be more reliably measured or have 

higher data quality. All of these ideas state that my approach was a good example of 

Occam's Razor in machine learning - sometimes the simplest model that adequately 

explains the data is the best choice. 

Understanding these complex interactions between environmental factors, species 

behavior, and ecosystem dynamics provides valuable insights for anticipating and 

adapting to the challenges posed by climate change in marine environments. This 
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comprehensive approach, considering multiple environmental factors and their 

interactions, offers a more nuanced and potentially more accurate view of how marine 

species might respond to changing oceanic conditions in the coming decades. 

4.2 Uncertainties about using SDMs 
In SDMs-based research data-related uncertainties stem from potential biases in 

species data, scale mismatches, and incomplete distribution representation (Davies, et al., 

2023). Also, significant uncertainties remain in long-term predictions.  

The choices one makes when constructing models have far-reaching implications 

for how uncertain predictions may become. Researchers encounter novel climate 

conditions that introduce three key sources of uncertainty. First, it must contend with 

uncertainty inherent in climate models themselves. Second, it may face uncertainty about 

which emissions pathway humanity will follow. Third, we must grapple with eco-

evolutionary uncertainty - meaning we cannot be entirely sure how species will adapt and 

respond to new conditions over time. These compounding sources of uncertainty create 

significant challenges when trying to forecast species distributions into the future (Urban, 

2019).  

Davies et al. (2023) emphasized that poorly handled uncertainty in Species 

Distribution Models (SDMs) can lead to two significant problems: either the models 

become too vague to guide meaningful management decisions, or worse, they produce 

misleading conclusions due to overconfidence in inaccurate predictions. To address this 

issue, they proposed a three-step approach for managing uncertainty in SDMs: 

systematically identifying all potential sources of uncertainty, implementing methods to 

minimize these uncertainties when possible, and transparently communicating any 

remaining uncertainties to decision-makers who rely on these projections. This structured 
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approach helps ensure that SDMs can effectively inform conservation and management 

strategies while acknowledging their limitations. 

When predicting how species distributions will change, incorporating stable 

environmental factors alongside climate variables is crucial for accurate modeling. 

Models that rely solely on climate parameters risk misrepresenting species' actual habitat 

requirements and may produce unreliable forecasts (Willis, K.J., Bhagwat, S.A., 2009). 

Without considering constant environmental constraints like bathymetry or substrate type, 

projections can either exaggerate or underestimate both the extent of distribution changes 

and species vulnerability to climate change. This comprehensive approach, integrating 

both dynamic climate factors and fixed environmental variables, provides a more reliable 

foundation for assessing future species distributions (Zangiabadi et al., 2021). 

When models operate at spatial scales that don't match the biological requirements 

of species, they can introduce significant prediction errors by either overestimating or 

underestimating suitable habitat (Seo et al. 2008, Franklin et al. 2013). This spatial 

resolution issue has crucial implications for conservation planning and accurate 

management suggestions. For instance, broad-scale models operating at 100 km 

resolutions - like in the case of this dissertation - often fail to capture fine-scale 

topographic features that might be essential for local conservation efforts, such as 

managing a small coastal protected area of just 10 square kilometers (Whittaker et al. 

2005).  

Classification Tree Analysis (CTA) in my case outperform ensemble models in 

projecting for 2 demersal species due to its ability to capture distinct environmental 

thresholds that characterize fish responses, rather than the gradual changes often predicted 

by averaged ensemble approaches (Elith et al., 2008). The hierarchical decision-making 

structure of CTA effectively mirrors how fish naturally select habitats through sequential 
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environmental choices, such as temperature followed by depth and salinity preferences, 

where clear environmental thresholds often determine range shifts more decisively than 

gradual changes, allowing CTA to effectively identify critical points where species might 

abandon or colonize areas (Thuiller et al., 2009). 

Regarding the range in RF and GLM performance, it could be explained in a 

following way. GLMs are sensitive to the specific combination of environmental 

variables used. If the variables have strong collinearity (when incorporating multi-factor 

models), so GLMs can become unstable. Random Forest showed unexpectedly low 

performance when dealing with multiple environmental, as this model can suffer from the 

"curse of dimensionality", and the data becomes increasingly sparse in this higher-

dimensional space. 

Moreover, critical viewpoints share the idea of small possibility of happening the 

pessimistic climate scenarios as the IPCC AR6 report stated that “the likelihood of high-

emissions scenarios such as RCP8.5 or SSP5-8.5 is considered low in light of recent 

developments in the energy sector” (Chen et al., 2021).  

4.3 Global Fisheries’ challenges  
Marine species redistributions are creating unprecedented challenges for fisheries 

management and conservation globally. Anthropogenic effects, including fishing 

pressure and habitat modification, combine with climate change to cause widespread 

shifts in species distributions. Research examining 889 marine species populations 

worldwide revealed that 70% of commercially important fish stocks now regularly cross 

jurisdictional boundaries, compared to just 35% in the 1980s (Pinsky et al. 2021). These 

shifts are already triggering international conflicts overfishing rights and access. 

The situation is particularly evident in northern seas, where warming waters are 

making previously ice-covered areas accessible for fishing. A prime example is the 



doi:10.6342/NTU202500202  58 

movement of mackerel stocks, which have shifted northward from their traditional 

grounds in the North Sea into waters around Iceland and Greenland, leading to disputes 

overfishing quotas and access rights. The Arctic's unique international governance 

structure, managed through the Arctic Council and UNCLOS, faces new challenges as 

countries assert their rights within their Exclusive Economic Zones (EEZs) while dealing 

with trans-boundary stocks. 

These distributional changes are creating significant economic implications. 

Some countries may benefit while others lose access to traditionally important fishing 

grounds. For instance, in the North Sea, Norway, Denmark, and the UK might benefit 

from species moving southwards and east-southwards under severe climate scenarios, 

while Germany, the Netherlands, and Belgium could face losses according to their EEZ 

boundaries. This redistribution affects not only fishing access but also tax income from 

legal fishing activities in territorial waters. 

The North Sea has experienced significant changes in fishing catch patterns over 

recent years. According to ICES (2023), the total reported catch in the Northern North 

Sea (Division 4a) showed notable fluctuations. In 2022, the total demersal fish landings 

in this region reached approximately 380,000 tonnes, with cod and haddock comprising 

the largest portions. However, this represents a 15% decrease from the previous five-year 

average. For the Faroe Plateau, the fishing statistics present a different pattern. The total 

catch in this region during 2022 was approximately 120,000 tonnes, dominated by saithe 

and haddock (ICES WGDEEP, 2023). What's particularly interesting is the shift in 

species composition over the past decade, with traditional demersal species showing 

declining trends while some pelagic species have increased. Looking at specific species, 

in Division 4a: cod landings decreased to 25,000 tonnes in 2022, down from 42,000 

tonnes in 2018; haddock catches remained relatively stable at around 80,000 tonnes; 
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whiting showed an increasing trend, reaching 35,000 tonnes in 2022.  In Division 5b: 

saithe landings increased to 45,000 tonnes in 2022, blue ling catches declined to 3,000 

tonnes; deep-water species generally showed decreasing trends. 

These changes reflect both management measures and environmental factors. The 

decrease in cod catches aligns with stricter quota restrictions implemented under the cod 

recovery plan (ICES WGNSSK, 2023). Meanwhile, the increase in certain pelagic species 

might be attributed to changing distribution patterns linked to warming waters and should 

raise awareness. about the necessity to carefully control the limits of the fish catch and 

minimize it to those species that are facing continuous stock decline.  

Recent research published in Nature Sustainability (Miller et al., 2023) identified 

critical management challenges, including quota allocation disputes and monitoring 

difficulties. Traditional quota systems based on historical distributions become 

increasingly obsolete as stocks shift across boundaries, with the study documenting 12 

major international disputes over five years directly related to climate-driven stock shifts. 

Furthermore, traditional stock assessment methods struggle to capture rapidly changing 

distribution patterns, with management decisions lagging actual changes by 3-5 years. 

Regarding my results, the predominance of temperature as the primary predictor 

in species distribution models, despite the availability of additional environmental 

variables such as pH and oxygen, can be attributed to several interconnected factors. 

Temperature functions as a master variable in marine environments, directly influencing 

both oxygen solubility and carbon cycle that leads to fluctuations in pH levels, while 

simultaneously governing the metabolic rates of marine organisms.  

As mentioned previously, the correlation analysis reveals strong relationships 

between sea surface temperature and other environmental parameters, notably a -0.97 

correlation with surface oxygen and -0.63 with surface pH. These high correlations 
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indicate that temperature effectively captures much of the environmental variation that 

would otherwise be explained by oxygen and pH measurements. I assume that the 

inclusion of such highly correlated variables, rather than improving model performance, 

could potentially decrease predictive accuracy by introducing redundant information and 

complicating the model's ability to distinguish individual variable effects, as temporal 

transferability of SDMs can degrade model performance when projecting into future 

conditions, particularly when environmental relationships may not remain stable year 

from year (Yates et al. 2018). Therefore, the second-best models, combining SBT and 

bottom dissolved oxygen for demersal species and SST with surface dissolved oxygen 

and SST with surface pH projected species distributions in a different way for 2100 

projections. In these experiments, species were projected to move to south (S) and south-

east (SE) directions (near Frisian Islands), being the most preferred habitat areas under 

severe emission scenarios (SSP3-7.0 and SSP5-8.5) by the end of the century.  Moreover, 

projections up to 2100 under SSP5-8.5 were smaller in distance, showing 175±95 km, 

respectively, in comparison with the Temperature-based models that revealed 

propagation up to 600 km to the north-west (NW). But projections for 2050 were well-

aligned for both single-factor and multi-factor models, showing either high probability of 

presence on the large spatial coverage for the whole area or high probability of occurrence 

in the southern regions of the sea, suggesting that the rising temperature in those areas 

will be still suitable for the observed species.  

Essentially, when temperature data indicates warming conditions, it implicitly 

suggests corresponding changes in oxygen levels and pH, making the addition of these 

variables somewhat redundant from a modeling perspective. This understanding helps 

explain why simpler, temperature-based models often achieve superior validation metrics 

compared to more complex multi-variable approaches in modelling. 
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Understanding the critique that should be applied when analyzing the models 

results, as modeling algorithms can produce varying predictions even with identical input 

data, emphasizing the importance of ensemble approaches (Araújo et al. 2019). SDMs’ 

results have been proven to differ in different location of the worlds ocean (Valavi et al., 

2022), that is why so far generalization of distributional trend cannot be fully addressed 

to the entire marine ecosystem. Another reason is that more specifically for marine 

environments, detail the ISIMIP3 ocean sector protocols and associated uncertainties in 

projections of key variables like temperature, pH, and oxygen (Lange et al. 2020). The 

challenges of downscaling global climate models to regional seas are addressed by who 

emphasize uncertainties in coastal regions and semi-enclosed seas like the North Sea 

(Büchner et al. 2021).  

To sum up, success in addressing these challenges requires innovative approaches 

that account for dynamic species distributions while maintaining ecosystem function and 

fisheries productivity. This includes developing dynamic quota allocation systems, 

strengthening scientific cooperation for stock monitoring, and establishing robust dispute 

resolution processes. Without such adaptations, the risk of overfishing and international 

conflicts over marine resources could increase substantially as climate change continues 

to alter marine ecosystems (Duncanson et al., 2023). 

5. Conclusion 

Understanding species distribution patterns proves crucial for effective fisheries 

management and conservation planning. This knowledge enables the identification of 

essential fish habitats, helps predict climate change impacts, and supports the design of 

marine protected areas. Recent advances in tracking technologies and modeling 

approaches have enhanced my ability to map and predict species distributions, though 
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significant challenges remain in understanding how distributions will change under future 

environmental conditions. 

Advanced modeling approaches are thought to improve ability to predict future 

distribution changes. These models increasingly incorporate multiple drivers and species 

interactions, though significant uncertainties remain. However, my suggestions are that 

future bigger spatial data coverage and comprehensive monitoring for robust projections 

and plans for high mitigation should be conducted. Moreover, precise understanding of 

each individual environmental factor impact on fish communities will minimize the 

uncertainties in applying different methodological approaches. This will help in 

committing further research to determine the extent to which the North Sea fish 

community is impacted by the changing climate, as well as other communities in other 

parts of the ocean.  

Migration of marine living resources are creating unprecedented challenges for 

management and conservation. Success in addressing these challenges will require 

innovative approaches that can account for dynamic species distributions while 

maintaining ecosystem function and fisheries productivity. International cooperation and 

adaptive management frameworks will be crucial for navigating these changes effectively 

in incorporation unified accessible frameworks.  

Climate-induced thermal stress is forcing marine species to relocate, driving them 

either toward higher latitudes or into deeper waters in search of more favorable 

temperature conditions. This large-scale redistribution is transforming the structure of 

marine communities, as species' movements disrupt long-established ecological 

relationships. When species relocate to maintain their preferred temperature ranges, they 

alter the composition of both their original and new habitats, leading to cascading effects 

that reshape entire food webs and ecosystem dynamics. 
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Final results 

Model Performance & Distribution Patterns 

• Single temperature-based model achieved highest accuracy (TSS=0.95) 

Species Response Variation under Temperature-based model: 

• Pelagic species: Consistent southeast movement across observed species 

(143±57 km by 2100) 

• Demersal species: More variable patterns with expansion-contraction dynamics 

under different scenarios (shift up to 607 km by 2100 under SSP5-8.5) 

• Average distance range among all species: 233±196 km northwest by 2100 

under SSP5-8.5 

Future Modelling Implications 

• Complex interplay of environmental variables requires refined frameworks 

• Need for unified modelling approach in fisheries sector 

• Critical to understand multiple processes driving distributional changes  
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Illustrations 

Table 1. Identification of trophic level, commercial value and functional group (demersal 
or pelagic) of selected filtered species. 

 
Family Scientific name Сommon Name Trophic 

Level 
Commercial Functional 

Group 
1 Anarhichadidae Anarhichas lupus Atlantic Wolffish 3.6 ± 0.0 No Demersal 

2 Argentinidae Argentina sphyraena Argentine Herring 3.5 ± 0.5 No Pelagic 

3 Bothidae Arnoglossus laterna Mediterranean Scaldfish 3.6 ± 0.3 No Demersal 

 4 Callionymidae Callionymus 
maculatus 

Spotted Dragonet 3.3 ± 0.45 No Demersal 

5 Carangidae Trachurus trachurus Atlantic Horse Mackerel 3.7 ± 0.0 Yes Pelagic 

6 Clupeidae Sardina pilchardus European Pilchard 3.1 ± 0.1 Yes Pelagic 

7 Cottidae Myoxocephalus 
scorpius 

Shorthorn Sculpin 3.9 ± 0.0 No Demersal 

8 Cyclopteridae Cyclopterus lumpus Lumpfish 3.9 ± 0.0 No Demersal 

9 Engraulidae Engraulis encrasicolus European Anchovy 3.1 ± 0.36 Yes Pelagic 

10 Merlucciidae Merluccius merluccius European Hake 4.4 ± 0.0 Yes Demersal 

11 Mullidae Mullus surmuletus Red Mullet 3.5 ± 0.3 Yes Demersal 

12 Rajidae Amblyraja radiata Thorny Skate 4.2 ± 0.3 No Demersal 

13 Rajidae Raja montagui Spotted Ray 3.9 ± 0.2 Yes Demersal 

14 Scombridae Scomber scombrus Atlantic Mackerel 3.6 ± 0.2 Yes Pelagic 

15 Scyliorhinidae Scyliorhinus canicula Small-Spotted Catshark 3.8 ± 0.3 No Demersal 

16 Sebastidae Sebastes viviparus Norway Redfish 4.0 ± 0.67 No Demersal 

17 Soleidae Buglossidium luteum Solenette 3.3 ± 0.4 No Demersal 

18 Triakidae Mustelus asterias Starry Smooth-Hound 3.6 ± 0.3 No Demersal 

19 Triglidae Chelidonichthys 
cuculus 

Red Gurnard 3.8 ± 0.1 Yes Demersal 

20 Triglidae Chelidonichthys 
lucerna 

Tub Gurnard 4.0 ± 0.0 Yes Demersal 

21 Triglidae Eutrigla gurnardus Grey Gurnard 3.9 ± 0.0 Yes Demersal 
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Table 2. List of filtered species and their coefficients obtained from regression model. 
Triple Asterisk (***) indicate high significance (p-value ≤ 0.001). “Years” refers to years 
of observed occurrence of each species. 
 

 Scientific name  R2 Intercept Slope Significance Years 

1 Amblyraja radiata 0.603 1418.491 -0.682 *** 42 

2 Anarhichas lupus 0.779 1590.44 -0.787 *** 42 

3 Argentina sphyraena 0.609 -1021.243 0.527 *** 42 

4 Arnoglossus laterna 0.694 -1560.86 0.791 *** 42 

5 Buglossidium luteum 0.517 -1018.883 0.522 *** 42 

6 Callionymus maculatus 0.543 -1547.886 0.791 *** 42 

7 Chelidonichthys cuculus 0.854 -1373.777 0.693 *** 41 

8 Chelidonichthys lucerna 0.722 -895.777 0.451 *** 32 

9 Cyclopterus lumpus 0.348 1238.605 -0.604 *** 42 

10 Engraulis encrasicolus 0.676 -3122.853 1.573 *** 35 

11 Eutrigla gurnardus 0.605 -997.019 0.541 *** 42 

12 Merluccius merluccius 0.441 -1209.944 0.621 *** 42 

13 Mullus surmuletus 0.736 -2222.816 1.12 *** 34 

14 Mustelus asterias 0.803 -1265.599 0.637 *** 31 

15 Myoxocephalus scorpius 0.595 -1182.999 0.604 *** 42 

16 Raja montagui 0.79 -1047.771 0.53 *** 42 

17 Sardina pilchardus 0.701 -2106.776 1.06 *** 31 

18 Scomber scombrus 0.573 -1664.207 0.852 *** 42 

19 Scyliorhinus canicula 0.927 -2551.399 1.29 *** 42 

20 Sebastes viviparus 0.558 511.551 -0.252 *** 41 

21 Trachurus trachurus 0.427 -2621.308 1.335 *** 42 
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Table 3. List of models used to project species distributions. 

Functional Group Model Name Abbreviation 
Demersal (16) Sea Bottom Temperature SBT  

Sea Bottom Temperature + Bottom pH SBT + pH_bot  
Sea Bottom Temperature + Bottom Dissolved 
Oxygen 

SBT + O2_bot 
 

Bottom Dissolved Oxygen + Bottom pH O2_bot +pH_bot  
Sea Bottom Temperature + Bottom Dissolved 
Oxygen +Bottom pH 

SBT + O2_bot +pH_bot 

Pelagic (5) Sea Surface Temperature SST  
Sea Surface Temperature + Surface pH SST + pH_surf  
Sea Surface Temperature + Surface Dissolved 
Oxygen 

SST + O2_surf 
 

Surface Dissolved Oxygen + Surface pH O2_surf + pH_surf  
Sea Surface temperature + Surface Dissolved 
Oxygen + Surface pH 

SST + O2_surf + pH_surf 
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Table 4. Best Performance of Evaluation Metric (TSS) by Experiment for 16 Demersal 
Species (A) and for 5 Pelagic Species (B). The “winning” experiment based on the highest 
value of the model performance is in bold and underlined. “E” refers to the “Ensemble” 
model that combines 6 different SDMs, “CTA” and “RF” refer to the types of SDMs. 
Each column represents the certain experiment, containing different environmental 
variables combinations.  
 

Scientific Name pH_bot+O2_bot SBT SBT+O2_bot SBT+pH_bot SBT+pH_bot 
+O2_bot 

Amblyraja radiata E:0.900 E:0.951 E:0.932 E:0.900 E:0.880 
Anarhichas lupus E:0.899 E:0.948 E:0.933 E:0.901 E:0.873 

Arnoglossus laterna E:0.932 E:0.950 E:0.941 E:0.923 E:0.922 
Buglossidium luteum E:0.930 E:0.951 E:0.949 E:0.923 E:0.926 

Callionymus maculatus E:0.904 E:0.951 E:0.910 E:0.906 E:0.865 
Chelidonichthys cuculus E:0.910 E:0.948 E:0.939 E:0.912 E:0.901 
Chelidonichthys lucerna E:0.900 E:0.945 E:0.911 E:0.895 E:0.869 

Cyclopterus lumpus E:0.913 E:0.951 E:0.933 E:0.911 E:0.900 
Eutrigla gurnardus E:0.888 E:0.955 E:0.927 E:0.909 E:0.900 

Merluccius merluccius E:0.915 E:0.955 E:0.935 E:0.902 E:0.890 
Mullus surmuletus E:0.921 E:0.953 E:0.925 E:0.916 RF:0.902 
Mustelus asterias E:0.893 E:0.950 E:0.926 E:0.897 E:0.872 

Myoxocephalus scorpius E:0.910 CTA:0.949 E:0.925 CTA:0.908 E:0.891 
Raja montagui E:0.906 E:0.954 E:0.923 E:0.902 E:0.880 

Scyliorhinus canicula E:0.902 E:0.951 E:0.919 E:0.903 E:0.889 
Sebastes viviparus E:0.899 E:0.946 E:0.914 E:0.891 E:0.878 
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Table 5. Best Performance of Evaluation Metric (TSS) by Experiment for 5 Pelagic 
Species. The “winning” experiment based on the highest value of the model performance 
is in bold and underlined. “E” refers to the “Ensemble” model that combines 6 different 
SDMs. Each column represents the certain experiment, containing different 
environmental variables combinations.  
 

Scientific Name pH_surf+O2_surf SST SST+O2_surf SST+pH_surf SST+pH_surf+ 
O2_surf 

Argentina sphyraena E:0.919 E:0.949 E:0.938 E:0.913 E:0.896 
Engraulis encrasicolus E:0.938 E:0.951 E:0.937 E:0.925 E:0.916 

Sardina pilchardus E:0.937 E:0.949 E:0.924 E:0.933 E:0.924 
Scomber scombrus E:0.923 E:0.951 E:0.929 E:0.915 E:0.899 

Trachurus trachurus E:0.923 E:0.951 E:0.930 E:0.908 E:0.866 
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Figure 1. Atlantic, Northeast (Major Fishing Area 27) Here are the detailed boundaries of 
the ICES subareas 27.4, 27.5, 27.6, 27.7, 27.8, 27.9. North Sea refer to 4.a, 4.b, 4.c. (FAO, 
2024). 
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Figure 2. Circulation system of the North Sea (OSPAR, 2000). The width of arrows is 
indicative of the magnitude of volume transport. Light blues arrows indicate relatively 
pure Atlantic water, blue arrows indicate surface currents.  
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Figure 3. Original data visualization of occurrence maps for Argentina sphyraena in Q1 
(Jan-Mar) season in1983 (A) and 2024 (B). The blue rectangles represent the observed 
occurrence of the fish in the exact 1°x1° grid area from the trawling data. 

  

A 

B 
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Figure 4. Chart for biological data filtering. Scientific species names refer to the ones 
used in this research  
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Figure 5. Combined changes (linear regression lines) in Demersal and Pelagic Species 
Distribution in the North Sea (1983-2024) based on observed grids per year. X-axis 
indicate years, y-axis indicate number of grids in which species were observed in each 
year during the 1983-2024 period. Red colors refer to pelagic species, Blue - to demersal 
and grey to those species that were not included in the research as they did not meet the 
requirements. 
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Figure 6. Selected species trophic levels based on the data from FishBase. The x-axis 
indicates trophic level, y-axis show fish speceis’ scientific names. The thresholds explain 
the range of the trophic level for each species.  

  

https://www.fishbase.se/search.php
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. 
 
Figure 7. Projections of Sea Surface Temperature (A) and Sea Bottom Temperature (B) 
under 3 climate scenarios (SSP1-2.6, SSP3-7.0, and SSP5-8.5) across two time periods: 
2050 (top row) and 2100 (bottom row). 1 gird resolution is 60 arcmin. Colors indicate 
temperature range. 

A 

B 
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Figure 8. Projections of Surface Dissolved Oxygen Concentrations (A) and Bottom 
Dissolved Oxygen Concentrations (B) under 3 climate scenarios (SSP1-2.6, SSP3-7.0, 
and SSP5-8.5 across two time periods: 2050 (top row) and 2100 (bottom row). 1 gird 
resolution is 60 arcmin. Colors indicate dissolved oxygen range. 
 
 
 

A 
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Figure 9. Projections of Surface pH (A) and Bottom Surface pH (B) under 3 climate 
scenarios (SSP1-2.6, SSP3-7.0, and SSP5-8.5) across two time periods: 2050 (top row) 
and 2100 (bottom row). 1 gird resolution is 60 arcmin. Colors indicate pH range. 
 
  

A 

B 
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Figure 10A. Correlation Matrix of Environmental Variables. Values ranging from -1 
(strong negative correlation) is colored in blue, to 1 (strong positive correlation) is colored 
in red. o2_surf is Surface Dissolved Oxygen, o2_bot is Bottom Dissolved Oxygen, 
ph_surf is surface pH level, ph_bot is bottom pH level, mean_depth is the mean depth at 
each grid on 60 arcmin. 

Figure 10B. Pairwise Relationships and Distributions of Environmental Variables (The 
off-diagonal scatter plots depict pairwise relationships between variables. A red 
regression line indicates the direction and strength of the relationship. Points in the 
scatterplots represent data observations. The histograms represent the distribution 
between the variables.  
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Figure 11. Algorithm of SDM validation process. Schematic representation of the 
modeling workflow showing three independent runs (Run 1-3), each employing 5-fold 
cross-validation. Each run processes unique species occurrence data through six modeling 
algorithms (GLM, GBM, RF, CTA, FDA, and MARS) with five training-testing data 
integrations. 
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Figure 12. Comparison of models’ performance metric (TSS) for demersal species (A) 
and for pelagic species (B). Boxplots represent the distribution of validation score of 6 
different SDMs across different model experiments.  
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Figure 13. Projected distributional shifts of Scyliorhinus canicula in 2025 (top), 2050 
(middle) and 2100 (bottom) under 3 climate scenarios (SSP1-2.6, SSP3-7.0, SSP5-8.5). 
Color shading indicate probability of species occurrence (0-1). Color-shading stands for 
probability of occurrence (0-1). Each grid refers to resolution 60 arcmin.  
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Figure 14. Projected distributional shifts of Argentina sphyraena in 2025 (top), 2050 
(middle) and 2100 (bottom) under 3 climate scenarios (SSP1-2.6, SSP3-7.0, SSP5-8.5). 
Color shading indicate probability of species occurrence (0-1). Color-shading stands for 
probability of occurrence (0-1). Each grid refers to resolution 60 arcmin 
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Figure 15. Distributional centroids vectors under temperature-based models. Mean shifts 
change from 2024 to 2100 under 3 climate scenarios. The three panels illustrate arrows 
that are species’ movement vectors (direction and magnitude) under SSP1-2.6 (A), SSP3-
7.0 (B), and SSP5-8.5 (C). Blue arrows: represent demersal species. Red arrows: indicate 
pelagic species. The length of the arrows indicates the magnitude of the response. Longer 
arrows reflect greater shifts in species distributions or probabilities of presence. Numbers 
represent the distance in kilometers (km). Resolution of 1 grid is 60 arcmin. Each 
horizontal cell is 1 degree in longitude (West-East displacement) and each vertical cell is 
1 degree in latitude (South-North displacement).  
  

A B C 



doi:10.6342/NTU202500202  97 

Supplementary materials  
 

 

S.1. All species (188) occurrence record for the entire period 1983-2024 from the trawling 
surveys. The x-axis represents the year during the 1983-2024 period, while the y-axis (0-
103 – max number of observed grids per year) indicates observed grids in the study area 
per each year. Blue histograms correspond to the selected demersal species and red 
histograms indicate pelagic species. Grey histograms refer to those species that were not 
included in the research, as they did not meet the thresholds. Scientific names of species 
are above the corresponding histograms. 
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S.2.Projected distributional shifts of Amblyraja radiata (based on habitat suitability) in 
2025 (top), 2050 (middle) and 2100 (bottom) under 3 climate scenarios (SSP1-2.6, SSP3-
7.0, SSP5-8.5). Color shading indicate probability of species occurrence in a grid of 
habitat suitability (0-1). Color-shading stands for potential habitat suitability, where 1 – 
suitable, 0 – unsuitable conditions. Each grid refers to resolution 60 arcmin.  Applied 
model is indicated in the heading of each figure. 
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S.3. Projected distributional shifts of Anarhichas lupus radiata (based on habitat 
suitability) in 2025 (top), 2050 (middle) and 2100 (bottom) under 3 climate scenarios 
(SSP1-2.6, SSP3-7.0, SSP5-8.5). Color shading indicate probability of species occurrence 
in a grid of habitat suitability (0-1). Color-shading stands for potential habitat suitability, 
where 1 – suitable, 0 – unsuitable conditions. Each grid refers to resolution 60 arcmin.  
Applied model is indicated in the heading of each figure. 
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S.4. Projected distributional shifts of Arnoglossus laterna radiata (based on habitat 
suitability) in 2025 (top), 2050 (middle) and 2100 (bottom) under 3 climate scenarios 
(SSP1-2.6, SSP3-7.0, SSP5-8.5). Color shading indicate probability of species occurrence 
in a grid of habitat suitability (0-1). Color-shading stands for potential habitat suitability, 
where 1 – suitable, 0 – unsuitable conditions. Each grid refers to resolution 60 arcmin.  
Applied model is indicated in the heading of each figure. 
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S.5. Projected distributional shifts of Buglossidium luteum radiata (based on habitat 
suitability) in 2025 (top), 2050 (middle) and 2100 (bottom) under 3 climate scenarios 
(SSP1-2.6, SSP3-7.0, SSP5-8.5). Color shading indicate probability of species occurrence 
in a grid of habitat suitability (0-1). Color-shading stands for potential habitat suitability, 
where 1 – suitable, 0 – unsuitable conditions. Each grid refers to resolution 60 arcmin.  
Applied model is indicated in the heading of each figure. 
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S.6. Projected distributional shifts of Callionymus maculatus radiata (based on habitat 
suitability) in 2025 (top), 2050 (middle) and 2100 (bottom) under 3 climate scenarios 
(SSP1-2.6, SSP3-7.0, SSP5-8.5). Color shading indicate probability of species occurrence 
in a grid of habitat suitability (0-1). Color-shading stands for potential habitat suitability, 
where 1 – suitable, 0 – unsuitable conditions. Each grid refers to resolution 60 arcmin.  
Applied model is indicated in the heading of each figure. 
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S.7. Projected distributional shifts of Chelidonichtys cuculus radiata (based on habitat 
suitability) in 2025 (top), 2050 (middle) and 2100 (bottom) under 3 climate scenarios 
(SSP1-2.6, SSP3-7.0, SSP5-8.5). Color shading indicate probability of species occurrence 
in a grid of habitat suitability (0-1). Color-shading stands for potential habitat suitability, 
where 1 – suitable, 0 – unsuitable conditions. Each grid refers to resolution 60 arcmin.  
Applied model is indicated in the heading of each figure. 
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S.8. Projected distributional shifts of Chelidonichthys lucerna radiata (based on habitat 
suitability) in 2025 (top), 2050 (middle) and 2100 (bottom) under 3 climate scenarios 
(SSP1-2.6, SSP3-7.0, SSP5-8.5). Color shading indicate probability of species occurrence 
in a grid of habitat suitability (0-1). Color-shading stands for potential habitat suitability, 
where 1 – suitable, 0 – unsuitable conditions. Each grid refers to resolution 60 arcmin.  
Applied model is indicated in the heading of each figure. 
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S.9. Projected distributional shifts of Cyclopterus lumpus radiata (based on habitat 
suitability) in 2025 (top), 2050 (middle) and 2100 (bottom) under 3 climate scenarios 
(SSP1-2.6, SSP3-7.0, SSP5-8.5). Color shading indicate probability of species occurrence 
in a grid of habitat suitability (0-1). Color-shading stands for potential habitat suitability, 
where 1 – suitable, 0 – unsuitable conditions. Each grid refers to resolution 60 arcmin.  
Applied model is indicated in the heading of each figure. 
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S.10. Projected distributional shifts of Eutrigla radiata (based on habitat suitability) in 
2025 (top), 2050 (middle) and 2100 (bottom) under 3 climate scenarios (SSP1-2.6, SSP3-
7.0, SSP5-8.5). Color shading indicate probability of species occurrence in a grid of 
habitat suitability (0-1). Color-shading stands for potential habitat suitability, where 1 – 
suitable, 0 – unsuitable conditions. Each grid refers to resolution 60 arcmin.  Applied 
model is indicated in the heading of each figure. 
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S.11. Projected distributional shifts of Merluccius merluccies radiata (based on habitat 
suitability) in 2025 (top), 2050 (middle) and 2100 (bottom) under 3 climate scenarios 
(SSP1-2.6, SSP3-7.0, SSP5-8.5). Color shading indicate probability of species occurrence 
in a grid of habitat suitability (0-1). Color-shading stands for potential habitat suitability, 
where 1 – suitable, 0 – unsuitable conditions. Each grid refers to resolution 60 arcmin.  
Applied model is indicated in the heading of each figure. 
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S.12. Projected distributional shifts of Mullus surmuletus radiata (based on habitat 
suitability) in 2025 (top), 2050 (middle) and 2100 (bottom) under 3 climate scenarios 
(SSP1-2.6, SSP3-7.0, SSP5-8.5). Color shading indicate probability of species occurrence 
in a grid of habitat suitability (0-1). Color-shading stands for potential habitat suitability, 
where 1 – suitable, 0 – unsuitable conditions. Each grid refers to resolution 60 arcmin.  
Applied model is indicated in the heading of each figure. 
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S.13. Projected distributional shifts of Mustelus asterias radiata (based on habitat 
suitability) in 2025 (top), 2050 (middle) and 2100 (bottom) under 3 climate scenarios 
(SSP1-2.6, SSP3-7.0, SSP5-8.5). Color shading indicate probability of species occurrence 
in a grid of habitat suitability (0-1). Color-shading stands for potential habitat suitability, 
where 1 – suitable, 0 – unsuitable conditions. Each grid refers to resolution 60 arcmin.  
Applied model is indicated in the heading of each figure. 
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S.14. Projected distributional shifts of Myoxocephalus scorpius radiata (based on habitat 
suitability) in 2025 (top), 2050 (middle) and 2100 (bottom) under 3 climate scenarios 
(SSP1-2.6, SSP3-7.0, SSP5-8.5). Color shading indicate probability of species occurrence 
in a grid of habitat suitability (0-1). Color-shading stands for potential habitat suitability, 
where 1 – suitable, 0 – unsuitable conditions. Each grid refers to resolution 60 arcmin.  
Applied model is indicated in the heading of each figure. 
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S.15. Projected distributional shifts of Raja montagui radiata (based on habitat 
suitability) in 2025 (top), 2050 (middle) and 2100 (bottom) under 3 climate scenarios 
(SSP1-2.6, SSP3-7.0, SSP5-8.5). Color shading indicate probability of species occurrence 
in a grid of habitat suitability (0-1). Color-shading stands for potential habitat suitability, 
where 1 – suitable, 0 – unsuitable conditions. Each grid refers to resolution 60 arcmin.  
Applied model is indicated in the heading of each figure. 
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S.16. Projected distributional shifts of Scyliorhunus canicula radiata (based on habitat 
suitability) in 2025 (top), 2050 (middle) and 2100 (bottom) under 3 climate scenarios 
(SSP1-2.6, SSP3-7.0, SSP5-8.5). Color shading indicate probability of species occurrence 
in a grid of habitat suitability (0-1). Color-shading stands for potential habitat suitability, 
where 1 – suitable, 0 – unsuitable conditions. Each grid refers to resolution 60 arcmin.  
Applied model is indicated in the heading of each figure. 
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S.17. Projected distributional shifts of Sebastes viviparus radiata (based on habitat 
suitability) in 2025 (top), 2050 (middle) and 2100 (bottom) under 3 climate scenarios 
(SSP1-2.6, SSP3-7.0, SSP5-8.5). Color shading indicate probability of species occurrence 
in a grid of habitat suitability (0-1). Color-shading stands for potential habitat suitability, 
where 1 – suitable, 0 – unsuitable conditions. Each grid refers to resolution 60 arcmin.  
Applied model is indicated in the heading of each figure. 
  



doi:10.6342/NTU202500202  114 

 
S.18. Projected distributional shifts of Argentina sphyraena radiata (based on habitat 
suitability) in 2025 (top), 2050 (middle) and 2100 (bottom) under 3 climate scenarios 
(SSP1-2.6, SSP3-7.0, SSP5-8.5). Color shading indicate probability of species occurrence 
in a grid of habitat suitability (0-1). Color-shading stands for potential habitat suitability, 
where 1 – suitable, 0 – unsuitable conditions. Each grid refers to resolution 60 arcmin.  
Applied model is indicated in the heading of each figure. 
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S.19. Projected distributional shifts of Engraulis encrasicolus radiata (based on habitat 
suitability) in 2025 (top), 2050 (middle) and 2100 (bottom) under 3 climate scenarios 
(SSP1-2.6, SSP3-7.0, SSP5-8.5). Color shading indicate probability of species occurrence 
in a grid of habitat suitability (0-1). Color-shading stands for potential habitat suitability, 
where 1 – suitable, 0 – unsuitable conditions. Each grid refers to resolution 60 arcmin.  
Applied model is indicated in the heading of each figure. 
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S.20. Projected distributional shifts of Sardina pilchardus 2 radiata (based on habitat 
suitability) in 2025 (top), 2050 (middle) and 2100 (bottom) under 3 climate scenarios 
(SSP1-2.6, SSP3-7.0, SSP5-8.5). Color shading indicate probability of species occurrence 
in a grid of habitat suitability (0-1). Color-shading stands for potential habitat suitability, 
where 1 – suitable, 0 – unsuitable conditions. Each grid refers to resolution 60 arcmin.  
Applied model is indicated in the heading of each figure. 
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S.21. Projected distributional shifts of Scomber scombrus radiata (based on habitat 
suitability) in 2025 (top), 2050 (middle) and 2100 (bottom) under 3 climate scenarios 
(SSP1-2.6, SSP3-7.0, SSP5-8.5). Color shading indicate probability of species occurrence 
in a grid of habitat suitability (0-1). Color-shading stands for potential habitat suitability, 
where 1 – suitable, 0 – unsuitable conditions. Each grid refers to resolution 60 arcmin.  
Applied model is indicated in the heading of each figure. 
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S.22. Projected distributional shifts of Trachurus trachurus radiata (based on habitat 
suitability) in 2025 (top), 2050 (middle) and 2100 (bottom) under 3 climate scenarios 
(SSP1-2.6, SSP3-7.0, SSP5-8.5). Color shading indicate probability of species occurrence 
in a grid of habitat suitability (0-1). Color-shading stands for potential habitat suitability, 
where 1 – suitable, 0 – unsuitable conditions. Each grid refers to resolution 60 arcmin.  
Applied model is indicated in the heading of each figure. 
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S.23. Projected distributional shifts of Amblyraja radiata radiata (based on habitat 
suitability) in 2025 (top), 2050 (middle) and 2100 (bottom) under 3 climate scenarios 
(SSP1-2.6, SSP3-7.0, SSP5-8.5). Color shading indicate probability of species occurrence 
in a grid of habitat suitability (0-1). Color-shading stands for potential habitat suitability, 
where 1 – suitable, 0 – unsuitable conditions. Each grid refers to resolution 60 arcmin.  
Applied model is indicated in the heading of each figure. 
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S.24. Projected distributional shifts of Anarhichas lupus radiata (based on habitat 
suitability) in 2025 (top), 2050 (middle) and 2100 (bottom) under 3 climate scenarios 
(SSP1-2.6, SSP3-7.0, SSP5-8.5). Color shading indicate probability of species occurrence 
in a grid of habitat suitability (0-1). Color-shading stands for potential habitat suitability, 
where 1 – suitable, 0 – unsuitable conditions. Each grid refers to resolution 60 arcmin.  
Applied model is indicated in the heading of each figure. 
  



doi:10.6342/NTU202500202  121 

 
S.25. Projected distributional shifts of Arnoglossus laterna radiata (based on habitat 
suitability) in 2025 (top), 2050 (middle) and 2100 (bottom) under 3 climate scenarios 
(SSP1-2.6, SSP3-7.0, SSP5-8.5). Color shading indicate probability of species occurrence 
in a grid of habitat suitability (0-1). Color-shading stands for potential habitat suitability, 
where 1 – suitable, 0 – unsuitable conditions. Each grid refers to resolution 60 arcmin.  
Applied model is indicated in the heading of each figure. 
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S.26. Projected distributional shifts of Buglossidium luteum (based on habitat suitability) 
2025 (top), 2050 (middle) and 2100 (bottom) under 3 climate scenarios (SSP1-2.6, SSP3-
7.0, SSP5-8.5). Color shading indicate probability of species occurrence (0-1). Color-
shading stands for habitat suitability (0-1). Each grid refers to resolution 60 arcmin. 
Applied model is indicated in the heading of each figure. 
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S.27. Projected distributional shifts of Callionymus maculatus (based on habitat 
suitability) 2025 (top), 2050 (middle) and 2100 (bottom) under 3 climate scenarios (SSP1-
2.6, SSP3-7.0, SSP5-8.5). Color shading indicate probability of species occurrence (0-1). 
Color-shading stands for habitat suitability (0-1). Each grid refers to resolution 60 arcmin. 
Applied model is indicated in the heading of each figure. 
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S.28. Projected distributional shifts of Chelidonichtys cuculus radiata (based on habitat 
suitability) in 2025 (top), 2050 (middle) and 2100 (bottom) under 3 climate scenarios 
(SSP1-2.6, SSP3-7.0, SSP5-8.5). Color shading indicate probability of species occurrence 
in a grid of habitat suitability (0-1). Color-shading stands for potential habitat suitability, 
where 1 – suitable, 0 – unsuitable conditions. Each grid refers to resolution 60 arcmin.  
Applied model is indicated in the heading of each figure. 
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S.29. Projected distributional shifts of Chelidonichthys lucerna radiata (based on habitat 
suitability) in 2025 (top), 2050 (middle) and 2100 (bottom) under 3 climate scenarios 
(SSP1-2.6, SSP3-7.0, SSP5-8.5). Color shading indicate probability of species occurrence 
in a grid of habitat suitability (0-1). Color-shading stands for potential habitat suitability, 
where 1 – suitable, 0 – unsuitable conditions. Each grid refers to resolution 60 arcmin.  
Applied model is indicated in the heading of each figure. 
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S.30. Projected distributional shifts of Cyclopterus lumpus radiata (based on habitat 
suitability) in 2025 (top), 2050 (middle) and 2100 (bottom) under 3 climate scenarios 
(SSP1-2.6, SSP3-7.0, SSP5-8.5). Color shading indicate probability of species occurrence 
in a grid of habitat suitability (0-1). Color-shading stands for potential habitat suitability, 
where 1 – suitable, 0 – unsuitable conditions. Each grid refers to resolution 60 arcmin.  
Applied model is indicated in the heading of each figure. 
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S.31. Projected distributional shifts of Eutrigla gurnardus radiata (based on habitat 
suitability) in 2025 (top), 2050 (middle) and 2100 (bottom) under 3 climate scenarios 
(SSP1-2.6, SSP3-7.0, SSP5-8.5). Color shading indicate probability of species occurrence 
in a grid of habitat suitability (0-1). Color-shading stands for potential habitat suitability, 
where 1 – suitable, 0 – unsuitable conditions. Each grid refers to resolution 60 arcmin.  
Applied model is indicated in the heading of each figure. 
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S.32. Projected distributional shifts of Merluccius merluccius radiata (based on habitat 
suitability) in 2025 (top), 2050 (middle) and 2100 (bottom) under 3 climate scenarios 
(SSP1-2.6, SSP3-7.0, SSP5-8.5). Color shading indicate probability of species occurrence 
in a grid of habitat suitability (0-1). Color-shading stands for potential habitat suitability, 
where 1 – suitable, 0 – unsuitable conditions. Each grid refers to resolution 60 arcmin.  
Applied model is indicated in the heading of each figure. 
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S.33. Projected distributional shifts of Mullus surmuletus radiata (based on habitat 
suitability) in 2025 (top), 2050 (middle) and 2100 (bottom) under 3 climate scenarios 
(SSP1-2.6, SSP3-7.0, SSP5-8.5). Color shading indicate probability of species occurrence 
in a grid of habitat suitability (0-1). Color-shading stands for potential habitat suitability, 
where 1 – suitable, 0 – unsuitable conditions. Each grid refers to resolution 60 arcmin.  
Applied model is indicated in the heading of each figure. 
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S.34.Projected distributional shifts of Mustelus asterias radiata (based on habitat 
suitability) in 2025 (top), 2050 (middle) and 2100 (bottom) under 3 climate scenarios 
(SSP1-2.6, SSP3-7.0, SSP5-8.5). Color shading indicate probability of species occurrence 
in a grid of habitat suitability (0-1). Color-shading stands for potential habitat suitability, 
where 1 – suitable, 0 – unsuitable conditions. Each grid refers to resolution 60 arcmin.  
Applied model is indicated in the heading of each figure. 
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S.35. Projected distributional shifts of Myoxocephalus scorpius radiata (based on habitat 
suitability) in 2025 (top), 2050 (middle) and 2100 (bottom) under 3 climate scenarios 
(SSP1-2.6, SSP3-7.0, SSP5-8.5). Color shading indicate probability of species occurrence 
in a grid of habitat suitability (0-1). Color-shading stands for potential habitat suitability, 
where 1 – suitable, 0 – unsuitable conditions. Each grid refers to resolution 60 arcmin.  
Applied model is indicated in the heading of each figure. 
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S.36. Projected distributional shifts of Raja montagui radiata (based on habitat 
suitability) in 2025 (top), 2050 (middle) and 2100 (bottom) under 3 climate scenarios 
(SSP1-2.6, SSP3-7.0, SSP5-8.5). Color shading indicate probability of species occurrence 
in a grid of habitat suitability (0-1). Color-shading stands for potential habitat suitability, 
where 1 – suitable, 0 – unsuitable conditions. Each grid refers to resolution 60 arcmin.  
Applied model is indicated in the heading of each figure. 
  



doi:10.6342/NTU202500202  133 

 

S.37. Projected distributional shifts of Scyliorhunus canicula radiata (based on habitat 
suitability) in 2025 (top), 2050 (middle) and 2100 (bottom) under 3 climate scenarios 
(SSP1-2.6, SSP3-7.0, SSP5-8.5). Color shading indicate probability of species occurrence 
in a grid of habitat suitability (0-1). Color-shading stands for potential habitat suitability, 
where 1 – suitable, 0 – unsuitable conditions. Each grid refers to resolution 60 arcmin.  
Applied model is indicated in the heading of each figure. 
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S.38. Projected distributional shifts of Sebastes viviparus radiata (based on habitat 
suitability) in 2025 (top), 2050 (middle) and 2100 (bottom) under 3 climate scenarios 
(SSP1-2.6, SSP3-7.0, SSP5-8.5). Color shading indicate probability of species occurrence 
in a grid of habitat suitability (0-1). Color-shading stands for potential habitat suitability, 
where 1 – suitable, 0 – unsuitable conditions. Each grid refers to resolution 60 arcmin.  
Applied model is indicated in the heading of each figure. 
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S.39. Projected distributional shifts of Argentina sphyraena radiata (based on habitat 
suitability) in 2025 (top), 2050 (middle) and 2100 (bottom) under 3 climate scenarios 
(SSP1-2.6, SSP3-7.0, SSP5-8.5). Color shading indicate probability of species occurrence 
in a grid of habitat suitability (0-1). Color-shading stands for potential habitat suitability, 
where 1 – suitable, 0 – unsuitable conditions. Each grid refers to resolution 60 arcmin.  
Applied model is indicated in the heading of each figure. 
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S.40. Projected distributional shifts of Engraulis encrasicolus radiata (based on habitat 
suitability) in 2025 (top), 2050 (middle) and 2100 (bottom) under 3 climate scenarios 
(SSP1-2.6, SSP3-7.0, SSP5-8.5). Color shading indicate probability of species occurrence 
in a grid of habitat suitability (0-1). Color-shading stands for potential habitat suitability, 
where 1 – suitable, 0 – unsuitable conditions. Each grid refers to resolution 60 arcmin.  
Applied model is indicated in the heading of each figure.  
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S.41. Projected distributional shifts of Sardina pilchardus radiata (based on habitat 
suitability) in 2025 (top), 2050 (middle) and 2100 (bottom) under 3 climate scenarios 
(SSP1-2.6, SSP3-7.0, SSP5-8.5). Color shading indicate probability of species occurrence 
in a grid of habitat suitability (0-1). Color-shading stands for potential habitat suitability, 
where 1 – suitable, 0 – unsuitable conditions. Each grid refers to resolution 60 arcmin.  
Applied model is indicated in the heading of each figure. 
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S.42. Projected distributional shifts of Scomber radiata (based on habitat suitability) in 
2025 (top), 2050 (middle) and 2100 (bottom) under 3 climate scenarios (SSP1-2.6, SSP3-
7.0, SSP5-8.5). Color shading indicate probability of species occurrence in a grid of 
habitat suitability (0-1). Color-shading stands for potential habitat suitability, where 1 – 
suitable, 0 – unsuitable conditions. Each grid refers to resolution 60 arcmin.  Applied 
model is indicated in the heading of each figure. 
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S.43. Projected distributional shifts of Trachurus trachurus radiata (based on habitat 
suitability) in 2025 (top), 2050 (middle) and 2100 (bottom) under 3 climate scenarios 
(SSP1-2.6, SSP3-7.0, SSP5-8.5). Color shading indicate probability of species occurrence 
in a grid of habitat suitability (0-1). Color-shading stands for potential habitat suitability, 
where 1 – suitable, 0 – unsuitable conditions. Each grid refers to resolution 60 arcmin.  
Applied model is indicated in the heading of each figure. 
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S.44. Distributional centroids vectors for multi-factor models. Shifts from 2024 to 2100 
under 3 climate scenarios. The three panels illustrate arrows that are species’ movement 
vectors (direction and magnitude) under SSP1-2.6 (A), SSP3-7.0 (B), and SSP5-8.5 (C). 
Blue arrows: represent demersal species. Red arrows: indicate pelagic species. The length 
of the arrows indicates the magnitude of the response. Longer arrows reflect greater shifts 
in species distributions or probabilities of presence. Numbers represent the distance in 
kilometers (km). Resolution of 1 grid is 60 arcmin. Each horizontal cell is 1 degree in 
longitude (West-East displacement) and each vertical cell is 1 degree in latitude (South-
North displacement).  
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