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Abstract

The increasing impact of climate change on marine ecosystems requires robust modeling
approaches to project future species distributional shifts. These biogeographical
reorganizations are fundamentally transforming the global fishing industry, as traditional
fishing grounds experience declining productivity or ecological regime shifts toward
novel species assemblages, while simultaneously creating emerging opportunities in
previously marginal areas, though these new fishing frontiers often lack the necessary
infrastructure and regulatory frameworks to support sustainable resource exploitation.
Some projections that rely solely on temperature as the main parameter may fail to capture
the complex interplay of multiple environmental stressors, including dissolved oxygen,
pH, and their complex effects on marine ecosystems, potentially leading to oversimplified
or inaccurate future projections. This study aims to investigate if adding dissolved oxygen
concentration, and pH as predictor variables, can better predict the distribution shifts of
16 demersal and 5 pelagic fish species in the North Sea. To project marine fish response
to abiotic factors under SSP1-2.6, SSP2-4.5, SSP5-8.5 scenarios for 2050 and 2100, the
ensemble of Species Distribution Models (SDMs) was implemented. While SSP5-8.5
scenario incorporated declining oxygen levels (projected decrease of 31-34% from when
to when) and ocean acidification (pH decrease of 5-6% from when to when under which
scenarios) by 2100, model performance analysis revealed that temperature alone created
the best ensemble model, with the best validation metrics (TSS = 0.9504+0.001). Under
the most pessimistic scenario - SSP5-8.5, temperature-driven models projected mean
north-west shifts of distributional centroids at 245+223 km for most demersal species and
eastwards 193+62 km shifts for pelagic species by 2100, while combination of parameters
projected generally south and south-eastwards movements for both functional groups up

to 143457 km. When comparing single-factor and multi-factor models, the similarity
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comes in projection up to 2050 when the southern and central areas tend to be the most
suitable ones, however later projections for 2100 showed disparity in direction and
magnitude of distributional shifts, especially for the demersal species, seeking refugia in
different locations. These findings suggest that while numerous stressors affect marine
ecosystems, statistically, temperature’s impact is the strongest for selected species in the
North Sea region based on the applied data. The findings reveal significant implications
for improving climate impact assessments of marine wildlife through the integration of
species distribution models into unified frameworks that enable robust analysis of

migration patterns.

Key words: Species distribution modelling, North Sea, fishery, model comparison,
climate change
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1. Introduction

Marine organisms and their ecosystem services face unprecedented challenges
due to climate change. The ecological impacts arise from both long-term shifts in climate
patterns and short-term extreme events, leading to significant disruptions in marine
environments (Harris et al., 2018). While ocean ecosystems face various threats,
including chemical pollution and habitat destruction, environmental condition
transformations remain a key factor determining species' suitable habitats.

These changes significantly affect fisheries and coastal economies, threatening
both food security and the livelihoods of millions dependent on marine resources (FAO,
2024). As environmental conditions approach critical thresholds, species either relocate
or decline when unable to tolerate changes. Even surviving species face challenges from
shifts in food availability, predation patterns, and competition within altered ecosystems.
Additionally, climate change may accelerate the introduction and establishment of
invasive species, leading to further alterations in food web dynamics and community
composition (Nisin, 2023).

This dissertation applied predictive modeling tools to understand which marine
water physico-chemical characteristics most significantly influence the occurrence and
distribution of pelagic and demersal fish in the North Sea. Using ensembles of Species
Distribution Models (SDMs) driven by Earth System Models (ESMs), I simulate various
biochemical conditions under three different Shared Socioeconomic Pathways (SSPs).
Including commercially valuable species such as mackerel (Scomber scombrus) and hake
(Merluccius merluccius) provide crucial insights into future fishery sustainability.

The scientific novelty of this research lies in addressing current research gaps by:
(1) considering dissolved oxygen and pH levels' impact on fish distribution, moving

beyond temperature-only effects; (2) focusing on meso-scale spatial coverage and long-
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term temporal analysis (42 years); (3) integrating multiple environmental variables to
improve model accuracy, as research indicates that temperature-only models tend to
produce less reliable and unrealistically optimistic predictions (McHenry et al., 2019).

Study Objectives:

e To assess climate change impacts on fish species distribution;

e To investigate the role of ocean acidification, oxygen depletion, and ocean

warming in shaping distributional shifts;

e To model potential yearly fish distribution shifts using past records and future

projections under climate scenarios (SSP1-2.6, SSP3-7.0 & SSP5-8.5) through
2100.

This comprehensive approach will enhance understanding of how marine species
interact with their environment and improve ability to predict ecosystem responses to
climate change. Such knowledge is crucial for developing effective conservation
strategies and ensuring sustainable fisheries management in the face of global

environmental change.

1.1 Concept of fish distributions

Fish distributions in marine ecosystems are governed by complex interactions
between environmental conditions and biological requirements. These distribution
patterns reflect species-specific physiological tolerances and preferences, which
determine their fundamental niche (Hutchinson, 1957). Within marine environments, fish
distributions are primarily influenced by temperature regimes, which affect metabolic
rates and energy budgets (Portner and Farrell, 2008), while the realized niche is further
shaped by oxygen availability, pH levels, food resources, and interspecific competition

(Perry et al., 2005).
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Oceanographic physical processes, including current systems, upwelling zones,
and water mass boundaries, significantly influence distribution patterns by creating
natural barriers and corridors. These physical features correlate with nutrient availability
and primary productivity, directly affecting food availability for fish populations, with
fish movements closely tracking primary producers' peak productivity spring waves
(Kléparski, 2021).

Marine species are moving poleward at an average rate of 72 kilometers per
decade, nearly ten times faster than terrestrial species (Poloczanska et al., 2013). This
redistribution creates novel assemblages and ecological interactions through "climate
velocity corridors" - pathways where the speed and direction of climate change may create
natural migration routes (Burrows et al., 2014).

The North Sea exemplifies these dynamics, where species exhibit varying
responses to environmental changes. For instance, cod (Gadus morhua) actively avoid
waters above 13°C, while European seabass (Dicentrarchus labrax) prefer warmer waters
and extend their range northward during summer months (Baudron et al. 2014). Research
using acoustic telemetry revealed that Atlantic cod aggregate in deeper northern waters
during winter and disperse to central and southern feeding grounds in spring, though this
adaptation to deeper waters is limited by light availability and pressure tolerance (Rogers
et al., 2020).

Species demonstrate varying capacities for adaptation, with fast-growing, short-
lived species generally showing greater capacity for range shifts, while species with
specific habitat requirements face greater challenges. Notably, pelagic species typically
demonstrate more rapid distribution changes compared to demersal species (Pinsky et al.,
2019). These shifts in commercially valuable species' distributions create significant

management challenges, often crossing jurisdictional boundaries (Pinsky et al., 2018).
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Traditional static marine protected areas may become less effective as species ranges shift
(Bruno et al., 2018), while fishing pressure can amplify climate effects on fish populations
by reducing their adaptive capacity and resilience to environmental change (Free et al.,
2019).

Understanding these distribution mechanisms is crucial for predicting future
species ranges and implementing effective conservation strategies (Cheung et al., 2009).
While species generally shift poleward in response to changing climates, the speed, range,

and direction of movement for each species remain highly unpredictable (IPCC, 2022).

1.1 Impact of ocean warming on fish

Ocean temperatures are experiencing unprecedented acceleration in their warming
trajectory, with the heating rate increasing significantly compared to two decades ago.
The State of the Ocean Report shows that 2023 marked one of the most substantial
temperature increases since the 1950s, with ocean temperatures rising 1.45°C above pre-
industrial levels (UNESCO, 2024). Between 1958 and 2019, the upper ocean layers
accumulated heat equivalent to 351 Zettajoules, with marked acceleration in the past
decade (Cheng et al., 2022).

Temperature serves as a primary driver of marine species distribution, with each
species having optimal thermal ranges that influence their survival, growth, and
reproduction. Marine heatwaves—discrete periods of anomalously warm ocean
temperatures—significantly affect marine ecosystems (Smale et al., 2019). Rising
temperatures influence physiological functioning of marine species, impacting growth,
size, reproductive success, and population numbers (Pauly, 2021). Species with faster life
histories show stronger responses to temperature changes, particularly populations at the

warm edges of their thermal ranges (Free et al., 2019).
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The warming of ocean waters has led to "tropicalization" of temperate regions,
where tropical species moving into temperate waters fundamentally alter ecosystem
structure (Vergés et al., 2016). Temperature effects manifest through both direct
physiological impacts and indirect ecosystem effects, with species' thermal limits closely
matching their realized temperature ranges (Sunday et al., 2015). Changes in temperature
alter food web dynamics, as warming-induced changes in plankton communities’ cascade
through marine food webs (Hoegh-Guldberg and Bruno, 2010).

In the North Sea, seasonal temperature fluctuations (5°C in winter to 16°C in
summer) create distinct seasonal habitats (Dulvy et al., 2018). While some species like
cod actively avoid waters above 13°C, others such as European seabass prefer warmer
waters and extend their range northward during summer months (Baudron et al. 2020).
Fish biomass shows complex responses, with the North Sea experiencing a 97% increase
in 2011, preceded by a 6% decline during anomalously high temperatures (Fredston et
al., 2023).

Climate projections under aggressive emission pathways indicate that
approximately 90% of marine life could face severe survival challenges (Boyce, et al.,
2022). Effects are particularly pronounced at higher trophic levels, where apex predators
exhibit greater sensitivity to climate-induced changes (Boyce et al, 2015). Rising ocean
temperatures have reduced marine fisheries productivity and limited sustainable fishery
yields (Gattuso et al., 2015, Cheung et al., 2016), with overfished populations showing
increased susceptibility to warming impacts (Free et al., 2019). While some cold-region
populations initially benefited from warming, these advantages are diminishing as
temperatures continue to rise (Portner, 2007), leading to a 4.1% decrease in maximum

sustainable yield from the 1930s to 2010 (Free et al., 2019).
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1.2 Impact of acidification on fish

Ocean acidification (OA) represents a significant anthropogenic perturbation of
marine chemical equilibria, primarily driven by atmospheric carbon dioxide (CO»)
absorption into oceanic systems. The fundamental process initiates when atmospheric
CO; dissolves in seawater, forming carbonic acid (H>COs3) which dissociates into
hydrogen ions (H") and bicarbonate ions (HCOs"). This process has led to a measurable
decline in seawater pH from pre-industrial levels of approximately 8.2 to current levels
of 8.1, representing a 30% increase in acidity due to the logarithmic nature of the pH scale
(NOAA).

The impacts of OA on fish are both direct and indirect, manifesting through
multiple physiological and behavioral pathways. Fish experience fundamental disruptions
to their acid-base regulation mechanisms, which affects their overall metabolic
functioning and aerobic capacity. Their sensory capabilities, crucial for survival
behaviors such as predator avoidance and food location, become compromised.
Furthermore, both reproductive success and developmental processes, such as gamete
maturation (egg/sperm development), fertilization success rates, egg hatching success,
embryonic development are significantly impaired (Le Quesne and Pinnegar, 2012). As
well as sensory capability impacts, leading to affecting species ability to: detect predators,
locate food sources and navigate their environment due to the changes in otolith (ear
bones used for balance and orientation) development (Le Quesne and Pinnegar, 2012).
These physiological alterations cascade into broader population-level effects, influencing
growth rates, survival probabilities, and reproductive output (Kroeker et al., 2013).

Behavioral changes are particularly pronounced in reef species, where OA impairs
neurological function, affecting habitat selection and migration patterns, which in turn

influences species distribution (Nagelkerken and Munday, 2016). Studies have
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documented species-specific impairment of physiological functions, particularly
regarding organisms' aerobic performance capabilities (Tai et al., 2021; Vargas et al.,
2017). Research has revealed significant alterations in behavioral patterns and cognitive
processes among various fish species, potentially affecting their ability to survive in their
changing environments (Moreira et al., 2022).

The situation becomes more complex when considering the interaction between
OA and other climate change stressors. For ectothermic organisms, rising ocean
temperatures create increased oxygen demands as they struggle to maintain basic
metabolic functions (Portner and Lannig, 2009). This elevated oxygen requirement
significantly reduces their aerobic scope—the crucial capacity to increase metabolic rate
above baseline maintenance levels. This reduced aerobic capacity has far-reaching
implications for life-history characteristics, including growth trajectories and maximum
attainable body sizes (Pauly and Cheung, 2017), which ultimately influence large-scale

population dynamics and ecosystem structure (Cheung et al., 2011).

1.3 Impact of oxygen depletion on fish

When oxygen levels drop in marine waters, fish face immediate physiological
challenges. Fish require dissolved oxygen to sustain their cellular respiration. Under
hypoxic conditions (typically defined as dissolved oxygen levels below 2 mg/L), fish
struggle to extract sufficient oxygen through their gills. This directly leads to increased
mortality rates (Tai et al. 2021), particularly among species that cannot quickly relocate
to better-oxygenated waters, as even brief exposure to severe hypoxia can cause
widespread fish die-offs in affected areas.

The ability to sustain efficient aerobic performance, meaning the capacity to meet
metabolic oxygen needs, is crucial for ectothermic animals to maintain their energy

balance, survive, and prevent a decline in fitness as temperatures rise.
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Fish response to low oxygen conditions are reflected in the metabolic impacts.
Rising ocean temperatures go along with the decrease of dissolved oxygen concentration
(Clarke et al. 2022). Metabolic rates increase with rising temperatures, which results in a
higher oxygen demand to sustain aerobic processes in warmer waters. The increased need
for oxygen may exceed the capacity of certain fish species to meet these demands, even
in pelagic zones with abundant oxygen (Deutsch et al., 2015). This imbalance can reduce
the aerobic scope—the difference between standard and maximum metabolic rates—
potentially triggering trade-offs among essential physiological functions reliant on
oxygen, such as growth and reproduction. When fish detect declining oxygen levels, their
bodies initiate a series of compensatory mechanisms. Under hypoxic stress shows reduced
swimming activity and feeding behavior to conserve energy (Moreira et al., 2022). Their
bodies shift toward anaerobic metabolism - a less efficient way of producing energy that
can't be sustained long-term. This metabolic stress has far-reaching consequences for their
overall health and survival. These effects compound each other: metabolic stress makes
it harder for fish to escape predators or find food, reduced reproduction rates mean
populations recover more slowly from losses, and the energy costs of relocating further
strain already stressed individuals. The resulting changes in fish distribution and
abundance can fundamentally alter marine ecosystems through bottom-up controls in a
food web.

The effects on growth and reproduction are equally concerning. It was revealed
that fish in oxygen-depleted waters show significantly reduced growth rates because they
must divert energy from growth to basic survival functions (Clarke et al., 2022).
Reproduction becomes particularly challenging - fish need substantial energy reserves to

produce eggs or sperm, and under hypoxic conditions, many species either delay
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spawning or produce fewer, less viable offspring. This creates a troubling feedback loop
where populations become less resilient over time.

In response to changing water conditions species tend to relocate to oxygen-rich
areas (Campana et al., 2020, Cheung, et al., 2015, Meyer-Gutbrod et al., 2021). When
fish move to new areas, they may face different predators, compete with resident species
for resources, or become unavailable to fishing communities that have historically

depended on them.

1.4 Study Area

1.4.1 Geographical characteristics

The North Sea is a shallow marginal sea located on the continental shelf of the
Atlantic Ocean. It is bordered to the west by the British Isles, including the Orkney and
Shetland Islands, to the east by the Scandinavian and Jutland peninsulas, and to the south
by the European coastline. It is surrounded by the Norwegian Sea in the north, in the east
- by the Baltic Sea through the straits Skagerrak, Kattegat, Eresund, Great Belt and Small
Belt, in the south-west - by the straits Pas de Calais, La Manche and in the north-west -
by the Atlantic Ocean by inter-island straits. It washes the coasts of several European
countries: the United Kingdom, France, Belgium, the Netherlands, Germany, Denmark
and Norway. The boundaries are the following: 61°N (connecting Norway to the Shetland
Islands), Southern boundary: 51°N (the Dover Strait), Western boundary: 4°W (along
British coast), Eastern boundary: 7°E (along Danish and Norwegian coasts). Its area is
565 thousand km?, with a surface area of 565 thousand km?, with the Atlantic Ocean in
the north-west. It is considered to be a rather shallow basin, as its mean depth is about 30
m, deepening up to 200 m in the northwest (OSPAR, 2000).However, it's important to

note that the depth varies significantly across different regions of the sea: the southern
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part is generally shallower (20-30 meters); the central region has moderate depths (50-
100 meters); the northern area, particularly near the Norwegian trench, is much deeper
(reaching depths of over 700 meters) (GEBCO). The deepest point is 725 m, located by
the Norwegian Trench, which serves as the main deepwater exchange with the North
Atlantic gyre (Stindermann and Pohlmann, 2011). Cyclones happen during winter months,
bringing more turbulent sea conditions. Oceanic forces that govern the North Sea's
conditions are closely tied to the polar jet stream, a major atmospheric current that
influences the trajectory and intensity of weather systems, shaping the overall wind and
wave dynamics in the area.

Regarding the separation of the North Sea according to the fishing region. it falls
within FAO Major Fishing Area 27, specifically designated as the Northeast Atlantic
region in the FAQO's global marine classification system. Within this broader area, the
North Sea comprises Subarea 4, which is further subdivided into distinct divisions for
more precise fisheries management and data collection. The specific divisions within
FAO Subarea (Fig. 1) 4 include three divisions: division 4.a: Northern North Sea, division

4.b: Central North Sea Division 4.c: Southern North Sea (FAO, 2024).

1.4.1.1 Hydrological Characteristics

The intrusion of high-salinity Atlantic Waters changes the overall hydrological
properties of the North Sea. Through two pathways: the Fair Isle Current between Orkney
and Shetland, and the East Shetland Atlantic Inflow along the western edge of the
Norwegian Trench with greater than 35 psu water masses enter the North Sea basin (Salt
et al., 2013). The inflowing Atlantic water follows distinct pathways: the northern inflow
follows the western slope of the Norwegian Trench, the central North Sea branch crosses
the North Sea plateau and the southern inflow enters through the English Channel (Otto

et al., 2022).
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Coastal regions, particularly in the southern and eastern North Sea, show reduced
salinity (30-34 PSU) due to riverine input (Radach and Patsch, 2007). The North Sea
receives substantial freshwater input from several major rivers, including the Rhine, Elbe,
and Thames. These rivers transport significant volumes of freshwater, sediments, and
nutrients into the marine environment, influencing salinity levels and nutrient dynamics.
The average annual freshwater discharge into the North Sea is approximately 300 cubic
kilometers, with the Rhine contributing about 70 cubic kilometers per year (Radach, G.,
& Pitsch, J., 2007). In shelf seas along continental margins, powerful tidal movements
are frequently observed, generating significant turbulent mixing. These tidal forces are
often so intense in certain regions that they prevent any seasonal surface buoyancy
changes from creating layered water columns, effectively blocking stratification from
developing. However, in locations where tidal mixing is less powerful, the water column
can separate into distinct temperature layers during spring and summer months, as solar
radiation warms the surface waters. Between these two distinct zones - the mixed and
stratified areas - lies a narrow boundary region known as the 'tidal mixing front' (van
Aken, et al. 1987).

The influx of freshwater from these rivers leads to the formation of river plumes—
areas where freshwater mixes with seawater—creating regions of reduced salinity and
elevated nutrient concentrations. These plumes are particularly prominent near river
mouths and can extend considerable distances offshore, depending on river discharge
rates and prevailing oceanographic conditions. For instance, the Rhine River plume can
influence salinity and nutrient levels over large areas of the southern North Sea
(EMODnet, 2000).

The presence of large river plumes significantly impacts the marine ecosystem.

The nutrient-rich freshwater promotes phytoplankton growth, forming the base of the
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marine food web. However, excessive nutrient input can lead to eutrophication, causing
algal blooms and subsequent oxygen depletion, which adversely affects marine life
(Jickells, 1998). In summary, riverine inputs as well as the ocean currents play a crucial

role in shaping the North Sea's hydrology and biology.

1.4.1.2 Currents

The North Sea's circulation system exhibits a complex pattern of surface and
bottom currents that play a crucial role in ecosystem functioning and species distribution.
The primary surface circulation follows a counterclockwise pattern, with Atlantic water
entering from the north between Scotland and Norway, and through the English Channel
in the south (Turrell et al., 1992). This inflow creates two main branches: the Norwegian
Coastal Current flowing northward along the Norwegian coast, and the central North Sea
circulation moving southward along the British coast (Otto et al., 1990). In can be seen
on Fig. 2. The surface currents are significantly influenced by wind patterns, particularly
during winter storms, which can temporarily alter circulation patterns and mixing depths.
Bottom currents follow a different pattern, with dense Atlantic water moving along the
Norwegian Trench, creating important pathways for nutrient transport and larval dispersal
(Stindermann and Pohlmann, 2011). The interaction between surface and bottom currents
becomes particularly important in areas of upwelling and downwelling, where nutrient
exchange supports high biological productivity (Hill et al., 2008). These circulation
patterns demonstrate significant seasonal and interannual variability, influenced by
atmospheric forcing, freshwater input, and larger-scale oceanic processes such as the
North Atlantic Oscillation (NAO), which affects the strength and position of the main
current systems (Mathis et al., 2015). Understanding these current patterns is crucial for
predicting changes in marine ecosystems and managing fisheries resources, particularly

as climate change influences oceanic circulation patterns (Holt et al., 2018).
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1.4.1.3 Frontal Systems

The North Sea's hydrography is characterized by several permanent and seasonal
frontal systems that significantly influence biological productivity and marine species
distribution. These fronts arise from differences in temperature, salinity, and water
column stratification (Huthnance et al. 2016). The Flamborough Head Front, located off
England's east coast, forms through interaction between mixed coastal and stratified
central North Sea waters, enhancing primary productivity through nutrient exchanges.
The Central North Sea Front develops in deeper regions during summer when solar
heating creates a sharp thermocline, supporting high biological productivity through the
combination of nutrient-rich bottom waters and light availability in upper layers (Pingree
& Griffiths, 1978).

The Skagerrak front, forming where saline North Sea waters meet fresher Baltic
waters, maintains a strong year-round salinity gradient that supports substantial plankton
growth and provides critical spawning habitat (Omstedt et al., 2004). The Norwegian
Coastal Current Front flows northward along the eastern edge, showing seasonal
variability influenced by riverine freshwater input, particularly during spring and early
summer. These frontal systems exhibit seasonal variations in intensity and structure due
to changes in solar radiation, freshwater input, and wind-driven mixing, while interannual
variability is modulated by climate fluctuations such as the North Atlantic Oscillation
(Holt et al. 2014).

The significance of these frontal systems extends to both biological productivity
and fisheries, with enhanced planktonic food availability sustaining fish stocks. However,
anthropogenic pressures, including climate change and eutrophication, threaten to alter
frontal dynamics, potentially affecting the entire marine ecosystem (Piet et al, 2009).

Seasonal stratification patterns are particularly pronounced in central and northern
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regions between May and September, creating a two-layer system crucial for nutrient
cycling and biological production, while southern regions remain well-mixed due to tidal

forces and shallow depths (Mathis et al., 2015).

1.4.1.4 Atmospheric circulation

Strong westerly winds play a critical role in wave generation across the North Sea,
producing powerful waves and swells that significantly impact shipping, fisheries, and
coastal erosion. This wave activity is further intensified when the Cyclones happen during
winter months, bringing more turbulent sea conditions. The wind patterns in the North
Sea are also closely tied to the polar jet stream, a major atmospheric current that
influences the trajectory and intensity of weather systems, shaping the overall wind and
wave dynamics in the area. These combinations of factors emphasize the intricate

interplay of atmospheric and oceanic forces that govern the North Sea's conditions.

1.4.1.5 Temperature Regime

The North Sea exhibits complex thermal dynamics characterized by distinct
spatial and temporal patterns. In its northern reaches, water temperatures demonstrate
remarkable stability, maintaining a range of 6-8°C near the seafloor throughout the annual
cycle. This thermal consistency stems from the significant influence of Atlantic water
masses and the greater depths in this region. The southern portion, however, presents a
more dynamic thermal regime owing to its shallower bathymetry and reduced mixing
processes (Anderson 2021).

The thermal structure varies significantly between seasons. During winter months,
surface temperatures fluctuate from a minimum of 2°C in northern waters to
approximately 7°C in southern regions. This gradient reflects the combined influence of

Arctic water intrusion in the north and the moderating effect of continental Europe's
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landmass in the south. Summer conditions bring more pronounced variations, with
surface waters warming to 12-19°C, following a distinct latitudinal gradient (Martinez-
Lopez et al. 2024). Bottom water temperatures are more stable but show spatial variation,
with the northern North Sea maintaining temperatures of 6-8°C year-round, while
southern regions experience greater seasonal fluctuation (Quante et al., 2016).

Climate change has emerged as a significant driver of long-term thermal
modifications in the North Sea ecosystem. Observations indicate a warming trend of 1-
2°C in mean annual temperatures since the mid-twentieth century, with the most
pronounced effects observed in the southern and central basins where shallower waters
respond more readily to atmospheric heating (Martinez-Lopez et al. 2024).

The interaction between temperature patterns and water column structure creates
distinct stratification regimes. The deeper northern sector maintains relatively uniform
vertical mixing due to strong tidal influences and wind-driven processes. Conversely, the
southern region develops marked seasonal stratification during summer months,
characterized by a well-defined thermocline separating warmer surface waters from
cooler bottom layers. This stratification pattern fundamentally influences nutrient cycling
and biological productivity throughout the ecosystem.

These physical parameters have profound implications for ecosystem functioning.
Enhanced stratification can restrict vertical nutrient transport, potentially affecting
primary productivity patterns. Additionally, the warming trend has triggered
biogeographical shifts, with warm-water species expanding their range northward while

cold-adapted organisms retreat to maintain their preferred temperature ranges.

1.4.2 Current Ecological Issues
The marine ecosystem of the North Sea has undergone profound transformations
in recent decades, revealing patterns that demand careful scientific scrutiny. Thermal
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measurements across multiple observation stations demonstrate an unprecedented
acceleration in warming rates since the late twentieth century. Data analysis reveals that
the water masses experience thermal enhancement at approximately 0.1°C annually,
transforming the traditional temperature regime of this continental shelf sea (Hoyer &
Karagali, 2016).

Ocean current dynamics within the North Sea basin have experienced notable
modifications. The influx patterns of Atlantic waters, which historically maintained
consistent routes, now demonstrate altered trajectories and intensities. These circulation
shifts potentially reorganize nutrient distribution patterns and influence larval transport
mechanisms, thereby affecting ecosystem functionality at multiple trophic levels.
Stronger and longer-lasting stratification periods have been observed, potentially
affecting nutrient cycling and primary production (Mathis et al., 2015).

Contemporary research indicates an increasing frequency of extreme weather
events affecting the North Sea region. Storm patterns show greater intensity and modify
seasonal timing, leading to enhanced mixing events that temporarily disrupt established
stratification patterns. These meteorological changes contribute to altered sediment
transport dynamics and coastal erosion processes.

Stronger and longer-lasting stratification periods have been observed, potentially
affecting nutrient cycling and primary production (Mathis et al., 2015). Modifications in
Atlantic inflow patterns have been documented, with potential implications for ecosystem
functioning (Quante et al., 2016).

The North Sea has been experiencing a gradual rise in sea level, consistent with
global trends driven by climate change (Calafat et al., 2022). Sea level changes in this

region are influenced by a combination of global factors, such as thermal expansion and
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glacial melting, and regional dynamics, including land subsidence and variations in ocean
circulation.

Over the 20th century, sea levels in the North Sea rose at an average rate of
approximately 1-2 mm per year (Wahl et al. 2013). This rate has accelerated in recent
decades, with recent studies estimating a rise of around 3—4 mm per year since the early
1990s. The increasing rate of rise aligns with global observations, reflecting heightened
contributions from melting ice sheets in Greenland and Antarctica and the expansion of
warmer ocean waters.

Regional studies reveal that the rate of sea-level rise varies across different parts
of the North Sea due to local factors such as land subsidence, which is more pronounced
in the southern areas, particularly along the coasts of the Netherlands and Belgium. In
contrast, some northern regions are experiencing relative stability due to post-glacial
rebound, where landmasses previously compressed by ice sheets are slowly rising.

The southern North Sea, characterized by shallow waters and densely populated
coastlines, is particularly vulnerable to sea-level rise. Coastal areas such as the
Netherlands and eastern England are already facing challenges from rising sea levels
combined with land subsidence. In the northern parts of the North Sea, near Norway and
Scotland, relative sea level rise is slower due to ongoing land uplift from post-glacial
rebound (OSPAR, 2009). However, even these regions are not immune to the impacts of
global sea-level rise over longer timescales.

Seasonal and interannual variations in sea level, driven by wind patterns,
atmospheric pressure, and storm surges, may amplify the impacts of long-term sea-level
rise. For example, storm surges combined with higher baseline sea levels are likely to
increase the frequency and severity of extreme flooding events, particularly during winter

months (OSPAR, 2009).

17 doi:10.6342/NTU202500202



Other ecological threats that the North Sea experiences are pollution with the
plastics from fishing nets and other hazardous substances and form river discharge,
Significant Reduction of Nutrients, oil spills and pollution from the vessels: touristic,
cargo, fishery and military (OSPAR, 2009).

The given overview of the list of unresolved problems that are happening in the
North Sea region and overfishing, and ecosystem change are among the most important

ones.

1.4.3 Economical Importance

The North Sea represents one of Europe's most vital marine ecosystems,
characterized by exceptional ecological and economic significance in the Northeast
Atlantic region (Engelhard et al, 2011). This semi-enclosed sea harbors over 200 fish
species (ICES, 2021) and generates approximately €3 billion annually through its
fisheries sector, establishing itself as a cornerstone of European maritime commerce
(ICES).

While overall fishing effort of commercial species decreased from 4 million
tonnes in the 1970s to about 2 million tonnes in 2020s, many high-value species maintain
stable population levels. The landing has seen a slight recovery after 2011, with species
such as cod (Gadus morhua), saithe (Pollachius virens), mackerel (Scomber scombrus),
blue whiting (Micromesistius poutassou), and sole (Solea solea) representing sustainable
commercial fish populations in the North Sea (ICES, 2022). However, demersal non-
target fish species face dramatic population decline, raising concerns as their conservation
is not a top priority for the fishery sector. For instance, the European Union has not
implemented specific fishing regulations for Atlantic wolffish (Anarhichas Ilupus)
populations in North Sea waters (Bluemel et al. 2021).
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The North Sea has emerged as a climate change hotspot, experiencing temperature
increases at rates exceeding global averages (Hilborn et al., 2023). The most significant
physical disruptions to the seabed are linked to mobile bottom-contacting fishing gear,
particularly in the eastern English Channel, nearshore zones of the southeastern North
Sea, and the central Skagerrak. Additionally, bycatch of protected species, such as
common dolphins in the western English Channel, poses risks to long-term population
viability (ICES, 2022).

The region's economic landscape is evolving, with the traditional hydrocarbon
industry operating alongside rapidly expanding renewable energy installations,
particularly offshore wind farms (Saraji & Akindipe, 2024). Maritime transport
infrastructure maintains crucial significance, facilitating approximately €25 billion in
annual economic activity through major port operations (European Commission, 2022).
Industry projections from WindEurope anticipate reaching 323 gigawatts of total wind
capacity by 2030, with 70 gigawatts from offshore installations.

Ocean energy presents additional growth potential, with projections of 337
gigawatts of global wave and tidal energy capacity by 2050. European installations could
contribute 100 gigawatts, potentially meeting 10% of European Union energy demands
(Interreg). These developments emphasize the necessity for comprehensive monitoring
and forecasting of the North Sea, balancing the region's bio productivity with resource

demands through effective policy implementation and technological advancement.

1.4.4 Fishery Regulations in the North Sea
As mentioned previously, the North Sea, a crucial marine ecosystem bordered by
six European nations, represents one of the world's most intensively fished waters. The

management framework has evolved significantly since 2020, particularly following
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Brexit, operating through a complex multi-jurisdictional system governed by the EU
Common Fisheries Policy (CFP) and bilateral agreements with the United Kingdom.

Current quota distributions reflect both historical rights and recent political
developments. In the pelagic sector, Norway holds 35% of total allowable catch for
species like herring and mackerel, while EU member states collectively manage 45%,
with Denmark (20%) and the Netherlands (15%) holding the largest shares. The UK
maintains 20% of pelagic quotas. Demersal quotas follow a different pattern, with the UK
holding 30%, Norway 25%, and EU member states collectively managing 45% (ICES,
2023).

The regulatory framework centers on Total Allowable Catches (TACs) and
technical measures, including gear specifications and seasonal closures. Management is
informed by scientific advice from ICES and aims to maintain Maximum Sustainable
Yield (MSY) levels. Recent assessments by OSPAR (2023) indicate that despite
improvements in individual stocks, marine fish populations across coastal, pelagic, and
demersal communities have not achieved satisfactory environmental status.

Climate change has emerged as a critical factor influencing stock dynamics. The
fishing industry has responded with substantial adaptations, with the pelagic sector
investing over €500 million in fuel-efficient vessels and adaptive strategies.

Conservation efforts focus particularly on vulnerable species. OSPAR has
identified 22 fish species facing significant threats, with only four species - houting, long-
snouted seahorses, allis shad, and salmon - benefiting from ecologically coherent
protected area coverage. Studies by Bastardie et al. (2022) demonstrate varied resilience
patterns across species, with cod populations emerging as a critical limiting factor due to

depleted stock levels. The cod's recruitment difficulties have broader ecosystem effects,
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with its Landing Obligation requirements leading to approximately 10% reduction in
catches of other species, demonstrating the interconnected nature of species management.

The management framework includes specific protective measures:

- Seasonal spawning closures (e.g., cod protection January 15 - March 31)

- Stock recovery plans with real-time closure systems

- Marine Protected Areas like the Dogger Bank and Fladen Ground

- National regulations complementing international measures

Current modeling indicates that while individual environmental disruptions show
limited impact on overall risk profiles, multiple simultaneous challenges create significant
risks to stock stability. However, these risks can be maintained below 20% through
adaptive management and conservative fishing mortality targets.

The success of this regulatory framework depends heavily on international
cooperation and science-based management approaches. Recent initiatives emphasize
ecosystem-based management, recognizing that effective marine conservation requires
understanding complex ecosystem interactions and coordinated action across
jurisdictions. This integrated approach becomes increasingly crucial as climate change

continues to influence species distribution and ecosystem dynamics in the North Sea.

2. Materials and methods

2.1. Data source

2.1.1. Biological data

Initial dataset consists of 188 species observed by bottom trawl datasets North Sea
International Bottom Trawl Survey (NS-IBTS) provided by ICES (Fig. S.1). The gear and
sampling protocols are described in ICES (2020a) and data was obtained on the Database
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of Trawl Surveys (DATRAS). DATRAS, maintained by the International Council for the
Exploration of the Sea (ICES), is a vital repository of data collected through various
national trawl surveys conducted by marine research institutions. Established in 2011,
DATRAS plays a key role in supporting ICES scientific efforts, including fish stock
assessments and ecological studies, while also being accessible to the broader public
(ICES, 2011). Such data on hauls are often used in fisheries management to ensure that
ecosystems are not overexploited. It aggregates trawl survey data from regions like the
North Sea, the Baltic Sea, and the Northeast Atlantic, providing essential insights into the
distribution and abundance of marine species. The main gears in the region for benthic
and demersal fish catch are otter trawls and beam trawls (ICES, 2022). Bottom trawling
surveys were held during the day, following individual standard operating procedures by
using fixed mesh size nets with a 30 min trawling duration at each station (Lai, et al,
2024). The depth range did not exceed 200 m, and since the trawling does collect fish at
depths ranging from the surface to the seabed, which means that bottom trawls may
occasionally capture pelagic species due to behavioral or habitat overlaps.

Datasets were rasterized as one record per grid cell per time. Fish species were
marine, by their habitat preferences they were divided into demersal, which were the
dominant group, with fewer bathydemersal, pelagic, benthopelagic and benthic species
based on “Fishbase” life-hystory tools repository (Froese, R. and D. Pauly, 2024). The
grid consisted of 221 cells, from 49° N - 62 °N, 49°W — 13° E on 1° x 1° (60arcmin).
Timescale included records for the 1983 - 2024 period of the first quarter of the year. The
data consisted of presence (0) and absence (1) matrix, referring to the species occurrence
data. Each observed cell on the map depicts the hauls’ location (Fig. 3).

Filtering was done based on several assumptions. Firstly, only those species from

the entire dataset were selected that had long-time observations, that was more or equal
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to 30 years of consistent observations in the given period. It means that at least 1 grid-cell
was observed for each year (Fig. S.1). This reduced the number of unique species from
188 to 56. Secondly, a linear regression model for a temporal trend has been applied to
see how the occurrence changed over time for each species. I extracted only those species
that did show change: either increase in the number of occurrence grids or decrease
throughout 1983-2024. It was done based on the statistical coefficients, obtained from the
regression model with the following thresholds: slope (main coefficient) > 0.5 in absolute
value, r? > 0.5, the significance (*) replicate the p-values as: p-value < 0.001 ~ *** (Table
2).

Such a time-dependent threshold was taken as, firstly, it represents a timeframe
long enough to capture natural climate variability while filtering out shorter-term weather
fluctuations. The World Meteorological Organization (WMO) established this as a
standard baseline period because it effectively balances between being long enough to
include year-to-year natural variations and climatic cycles, but short enough to show
longer-term climate trends. It typically spans multiple generations of most species,
allowing for observation of population-level responses to climate variations and captures
important climatic oscillations and cycles such as North Atlantic Oscillation (NAO), that
has a big impact on the North Atlantic and the North Sea particularly (Stenberg, et al.
2015). Thus, NAO exhibits variability across multiple timescales: can fluctuate intra-
seasonally, showing changes within weeks or months. However, the most prominent and
well-documented variations may occur inter annually: year-to-year variations that are
significant for regional climate pattern, decadal (7-10 years) and multi-decadal: exhibits
longer-term trends spanning 20-30 years (Deser et al., 2017). Also, The Central Limit
Theorem states that for a sufficiently large sample size, the sampling distribution of the

sample mean approaches a normal distribution, regardless of the population's distribution.
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While "sufficiently large" can vary, 30 samples are widely regarded as the minimum
threshold for the CLT to hold true, making it a standard benchmark in many statistical
analyses (Anderson, C.J. 2010). The graph in Fig. 5 illustrates significant shifts in species
abundance, with notable changes in community composition indicated by crossing trend
lines. Demersal species (e.g., Eutrigla gurnardus, Amblyraja radiata) and pelagic species
(e.g., Engraulis encrasicolus, Sardina pilchardus) show contrasting distribution patterns,
suggesting potential climate-driven community reorganization.

Species were also categorised with their trophic level (Fig. 6, Table 1), based on
the available data from Fishbase tools (Froese & Pauly, 2024). It represents species’
position in the food web: primary producers (~1.0) - phytoplankton and algae, which
produce their own energy via photosynthesis; primary consumers (~2.0) - zooplanktons,
that consume primary producers; secondary consumers (~3.0) - carnivores or omnivores
fish that feed on herbivores; tertiary consumers (~4.0 and above) - big fish and marine
mammals - predators that feed on other carnivores (Pauly et al, 1998). Trophic levels offer
valuable insight into a species' ecological position, diet, and the broader dynamics of
marine ecosystems. Species with higher trophic levels occupy top positions in the food
chain, playing a crucial role in regulating populations of species at lower levels.
Conversely, species at lower trophic levels often serve as prey for larger predators. Based
on the figure I can make some notable observations. Merluccius merluccius (European
hake) has one of the highest trophic levels, around 4.2, indicating it's a top predator.
Sebastes viviparus (Norway redfish) shows the widest range of uncertainty in its trophic
level. Lower trophic level species like Engraulis encrasicolus (European anchovy) and
Buglossidium luteum (solenette) are around 3.0-3.2, suggesting they feed on smaller prey.
Most species cluster between trophic levels 3.5-4.0, indicating they are intermediate

predators.
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2.1.2 Environmental data

Earth System Models (ESMs) represent one of the most sophisticated tools for
understanding climate change, integrating complex interactions between the atmosphere,
oceans, land, and ice systems. These models, developed by leading climate research
institutions, come together in the Coupled Model Intercomparison Project (CMIP), a
collaborative initiative that has evolved through six phases over three decades to improve
climate predictions and understanding.

For this research, two crucial time periods were obtained: historical data from
1983-2014, which allows us to validate model accuracy by comparing predictions with
actual observations, and future projections spanning 2015-2100, which help us anticipate
potential climate changes. The data, accessed through the German Climate Computing
Centre's Inter-Sectoral Impact Model Intercomparison Project (ISIMIP), provides a
detailed global view with a spatial resolution of 1°x1° (approximately 111 km at the
equator), allowing for comprehensive analysis of regional climate patterns (NOAA,
National Ocean Service, 2024).

Here is specifically utilized climate projections from the Institute Pierre Simon
Laplace (IPSL) Climate Model version 6A-Low Resolution (IPSL-CM6A-LR), a state-
of-the-art model developed as part of CMIP6. Since future human activities and resulting
greenhouse gas emissions cannot be predicted with certainty, scientists have developed
various socio-economic scenarios to explore possible futures (Davies et al., 2023).

These scenarios, known as Shared Socioeconomic Pathways (SSPs), represent

different possible trajectories for global development:

e SSPI1-2.6 ("Sustainability"): This optimistic scenario envisions a world that
embraces sustainable practices and aggressive climate protection measures. It
assumes we'll limit radiative forcing (the change in Earth's energy balance) to 2.6
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W/m? by 2100, successfully keeping global temperature rise below 2°C. This
pathway represents a fundamental shift away from fossil fuels toward renewable
energy sources and sustainable development practices.

e SSP3-7.0 ("Regional Rivalry"): This middle-range scenario portrays a more
fragmented world where international cooperation declines and regions focus on
achieving energy and food security within their borders. With radiative forcing
reaching 7.0 W/m? by 2100, this pathway was specifically designed to fill a crucial
gap in our understanding of moderate-to-high emission scenarios (O'Neill, et al.,
2016).

e SSP5-8.5 ("Fossil-fueled Development"): This represents the most challenging
scenario for climate change, where global development continues to rely heavily
on fossil fuels, leading to radiative forcing of 8.5 W/m? by 2100. This pathway
helps us understand potential worst-case outcomes if minimal climate mitigation

efforts are implemented.

ISIMIP3b simulation round was selected the for several key advantages: it
incorporates these detailed SSP scenarios, uses sophisticated bias-correction techniques
to improve the accuracy of climate model data, and provides detailed sector-specific
simulations that are particularly valuable for understanding impacts on marine
ecosystems and hydrology. The specific model configuration that was used (ensemble
member rlilplfl) accounts for complex interactions between Earth's major systems,
including atmospheric circulation patterns, ocean dynamics, land surface processes, and
sea ice behavior (Boucher, O. et al, 2020).

Here I applied the r1ilp1fl ensemble member, employed by ISMIP3 as ocean data
from the Earth System Model IPSL-CM6A-LR, which includes:

e rl: First realization,
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e il: Initialization method,
e pl: Physics configuration,
e fl1: Forcing configuration.

This model integrates interactions between the atmosphere, ocean, land surface,
and sea ice (Boucher et al., 2020). Advantages of the data include global consistency,
high resolution, and coverage of both historical periods (e.g., pre-2015) for validation and
future climate scenarios extending to 2100 or beyond (Biichner, 2024). The rlilplfl
ensemble member includes historical forcing (1983-2014) followed by projections
aligned with SSPs.

It's important to note that while these models represent understanding of climate
systems, they still face uncertainties, particularly regarding human behavior and industrial
development. These uncertainties affect ability to precisely predict future emissions and
land use changes (Davies et al., 2023), which is why examining multiple scenarios
provides a more complete picture of possible future outcomes.

The six environmental variables included Sea Surface Temperature (SST, °C), Sea
Bottom Temperature (SBT, °C) (Fig. 7A, B), sea surface pH, sea bottom pH (Fig. 8A, B),
sea surface concentration of dissolved oxygen and sea bottom concentration of dissolved
oxygen (mol m—3) (Fig. 8A, B). Surface variables refer to the 1 (m), and the bottom - to
one that follows exactly the sea bathymetry and utilizes the maximum depth of the place.
For all the extracted data, a monthly time step was selected, filtered as the mean of the
first quarter: January-February-March (Q1), and the selected region of the North Sea (49°
N - 62 °N, 4°W — 13° E). Later the mean value was calculated for the Q1 and used in
the following steps for visualization and statistical modelling. Further documentation can

be found at ISIMIP.
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Considering that most of the species in the dataset are demersal and pelagic, I also
selected bathymetry as the predictor variable from ETOPO Global Relief Model by NCEI
NOAA. However, later experiments have shown it's not useful.

For this thesis, the decade of 2015-2024 that had real-world trawling data, still
had to be combined with the environmental parameters, even though ISIMIP provided
only simulations under three SSPs for these years. In this case, I claim that the SSP3-7.0
was the one that represented the real-world situation better than the SSP1-2.6 and SSP5-
8.5. (Sarofim et al., 2024; Shiogama & Fujimori et al., 2023). At the same time, it is
important to mention that significant differences between the scenarios are unforeseen for
the current year as they start to occur only from the middle of the century 2050 from the
simulations, and the gaps become more severe with the time, that is why for the second
decade of the 21st century the range between provided scenarios was minor.

The ISIMIP3b provides crucial environmental data that can be integrated into
fisheries prediction frameworks. These variables offer high-resolution temporal and
spatial information that can significantly enhance common understanding of fish

distribution patterns and improve fishing location predictions.

2.2 Statistical methods

2.2.1 Species Distribution Models

Species distribution models (SDMs) represent a crucial methodological approach
for exploring the effects of future global change on biodiversity (Jones et al. 2012). This
modeling approach synthesizes ecological theory with statistical methods to map and
forecast species distributions across landscapes and timeframes. The theoretical
foundation builds on Hutchinson's (1957) concept of ecological niches, where the

fundamental niche represents the complete range of environmental conditions supporting
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species survival, while the realized niche reflects actual species distribution constrained
by biological interactions and competitive pressures (Austin et al., 1990; Guisan &
Zimmermann, 2000).

The modeling landscape encompasses two primary approaches: data-driven
correlative models analyzing statistical patterns (Jarnevich et al. 2015), and mechanistic
models constructed on theoretical biological principles and calibrated with empirical data
(Essington et al. 2022). To enhance predictive capabilities, ensemble modeling strategies
are often employed, synthesizing outputs from multiple individual models through
methods ranging from straightforward averaging to sophisticated weighted combinations
(Aratjo & New 2007).

The selection of appropriate modeling techniques depends significantly on data
characteristics and research objectives. While presence-absence data traditionally
provides robust predictions, presence-only data can effectively model potential habitat
distribution, particularly when absence data may be unreliable due to sampling limitations
or species mobility (Pearson & Dawson, 2003). Analysis by Valavi et al. (2021) reveals
that model fitting methods significantly influence performance, with individually tuned
model ensembles showing superior results compared to default framework settings.

Model complexity presents an important consideration in SDM development.
Studies suggest that more complex models often demonstrate superior performance at
finer spatial resolutions (Elith et al., 2006; Wisz et al., 2008). However, increased
complexity can reduce generalizability and transparency - crucial factors for practical
application and peer review (Drake et al., 2006). The challenge lies in striking an optimal
balance between model sophistication and broad applicability.

SDMs have proven instrumental in predicting species responses to climate

change, guiding conservation efforts, and informing policy decisions. However, future
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projection uncertainties encompass climate model accuracy at various scales and the
unpredictability of extreme events. Ecological uncertainties present additional challenges,
including variations in population responses, evolving species-environment relationships,
and potential evolutionary adaptation (Davies et al., 2023). Success in SDM
implementation relies on acknowledging these uncertainties while maintaining scientific
rigor throughout the modeling process.

In this thesis I incorporated six different statistical methods (SDMs), including
one "tree-based" method - Random Forest (RF), 3 regression methods - Generalised
Linear Model (GLM), Generalised Boosting Model (GBM), Multivariate Adaptive
Regression Splines (MARS) and two classification methods - Classification Tree
Analysis (CTA), Flexible Discriminant Analysis (FDA). Initially I tested one more
regression method - GAM, however it showed the lowest performance metrics that is why
it was decided not to include this method in the models. Each model was run
independently 15 times, producing 90 models for each temporal scenario.

The Generalized Linear Model (GLM) serves as a foundational approach,
extending traditional linear regression by accommodating non-normal response
distributions and non-linear relationships through link functions. While GLMs excel in
providing clear statistical inference and handling both continuous and categorical
predictors, they may struggle to capture complex, non-linear species-environment
relationships. Their strength lies in their interpretability and computational efficiency,
though they work best when relationships follow assumed distribution patterns.

The Generalized Boosting Model (GBM), also known as Boosted Regression
Trees, represents a more sophisticated approach, building upon decision trees through a
sequential boosting algorithm. Each new tree focuses on the residuals of previous trees,

enabling the model to capture complex, non-linear relationships and interactions between
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predictors automatically. While GBMs often produce more accurate predictions than
simpler models, they require careful parameter tuning and larger datasets for stable
performance. Their complexity can make interpretation more challenging than GLMs.

Multivariate Adaptive Regression Splines (MARS) strikes a balance between
GLMs and GBMs by combining regression splines with stepwise model selection. MARS
automatically determines optimal locations for breaks in predictor variables and fits
piece-wise linear functions between these breaks. This approach proves particularly
effective for ecological threshold responses while maintaining better interpretability than
GBMs. However, MARS may struggle with very complex, smooth relationships in
species-environment interactions.

Classification Tree Analysis (CTA) creates decision trees through recursive
binary splitting of data based on predictor variables. While CTAs offer intuitive
interpretation and handle non-linear relationships well, they may oversimplify complex
ecological relationships and are prone to overfitting if not properly pruned. Their step-
function predictions can be useful for identifying ecological thresholds but may miss
finer-scale patterns in species distributions.

Flexible Discriminant Analysis (FDA) extends traditional linear discriminant
analysis by incorporating non-linear transformations of predictors. This approach works
particularly well with presence-absence data and multiple predictors, offering a good
balance between model complexity and interpretability. FDA proves more robust to
violations of normality than traditional discriminant analysis but may struggle with very
sharp ecological boundaries.

The key distinction between these models lies in how they handle complexity and
their assumptions about species-environment relationships and the final choice of the

model relies on the researcher — decision maker. GLMs provide a solid foundation but
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may miss complex patterns, while GBMs excel at capturing intricate relationships but
require careful tuning. MARS offers a middle ground, with good interpretability and
flexibility. CTAs provide clear decision rules but may oversimplify relationships, and
FDA extends traditional discriminant analysis to handle non-linear patterns while

maintaining interpretability.

2.2.2 Data processing

The scope of investigation needs careful consideration, particularly in determining
appropriate spatial and temporal boundaries that align with the species' biological
characteristics. The strength of the model heavily depends on selecting appropriate
environmental variables, which should be guided by historical climate impact analysis
and thorough understanding of species' physiological responses to both climatic and non-
climatic factors. Overall, Davies et al. 2023 suggest selecting models in accordance with
ecological principles, and not only with SDMs’ predictive power for contemporary
distributions.

I consider that the sampled areas—whether groups of cells or individual grid
cells—may not fully represent the real-world situation. This is because it cannot be
guaranteed that all fish being ‘present’ at the trawling stations were caught, and that
absence of certain species might be due to random factors, but not their actual absence.

SDMs often rely on pseudo-absence methodology when true absence data is
unavailable due to the challenges of confirming species non-occurrence through rigorous
sampling, particularly for mobile or elusive species. The approach involves generating
artificial absence points to complement presence data, enhancing the model's predictive
capabilities. Different strategies exist for creating these pseudo-absences, ranging from
simple random selection outside known presence areas to more sophisticated
environmental and geographical exclusion methods. Random selection, which works
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particularly well with Generalized Linear Models (GLMs), involves randomly
distributing points across areas where the species hasn't been recorded. More complex
approaches combine environmental and geographical criteria, especially useful for
machine learning techniques like Random Forests and Boosted Regression Trees. The
choice of pseudo-absence generation method should also consider potential sampling
biases in presence data - random selection works best with unbiased presence data, while
stratified approaches are more suitable when dealing with geographical or climatic
sampling biases. For optimal results, the pseudo-absence generation approach should be
tailored to both the specific modeling technique being used and the characteristics of the
available presence data, with regression models generally favoring random selection and
machine learning models benefiting from combined environmental and geographical
exclusion strategies (Barbet-Massin et al., 2012).

That is why it was decided to apply the pseudo-absence method. ‘“Pseudo-
absences (PA) (sometimes also referred as background data) are NOT to be considered
as absences and rather represent the available environment in the studied area. They will
be used to compare observed used environments (represented by the presences) against
what is available.” (Cran-R project). It has also been proposed that presence—absence data
enhances an SDM's performance, as indicated by test statistics, leading to more
dependable predictions (Brotons et al. 2004). Here was used the SRE method: a Surface
Range Envelope model, that randomly selects PA outside this envelope, i.e. in conditions
(combination of explanatory variables) that differ in a defined proportion from those of
presence points.

This strategy assumes that the realized niche of the species has been fully sampled,
either geographically or environmentally. Also, utilizes grid cells where species

occurrence data is unavailable (marked as N/A) as potential locations for pseudo-absence
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generation. The protocol employs a systematic selection process whereby 3 times the
number of presences is employed as PA through the whole 42-year period of
observations. All “0” that were assumed as the true absence before were replaced by N/A
that suppose possibilities of being mistaken in assuming the absence of the fish in species
location. Eventually, the grid consists of “1” - presences, “0” - absences and N/As. The
resampling was conducted once for each species with accordance to the certain
environmental parameters’ combination, since the SRE method does not have random
sampling and is aware of the environmental conditions. This approach facilitates the
development of robust species distribution models by providing a structured framework
for absence data generation in areas where actual species occurrence data is unavailable.

The modeling approach was based on the initial hypothesis. Fish species were
divided into two groups based on the habitat area: demersal (Amblyraja radiata,
Anarhichas lupus, Arnoglossus laterna, Buglossidium luteum, Callionymus maculatus,
Chelidonichthys cuculus, Chelidonichthys lucerna, Cyclopterus Ilumpus, Eutrigla
gurnardus, Merluccius  merluccius, Mullus surmuletus, Mustelus asterias,
Myoxocephalus scorpius, Raja montagui, Scyliorhinus canicula, Sebastes viviparus - 16
in total) and pelagic (Argentina sphyraena, Engraulis encrasicolus, Sardina pilchardus,
Scomber scombrus, Trachurus trachurus - 5 in total). Environmental variables were
grouped in accordance, respectively, having the assumption that pelagic species are more
prone to the conditions of the surface water conditions, while demersal and benthic
species will be firstly affected by the bottom layer water state. In accordance with this, 5
pelagic species were put into environmental variable combinations with surface pH +
SST, surface DO + SST, surface DO + surface pH, surface pH + surface DO + SST.

Similarly, 16 demersal species were associated with the grouping for models bottom pH
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+ SBT, bottom DO + SBT, bottom DO + bottom pH, bottom pH + bottom DO + SBT,
and two single-models with SST and SBT only (Table 3).

Implying correlation matrix between environmental variables helped to exclude
high collinearity between surface and bottom variables that did not allow to properly
distinguish species’ range response to the independent influences (Bosch et al. 2018), and
to provide more correct explanatory parameters that determine fish life cycle on a certain
depth. As a result, strong positive correlations are observed between surface and bottom
oxygen concentrations (02_surf and 02 bot) as well as between surface and bottom pH
levels (ph_surf and ph_bot) equal to 0.88, for both pairs respectively (Fig. 10A, B). This
was so, as the model in ISIMIP used certain equations to get the bottom water
characteristics, as well as that the deepwater conditions are a proxy of the surface
conditions. Keeping these highly correlated variables could lead to several statistical
issues after conducting empirical experiments. Including both surface and bottom
variables artificially inflated the model's confidence in parameter importance and the
model struggled to distinguish the individual effects of surface vs bottom pH and
Dissolved Oxygen, leading to unstable coefficient estimates and inflated standard errors
A notable negative correlation also exists between surface temperature (sst) and surface
oxygen concentration (02_surf) -0.91 and between bottom oxygen (02 _bot) -0.86 explain
a clear inverse relationship: as water temperature increases, the solubility of oxygen
decreases. At the same time I also consider that such strong negative correlation and
means including both could mask their true individual effects, so it was important to also
apply a single- temperature model.

Eventually, it was decided to reject the hypothesis of using the depth parameter to
see its impact on the species, since it brought a lot of white noise, due to the fact that the

North Sea's relatively low depth (median is less than 90 m) makes it important to
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distinguish the areas of different bathymetrhy, thus most of fish were caught in the area
below 100m , so this range from the near-to-surface layers had the higher variable
importance and remained the same for different model and different species. Moreover,
depth displaced its importance over environmental parameters in ‘single-model’, not
allowing for a comprehensive estimation of the real projected role of ambient
environmental conditions (pH/DO/Temperature). = Mean depth shows moderate

correlations with oxygen and pH variables.

2.2.3 Ensemble modelling

To compute Species Distribution Models (SDMs), the R package BIOMOD2
(version 4.2-5.2, Thuiller et al., 2024) was employed within an ensemble modelling (EM)
framework. This method minimizes prediction uncertainty caused by variations among
individual models (Elith & Graham, 2009) by integrating outputs from 6 different
algorithms to identify consistent patterns (Breiner et al., 2015; Marmion et al., 2009).

I implemented an ensemble modelling framework, with the following objectives:
to minimize sampling biases for generating pseudo-absences, to enhance model
evaluation processes, and to account for methodological uncertainties by integrating
various modelling techniques. The resulting predictions were rasterized, with cell values
ranging from 0 to 1, where higher values correspond to greater habitat suitability and
higher probabilities of species presence. To reduce uncertainties associated with the
selection of a single algorithm, ensemble modelling was applied. To ensure the reliability
and robustness of SDM predictions, validation metrics such as the Receiver Operating
Characteristic (ROC) curve, Accuracy, and the True Skill Statistic (TSS) are commonly
employed.

The Receiver Operating Characteristic (ROC) curve is a widely used tool for

evaluating SDM performance. It plots the true positive rate (sensitivity) against the false
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positive rate (1-specificity) across a range of threshold values. The area under the ROC
curve (AUC) provides a single metric that summarizes the model's discriminatory ability
(Hanley & McNeil, 1982). An AUC value of 0.5 indicates random performance, while
values closer to 1 reflect a highly accurate model (Fielding & Bell, 1997). For fish
distribution studies, AUC is particularly useful because it is threshold-independent,
making it ideal for assessing models predicting presence-absence patterns over varying
environmental gradients.

Accuracy is another straightforward and interpretable metric that measures the
proportion of correctly classified observations among all predictions. It combines true
positives and true negatives into a single value, providing a general sense of the model's
predictive performance. In fish distribution models, where absences often outnumber
presences, researchers may need to complement accuracy with other metrics to avoid
biased assessments (Allouche et al., 2006).

The True Skill Statistic (TSS) is a threshold-dependent metric that overcomes
some of the limitations of accuracy. TSS accounts for both sensitivity (true positive rate)
and specificity (true negative rate) and is calculated as: A TSS value of 1 indicates perfect
performance, while a value of 0 reflects performance no better than random. Unlike
accuracy, TSS is not affected by prevalence, making it especially valuable for ecological
applications where species occurrences are rare. For modeling fish distributions, TSS
ensures that the model's ability to correctly predict both presences and absences is equally
weighted, providing a balanced evaluation (Pontius & Millones, 2011).

The binary transformation was performed by applying the threshold that
optimized the True Skill Statistic (TSS; Allouche, Tsoar & Kadmon, 2006). TSS is

calculated as the sum of sensitivity and specificity minus one, where sensitivity represents
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the proportion of correctly predicted presences, and specificity denotes the proportion of
correctly predicted absences (Barbet-Massin et al, 2012).

This multi-metric approach allowed us to identify potential weaknesses in model
predictions and improve their robustness. Thus, not all the models did show good model
allegiance and high metrics. That is why I had to include only “best” species based on the
statistical outputs and understanding of ecological processes. I excluded SDMs with
performance metrics lower than 0.75 and used TSS as the main performance metric.

Cross-validation helps in evaluating model projection accuracy and confirms
projection uncertainty intervals (Yates et al., 2022). That is why to prevent possible biases
a k-fold cross-validation run was performed for each algorithm for 5 different groups of
environmental variables and all selected 21 species. k-Fold Cross-Validation is a method
used to evaluate a machine learning model's performance. Model validation typically
employs a technique where the dataset is divided into separate portions. The model is
trained using one segment of the data and then tested against the reserved portion to assess
its predictive accuracy. Researchers can choose between different partitioning methods,
such as removing individual data points one at a time ('leave-one-out' approach) or
dividing the data into larger segments ('k-fold' method). Each approach carries distinct
statistical consequences that must be carefully considered (Yates et al. 2022).

The model is trained and tested k times—once on each fold as a test set while the
remaining k—1 folds are used for training. This ensures each data point is used for both
training and testing. If k=5 and the process is repeated 3 times, the validation procedure
is extended as follows: Single k-Fold Execution represents the dataset randomly divided
into 5 folds (or subsets), In each iteration, one-fold is used as the test set, and the other 4
folds are used as the training sets. This results in 5 iterations per execution (one for each

fold). By repeating the 5-fold cross-validation 3 times, the dataset is reshuffled differently
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before each 5-fold split. This ensures randomness and helps provide a more robust
estimate of model performance by reducing variability caused by a particular data split.
In total runs it results so that Each 5-fold cross-validation involves 5 runs, summing 15
runs for each environmental variable and 90 models in total for each species. Repeating
k-fold cross-validation ensures the results are not overly dependent on how the dataset
was initially split. It provides a better estimate of the model's generalization ability by
averaging performance over multiple random splits. Other key advantages include
reduced bias, improved stability through the Repeated runs and enhanced generalization
by providing a comprehensive assessment of the model's ability to perform on unseen
data. From each fold (15 iterations with 6 different SDMs) the ensemble of models was
constructed. Within each ensemble, the mean of all model predictions was utilized. This
process was repeated 5 times for different environmental combinations and applied to all
21 species.

Following the complete training process, the optimal model for each fish species
was selected based on TSS metric scores. Individual models were compared both against
each other and against the ensemble. The final statistics of the "winning" parameter
combinations and models were subsequently analyzed. This comprehensive modeling
framework enabled robust evaluation of potential habitat redistribution patterns,

enhancing common ability to assess ecological responses to environmental change.

2.2.4 Future predictions

Upon selecting the most suitable combination of environmental variables - unique
for each species, future projections were applied. A grid cell of 1x1 degree is selected,
then environmental variables for this grid for this year are selected and prediction of
probability is applied. It included as the inputs the projected environmental conditions,
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and the output showed the probability of occurrence ranging from 0 - 1, showcasing the
potentially suitable (or unsuitable) territory for species occurrence.

Another method for explaining the species movements was distributional
centroids. The centroid calculation in spatial ecology represents a fundamental approach
to summarizing complex spatial distributions into a single representative point. In species
distribution modeling, centroids serve as valuable metrics for tracking spatial shifts in
species ranges across different environmental scenarios. When applied to species
distribution predictions, the centroid represents the geographic center of a species'
predicted suitable habitat, enabling researchers to quantify range shifts by comparing
centroid positions between current and future environmental conditions. This approach is
particularly useful for analyzing directional trends in range shifts and measuring the
magnitude of displacement in species distributions, offering insights into potential
environmental change impacts on species' geographic patterns. Centroid analysis can be
applied to various types of spatial data, making it a versatile tool for studying changes in
species distributions across different temporal and environmental contexts. For this
analysis, | implemented centroid calculations using the ferra package in R. To minimize
the impact of potential outliers in the predictions and ensure more robust results, averaged
centroids from the first five years (2024-2029) were used as the starting point and the last
five years (2096-2100) as the endpoint of this temporal analysis. The distributional
centroids shifts were recorded from year to year, and the final vector was aggregated as

the mean tendency of movement magnitude and direction from 2024 to 2100.

40 doi:10.6342/NTU202500202



3. Results

3.1. SDMs performance

The species were categorized into two ecological groups - pelagic and demersal.
For each group, environmental variables were assigned based on their primary habitat:
surface variables for pelagic species and bottom variables for demersal species. SDMs
were then developed for each individual species. The analysis resulted in five distinct
modeling experiments, reflecting the model comparisons for both pelagic and demersal
species, that will be described in following chapters.

Carefully conducted modeling for each species showed general good model
alliance between different SDMs among each of the methods and for different
experiments. Single-model (only SBT/SST) response curves and their ensemble outputs
highlighted the most important environmental parameters and tolerance intervals of
observed parameters during the season (Q1).

Environmental suitability within a species' preferred parameter ranged
consistently high, with a probability of (environmental) suitability equal to 1. When
environmental conditions fall outside the observed minimum and maximum thresholds
(which represent the species' critical tolerance limits), the suitability value drops to 0.
Between these extremes, the environmental suitability demonstrates a linear decline. The
final habitat suitability is determined by calculating the geometric mean across all
probability distributions for each environmental predictor, where each predictor is given
equal weight in the calculation. This approach assumes that all environmental parameters
contribute equally to determining the overall habitat suitability for a given species (Jones
et al., 2012).

Comparing all the metrics for each of the SDMs for different groups of
environmental variables for all the species was conducted. For instance, demersal species
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(Fig. 12A) exhibited slightly different patterns, with validation scores generally ranging
from 0.70 to 0.95. The model performance was notably stable when using SBT as the best
predictor, like pelagic species. However, the combination of pH, bottom oxygen, and SST
in other experiments (SST+pH bot+0O2 bot) showed more varied results across
algorithms, suggesting that bottom-dwelling species' distributions might be influenced by
a more complex interplay of environmental factors. GLM and RF showed lowest
performance and highest range among lower performance, especially when combining
multiple environmental variables, with scores occasionally dropping below 0.80.

In contrast, for pelagic species the validation scores predominantly ranged
between 0.75 and 0.95, with the highest performance observed when using sea surface
temperature (SST) as a predictor variable (Fig. 12B). The ensemble mean (E) algorithm
consistently demonstrated superior performance across different variable combinations,
particularly when incorporating SST, with validation scores reaching 0.95. However, the
combination of SST and surface Oxygen showed the second-best result 0,89+0,03,
following the same pattern as the SST-model.

The species distribution modeling approach generates spatial predictions by
combining multiple environmental envelopes through multiplicative integration across
each grid cell of the study region. Each cell receives a suitability score ranging from 0 to
1, indicating how well the local environmental conditions match the species' requirements
(Jones, M. C., et al., 2012). The model employed a trapezoidal response curve for each of
the species to characterize the relationship between species presence and observed
environmental parameters. This trapezoidal shape effectively balanced the needs of both
resident species, which typically showed single-peaked annual distribution patterns, and
migratory species, which often displayed dual-peaked distributions. The environmental

envelopes were constructed by analyzing the relationship between documented species
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occurrences and corresponding environmental conditions, establishing both absolute
tolerance limits and optimal ranges for each environmental variable which is based on the
initial input data. The results are provided in the Supplementary materials.

In Tables 4-5 I highlight the best combination (type) of environmental parameters
from ensemble model results for each species in the two groups.

The validation performance analysis of SDMs revealed distinct patterns between
pelagic and demersal species, with both groups showing notably high TSS (True Skill
Statistic) values across different model configurations. For the pelagic species group,
consisting of five species, the SST (Sea Surface Temperature) configuration emerged as
the optimal predictor, demonstrating consistently superior performance with TSS values
ranging from 0.949 to 0.951 (Table 4-5). Particularly, Trachurus trachurus, Scomber
scombrus, and Engraulis encrasicolus exhibited the highest validation scores (TSS =
0.951), while Sardina pilchardus and Argentina sphyraena showed marginally lower but
still robust performance (TSS = 0.949).

The demersal species analysis, encompassing 16 species, demonstrated a similar
pattern with SBT (Sea Bottom Temperature) configuration consistently outperformed
other parameter combinations. The validation scores for demersal species ranged from
TSS = 0.945 (Chelidonichthys lucerna) to TSS = 0.955 (Merluccius merluccius and
Eutrigla gurnardus), indicating robust model performance. The Ensemble (E) modeling
approach proved to be the most effective for nearly all species, however, the difference
between CTA and Ensemble for this species is very low: Myxocephalus scorpius showed
optimal performance under CTA with TSS = 0.949.

Notably, for both pelagic and demersal species, single-parameter temperature-
based models (SST and SBT respectively) outperformed more complex multi-parameter

configurations. This pattern suggests that temperature serves as the primary driver of
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species distribution patterns in the study area, though it's important to note that other
environmental parameters still contributed to model performance, albeit to a lesser degree.
The high TSS values across all configurations (consistently above 0.85) indicated robust
model performance regardless of parameter combination, suggesting that the models
provide reliable predictions of species distributions under a single temperature-based
model.

I suggest prioritizing a multi-SDMs strategy (ensemble) and evaluating a range of

potential predictions to reduce biases stemming from data uncertainties and model design.

3.2. Projected distributional shift based on sea temperate

The projections indicate distinct responses between pelagic and demersal species.
Under the most optimistic scenario, SSP1-2.6, species distributions show relatively minor
changes, with declines in the probability of presence primarily occurring in northern sea
boundaries. Notably, the North-Northwest (NNW) border of the North Sea near the
Norwegian Sea merge as particularly insecure regions. Even in this conservative - SSP1-
2.6 scenario, these areas face declining probabilities of presence starting from 2050,
potentially leading to escalating decline total extinctions by the end of the century.

Under the SSP3-7.0 scenario, both pelagic and demersal species demonstrate
moderate responses. Pelagic species will show a general decline in probability of presence
across the entire region, with local extinctions occurring predominantly in the northern
and northwestern areas. Demersal species display more stability in their distribution
boundaries, though probabilities of occurrence decline to 0.5 in northern areas, while
southern regions remain relatively unaffected. The north (N) and north-north-west
(NNW) border continued to experience reductions in habitat suitability, further

emphasizing their vulnerability under this scenario. Moreover, for example, Scyliorhinus
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canicula will exhibit its lowest probability of presence by 2100 in the whole North Sea
basin (Fig. 13).

The SSP5-8.5 scenario, the most severe, projected dramatic changes by 2100.
Pelagic species faced extensive local extinctions, with only remnant populations
persisting in a distinctive stair-like pattern in the south-southeastern region. Pelagic
species displayed contrasting patterns: some species, such as Argentina sphryaena, (Fig.
14) showed relatively better resilience, that other species, maintaining relatively good
spatial coverage in entire sea, followed by a stair-like habitat suitability in the central and
southern part of the North Sea with probability of occurrence 0.75-1.0 only by the end of
the century under the pessimistic scenario. However, most other species experienced
significant declines in probability of presence in the central and southern regions, with
some faced total extinction across the North Sea even under SSP3-7.0. Maps with
projected distributions under SST/SBT-model for all examined species can be found in
supplementary S.2-S.22.

Overall, this analysis highlights the stark differences in species responses to
climate change. While pelagic species tended to show more uniform declines across their
ranges, demersal species exhibited varied responses, reflecting their diverse habitat
requirements and environmental tolerances. Finally, the northern areas of the North Sea
and the Strait of Dover are identified as the most vulnerable, highly unsuitable areas,
under all 3 scenarios starting from 2050. By 2100 under sever scenarios many species are
projected to be eliminated from the North Sea area, meaning that the regions face
persistent declines in habitat suitability, emphasizing the need for targeted conservation

efforts to mitigate the impacts of climate change on marine biodiversity.
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3.2.1 Distributional Centroids based on sea temperate

The overall distributional change had a similar trend among all demersal species
that differed from the similarities for pelagic specs with variations of different SSPs.
Under SSP1-2.6, species responses are generally localized, suggesting that milder climate
results in forcing minimal movement is observed for both species groups and relatively
small changes to habitat suitability - fish species will in South and East to around 25-57
km (32+12 km) (Fig. 15).

Under SSP3-7.0 and SSP5-8.5, distributions became more pronounced, but quite
disperse, as many species will be experiencing northward and eastwards shifts or reduced
probabilities of presence in the whole area in total, reflecting the intensifying impacts of
climate change.

In the SSP3-7.0 scenario, species exhibited moderate directional shifts, with
movement primarily toward the north and east 60-234 km (144+46 km). Demersal species
demonstrated larger displacements (155+43 km) mostly south-eastward and eastwards.
Whereas pelagic species will display more localized adjustments in the eastwards
direction, moving to shorter distances 108+34 km.

Under the SSP5-8.5 scenario, both groups showed significant displacements 15-
607 (233+196 km), and particularly demersal species with further propagation to the
northeast reaching up to 607 km, reflecting large-scale shifts in habitat suitability. In
contrast, pelagic species exhibited moderate displacements, 193+63km primarily along
the eastward direction.

A few species exhibited resilience even under severe scenarios, potentially due to
broader environmental tolerances or habitat adaptability. For instance, Argentina
sphyraena and Engraulis encrasicolus, exhibit greater resilience under all scenarios, with

minimal directional changes. Other species, like Eutrigla gurnardus and Callionymus
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maculates, show substantial shifts, particularly under SSP5-8.5, where probabilities of
presence decreased dramatically.
Overall, demersal species are projected to shift to north-west and south-east, while

pelagic species will tend to shift eastwards in the future.

3.3 Projected distributional shift based multi-factor models

Selected model for demersal species containing sea bottom temperature and
bottom pH (Table 4a-b), responded in showcasing under SSP1-2.6, Cyclopterus lumpus,
Myoxocephalus scorpius, Scyliorhinus canicula, Sebastes viviparus, and Anarhichas
lupus show zero or minimal habitat suitability in northern latitudes, particularly in the
Strait of Dover. By 2050 under SSP3-7.0, Amblyraja radiata, Buglossidium luteum,
Sardina pilchardus, and Sebastes viviparus demonstrate decreased presence probability
(0.25-0) in the northern sea. By 2100, species show resilience with stable distribution
borders, reduced presence probability (0.5-0.75) in northern areas, while southern regions
remain suitable.

Projections for 2050 showed almost no declines in the probabilities of presence
for SSP1-2.6, however 2 other more severe climate scenarios showed a decreasing
probability of occurrence (0.25-0.50) in the northern sea boarder. The NNW region
experiences widespread losses or significantly reduced probabilities of presence under
SSP3-7.0 scenarios for all species, leaving the southern and central parts of the sea more
as more suitable locations, while the SSP5-8.5 continues toward local extinctions for most
species in the entire area by 2100.

Following the proposed models with sea surface temperature with pH and sea
surface temperature with dissolved oxygen (S.1b), pelagic species response was projected
to be under SSP1-2.6 (2050-2100), minimal changes are projected, with Engraulis

encrasicolus showing lowest presence probability in 2050. For SSP3-7.0 by 2050,
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Argentina sphyraena, Sardina pilchardus, and Trachurus trachurus show decreased
habitat suitability (0.25-0) in the northern sea. The 2100 projections indicate an overall
decrease across the entire region, with total extinctions in north/northwest areas for most
species.

SSP5-8.5 projected two distinct patterns by 2050: better survival rates in central-
southern areas, and Anarhichas lupus, Sebastes viviparus, and Trachurus trachurus show
expanding areas of total absence in the north-north-west (NNW) region. By 2100, species
habitat responses varied between complete extinction, 0.25-0.5 habitat suitability in the
NNW, with a stair-like pattern in the south-east (SE).

Overall, including dissolved oxygen and pH in the SDM change the locations of
potential species locations from northern areas to central and southern regions of the
North Sea. Maps with projected distributions for all examined species under multi-factor

experiments can be found in supplementary S.23-S.43.

3.3.1 Distributional Centroids based multi-factor models

Projection of distribution starting with SSP1-2.6, which represents the most
optimistic climate scenario with lower emissions, there will be moderate displacement of
both pelagic and demersal species (Fig. S.44). The movement vectors were small and
clustered near the origin, with displacement of 8-87 km (30£15 km), from which pelagic
species shifted for 14-27 km, while demersal species - Chelidonichthys cuculus -
propagated to the distance up to 3 times further.

Under SSP3-7.0, a moderate emissions scenario, a more pronounced movement
pattern was observed. Both species groups showed a clear southeastward trend, but with
different magnitudes. The shift ranged from 76-197 km (136£38 km), showing
significantly larger displacements compared to SSP1-2.6. Demersal species generally
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show longer displacements (98-197 km) than pelagic species (76-97 km), suggesting they
may be more sensitive to these moderate climate changes.

The most dramatic changes appeared under SSP5-8.5, the high-emissions
scenario. Here, will be the longest distributional centroids vectors, ranging from 14-216
km (144+58 km). Interestingly, under this scenario, a divergence in movement patterns
is observed: while some species showed the southeastward trend, others had
northeastward movement, creating a fan-like pattern of displacement vectors. This
suggests that different species may adopt varying survival strategies under severe climate
change conditions.

What's particularly noteworthy is how the magnitude of displacement increases
progressively across the scenarios, from minimal movement under SSP1-2.6 to
substantial shifts under SSP5-8.5, almost 5 times as larger, clearly demonstrating the

escalating impact of climate change on marine species distributions reorganization.

4. Discussion

The predominant influence of temperature on shaping the catch composition of
pelagic fisheries indicates that these catches could be susceptible to the unforeseen
impacts of future warming.

By selecting the “winning” model I do not contradict the importance of other
simultaneously occurring environmental factors besides water. My result just emphasizes
that the single temperature-based model statistically proved to be the perfect fit for
projecting the future distributions for a 21 species in the certain water body of the North
Sea.

The “winning” ensemble models, containing only SBT and SST achieved the

highest validation values when incorporating a comprehensive set of environmental
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variables. However, these variables were not included in the future projections, which
relied primarily on temperature.

This finding highlights two important points:

1. Accurate prediction of future species distributions requires consideration of
multiple environmental factors beyond temperature alone, with different species
within the same community potentially responding to distinct combinations of
variables.

2. While statistical differences between models may appear moderate, the actual
ecological consequences and resulting changes in species distribution patterns
could be substantially more significant in real-world conditions.

Moreover, it should be concerned that the differences between single and
combined models are not that big, meaning that potentially testing other factors, unless
dissolved oxygen and pH, could show different results.

The study of Gordo-Vilaseca et al. (2024) investigated the future trends in marine
fish biomass and distribution across the North Sea to the Barents Sea using joint species
distribution models (JSDMs). Their key findings included an increase of species richness
that is projected to increase significantly in Arctic regions, particularly in the Barents Sea,
with species from warmer waters expanding northward. As well as localized declines in
species richness in some southern and deeper areas and an overall decline in fish biomass
in the Arctic due to the reduction of some Arctic-specific species. Species are shifting
their ranges northward and eastward. The rate of these shifts increases with the severity
of climate change scenarios, from 0.9 km/year under SSP1-2.6 to over 3.2 km/year under
SSP5-8.5. These results are quite like what have been achieved in this thesis.

Similar research was published by Bandara et al., 2023, however, here authors

showed that multivariate model including temperature and dissolved oxygen had the best
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model performance beyond a simple consideration of temperature (AAIC =799, ATSS =
0.015) that allowed for robust northwards projected distribution of Black Sea Bass in the
Northern Atlantic.

Enough data contributing to the effective training of models in the validation
dataset ultimately allows achieving high accuracy values for the model. This enables us
to conclude that future predictions can be considered reliable. However, due to low
resolution in the case of my study (around 100 km?) the model cannot adequately predict
which specific hauls would be the best for trawling, when serving the needs of fishery, as
it provided probability of occurrence in a relatively large spatial quadrant. Species’
expansion into Arctic regions or other nearby marine water bodies cannot be predicted in
this research due to the limitations of used data outside the North Sea region.

Since the modelled propagation of the observed species is dependent on the input
model environmental parameters under different climate forcing, the SDM “selects” the
most suitable temperature for the species based on the training data. In my case, there was
a grid cell at 6 °N 3 °W that had deviant water temperature from year to year in the future
projections, being colder than most of the North Sea water and a bit warmer than Atlantic
Water inflow from the northern border, followed with the significantly deeper bathymetry
than in the North Sea basin in general. Since the future temperature in that cell fitted well
into the tolerance interval for the species, the model projected a far north-west distribution
reaching that location.

Regarding the pelagic species that will face a faster and stronger increase of
surface water temperature, I may assume that observed species can potentially overcome
such changes in the areas that will keep the lowest temperature in the study area, which

are the Danish Straits and the northern regions near the Norwegian Sea.
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Finally, my research agreed with previously published papers, discussing that
temperature emerges as a primary factor influencing species distribution and survival,
showcasing species respond to thermal changes through poleward migration while
seeking cooler waters and vertical movement to deeper waters (Cheung et al., 2010,
Campana et al., 2020, Gordo-Vilaseca et al., 2024, Meyer-Gutbrod et al. 2021). However,
changes in oxygen levels and pH will trigger significant ecosystem shifts, when the
critical thresholds are exceeded (Clarke et al. 2022). These movements restructure local
ecosystems and affect predator-prey relationships, where only 10% of energy transfers
efficiently between trophic levels. This limitation means predatory species, requiring
more energy for survival, maintain smaller populations than their prey species. So, their
survival depends heavily on the stable availability of lower-trophic level prey.

This synthesis of evidence highlights the complex interplay between
environmental changes and marine ecosystem responses, emphasizing the need for
comprehensive monitoring and management strategies to maintain ecosystem stability

and fisheries sustainability.

4.1 Comparison of the different model experiments

In examining marine species' responses to climate change, the interplay between
different environmental factors reveals a complex pattern of adaptation and survival. The
comparison between single-factor and multi-factor models, despite showing only a minor
statistical difference (ATSS = 0,2), provides crucial insights into future species
distribution patterns. This similarity in model performance shouldn't overshadow the
nuanced differences in their predictions about how marine life will respond to changing
conditions.

The ocean's chemical properties play a fundamental role in these dynamics. The

relative stability of ocean pH, maintained through the carbonate system's buffering
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capacity as documented by Gonzalez-Santana and colleagues (2024), contrasts sharply
with the more rapid changes in dissolved oxygen levels as temperatures rise. This
differential rate of change creates a particularly challenging environment for demersal
and benthopelagic fish, which inhabit the already oxygen-limited waters near the seafloor.
However, the multi-factor analysis reveals an important survival mechanism: areas that
might become thermally challenging could still support fish populations if other
environmental parameters, such as oxygen levels or pH, remain within tolerable ranges.
While the study's geographic scope excluded adjacent waters like the Norwegian, Barents,
Baltic, Celtic Seas, and Bay of Biscay, limiting the potential prove of species distributions
to these basins, it still can capture the well-documented trend of northward species
migration in response to warming waters. This phenomenon, known as deborealization,
represents a crucial survival strategy for marine species seeking cooler environments.
However, demersal species present an interesting exception to this general pattern. These
bottom-dwelling fish might find refuge in southern regions, where the thermal dynamics
of deep water create stable environments. That is why demersal species shifts are not so
unified as for the pelagic ones. Unlike surface waters that rapidly respond to atmospheric
warming, deeper waters maintain more stable temperatures, potentially providing crucial
habitats for spawning, feeding, and maintaining appropriate oxygen levels. Norwest shifts
may be indicators of the most suitable temperature conditions, (which in my case serves
as location only in 1 grid from the observed data). This may be due to the specific
configuration of the water masses between the Orkney Island (UK) and Shetlands Islands,
with transition and mixing water, surrounded by the fronts.

My evidence of future northwards shifts and temperature identification as the
main factor, shaping future stocks assessments is similar to the one published by the EU

in the “Climate Change and Fishery policy...” Final Report (Bastardie et al., 2022).
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This research acknowledges the inherent uncertainties in predicting future marine
conditions. While current modeling frameworks, particularly the SSP scenarios, represent
our best understanding of potential future conditions, real-world developments might
diverge from these projections. Will the actual conditions be exactly as they are projected
by the currently available conservation frameworks or not? This is one of the most serious
concerns that cannot be omitted.

It is also important to mention that from my assumption adding additional
parameter sot the model not only did not lead to higher model performance but even made
the performance metrics worse. This could have happened, firstly, due to the curse of
dimensionality, as with more variables (higher dimensionality), the model needs
exponentially more training data to effectively capture patterns in the sparse feature
space; a single-parameter model avoids this issue by operating in a much simpler feature
space where patterns may be more easily learned from limited data. Secondly, the multi-
variable model has higher model complexity and more parameters to tune. This increased
flexibility makes it more prone to fitting noise in the training data rather than learning
generalizable patterns, so the simpler single-parameter model was naturally more
regularized without overfitting. Thirdly, the problem could arise with the environmental
data itself, as pH, for instance, did not change as gradually, as temperature during the
projected time period, also, single parameter might be more reliably measured or have
higher data quality. All of these ideas state that my approach was a good example of
Occam's Razor in machine learning - sometimes the simplest model that adequately
explains the data is the best choice.

Understanding these complex interactions between environmental factors, species
behavior, and ecosystem dynamics provides valuable insights for anticipating and

adapting to the challenges posed by climate change in marine environments. This
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comprehensive approach, considering multiple environmental factors and  their
interactions, offers a more nuanced and potentially more accurate view of how marine

species might respond to changing oceanic conditions in the coming decades.

4.2 Uncertainties about using SDMs

In SDMs-based research data-related uncertainties stem from potential biases in
species data, scale mismatches, and incomplete distribution representation (Davies, et al.,
2023). Also, significant uncertainties remain in long-term predictions.

The choices one makes when constructing models have far-reaching implications
for how uncertain predictions may become. Researchers encounter novel climate
conditions that introduce three key sources of uncertainty. First, it must contend with
uncertainty inherent in climate models themselves. Second, it may face uncertainty about
which emissions pathway humanity will follow. Third, we must grapple with eco-
evolutionary uncertainty - meaning we cannot be entirely sure how species will adapt and
respond to new conditions over time. These compounding sources of uncertainty create
significant challenges when trying to forecast species distributions into the future (Urban,
2019).

Davies et al. (2023) emphasized that poorly handled uncertainty in Species
Distribution Models (SDMs) can lead to two significant problems: either the models
become too vague to guide meaningful management decisions, or worse, they produce
misleading conclusions due to overconfidence in inaccurate predictions. To address this
issue, they proposed a three-step approach for managing uncertainty in SDMs:
systematically identifying all potential sources of uncertainty, implementing methods to
minimize these uncertainties when possible, and transparently communicating any

remaining uncertainties to decision-makers who rely on these projections. This structured
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approach helps ensure that SDMs can effectively inform conservation and management
strategies while acknowledging their limitations.

When predicting how species distributions will change, incorporating stable
environmental factors alongside climate variables is crucial for accurate modeling.
Models that rely solely on climate parameters risk misrepresenting species' actual habitat
requirements and may produce unreliable forecasts (Willis, K.J., Bhagwat, S.A., 2009).
Without considering constant environmental constraints like bathymetry or substrate type,
projections can either exaggerate or underestimate both the extent of distribution changes
and species vulnerability to climate change. This comprehensive approach, integrating
both dynamic climate factors and fixed environmental variables, provides a more reliable
foundation for assessing future species distributions (Zangiabadi et al., 2021).

When models operate at spatial scales that don't match the biological requirements
of species, they can introduce significant prediction errors by either overestimating or
underestimating suitable habitat (Seo et al. 2008, Franklin et al. 2013). This spatial
resolution issue has crucial implications for conservation planning and accurate
management suggestions. For instance, broad-scale models operating at 100 km
resolutions - like in the case of this dissertation - often fail to capture fine-scale
topographic features that might be essential for local conservation efforts, such as
managing a small coastal protected area of just 10 square kilometers (Whittaker et al.
2005).

Classification Tree Analysis (CTA) in my case outperform ensemble models in
projecting for 2 demersal species due to its ability to capture distinct environmental
thresholds that characterize fish responses, rather than the gradual changes often predicted
by averaged ensemble approaches (Elith et al., 2008). The hierarchical decision-making

structure of CTA effectively mirrors how fish naturally select habitats through sequential
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environmental choices, such as temperature followed by depth and salinity preferences,
where clear environmental thresholds often determine range shifts more decisively than
gradual changes, allowing CTA to effectively identify critical points where species might
abandon or colonize areas (Thuiller et al., 2009).

Regarding the range in RF and GLM performance, it could be explained in a
following way. GLMs are sensitive to the specific combination of environmental
variables used. If the variables have strong collinearity (when incorporating multi-factor
models), so GLMs can become unstable. Random Forest showed unexpectedly low
performance when dealing with multiple environmental, as this model can suffer from the
"curse of dimensionality", and the data becomes increasingly sparse in this higher-
dimensional space.

Moreover, critical viewpoints share the idea of small possibility of happening the
pessimistic climate scenarios as the [IPCC ARG6 report stated that “the likelihood of high-
emissions scenarios such as RCP8.5 or SSP5-8.5 is considered low in light of recent

developments in the energy sector” (Chen et al., 2021).

4.3 Global Fisheries’ challenges

Marine species redistributions are creating unprecedented challenges for fisheries
management and conservation globally. Anthropogenic effects, including fishing
pressure and habitat modification, combine with climate change to cause widespread
shifts in species distributions. Research examining 889 marine species populations
worldwide revealed that 70% of commercially important fish stocks now regularly cross
jurisdictional boundaries, compared to just 35% in the 1980s (Pinsky et al. 2021). These
shifts are already triggering international conflicts overfishing rights and access.

The situation is particularly evident in northern seas, where warming waters are

making previously ice-covered areas accessible for fishing. A prime example is the
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movement of mackerel stocks, which have shifted northward from their traditional
grounds in the North Sea into waters around Iceland and Greenland, leading to disputes
overfishing quotas and access rights. The Arctic's unique international governance
structure, managed through the Arctic Council and UNCLOS, faces new challenges as
countries assert their rights within their Exclusive Economic Zones (EEZs) while dealing
with trans-boundary stocks.

These distributional changes are creating significant economic implications.
Some countries may benefit while others lose access to traditionally important fishing
grounds. For instance, in the North Sea, Norway, Denmark, and the UK might benefit
from species moving southwards and east-southwards under severe climate scenarios,
while Germany, the Netherlands, and Belgium could face losses according to their EEZ
boundaries. This redistribution affects not only fishing access but also tax income from
legal fishing activities in territorial waters.

The North Sea has experienced significant changes in fishing catch patterns over
recent years. According to ICES (2023), the total reported catch in the Northern North
Sea (Division 4a) showed notable fluctuations. In 2022, the total demersal fish landings
in this region reached approximately 380,000 tonnes, with cod and haddock comprising
the largest portions. However, this represents a 15% decrease from the previous five-year
average. For the Faroe Plateau, the fishing statistics present a different pattern. The total
catch in this region during 2022 was approximately 120,000 tonnes, dominated by saithe
and haddock (ICES WGDEEP, 2023). What's particularly interesting is the shift in
species composition over the past decade, with traditional demersal species showing
declining trends while some pelagic species have increased. Looking at specific species,
in Division 4a: cod landings decreased to 25,000 tonnes in 2022, down from 42,000

tonnes in 2018; haddock catches remained relatively stable at around 80,000 tonnes;
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whiting showed an increasing trend, reaching 35,000 tonnes in 2022. In Division 5b:
saithe landings increased to 45,000 tonnes in 2022, blue ling catches declined to 3,000
tonnes; deep-water species generally showed decreasing trends.

These changes reflect both management measures and environmental factors. The
decrease in cod catches aligns with stricter quota restrictions implemented under the cod
recovery plan (ICES WGNSSK, 2023). Meanwhile, the increase in certain pelagic species
might be attributed to changing distribution patterns linked to warming waters and should
raise awareness. about the necessity to carefully control the limits of the fish catch and
minimize it to those species that are facing continuous stock decline.

Recent research published in Nature Sustainability (Miller et al., 2023) identified
critical management challenges, including quota allocation disputes and monitoring
difficulties. Traditional quota systems based on historical distributions become
increasingly obsolete as stocks shift across boundaries, with the study documenting 12
major international disputes over five years directly related to climate-driven stock shifts.
Furthermore, traditional stock assessment methods struggle to capture rapidly changing
distribution patterns, with management decisions lagging actual changes by 3-5 years.

Regarding my results, the predominance of temperature as the primary predictor
in species distribution models, despite the availability of additional environmental
variables such as pH and oxygen, can be attributed to several interconnected factors.
Temperature functions as a master variable in marine environments, directly influencing
both oxygen solubility and carbon cycle that leads to fluctuations in pH levels, while
simultaneously governing the metabolic rates of marine organisms.

As mentioned previously, the correlation analysis reveals strong relationships
between sea surface temperature and other environmental parameters, notably a -0.97

correlation with surface oxygen and -0.63 with surface pH. These high correlations
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indicate that temperature effectively captures much of the environmental variation that
would otherwise be explained by oxygen and pH measurements. I assume that the
inclusion of such highly correlated variables, rather than improving model performance,
could potentially decrease predictive accuracy by introducing redundant information and
complicating the model's ability to distinguish individual variable effects, as temporal
transferability of SDMs can degrade model performance when projecting into future
conditions, particularly when environmental relationships may not remain stable year
from year (Yates et al. 2018). Therefore, the second-best models, combining SBT and
bottom dissolved oxygen for demersal species and SST with surface dissolved oxygen
and SST with surface pH projected species distributions in a different way for 2100
projections. In these experiments, species were projected to move to south (S) and south-
east (SE) directions (near Frisian Islands), being the most preferred habitat areas under
severe emission scenarios (SSP3-7.0 and SSP5-8.5) by the end of the century. Moreover,
projections up to 2100 under SSP5-8.5 were smaller in distance, showing 175495 km,
respectively, in comparison with the Temperature-based models that revealed
propagation up to 600 km to the north-west (NW). But projections for 2050 were well-
aligned for both single-factor and multi-factor models, showing either high probability of
presence on the large spatial coverage for the whole area or high probability of occurrence
in the southern regions of the sea, suggesting that the rising temperature in those areas
will be still suitable for the observed species.

Essentially, when temperature data indicates warming conditions, it implicitly
suggests corresponding changes in oxygen levels and pH, making the addition of these
variables somewhat redundant from a modeling perspective. This understanding helps
explain why simpler, temperature-based models often achieve superior validation metrics

compared to more complex multi-variable approaches in modelling.
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Understanding the critique that should be applied when analyzing the models
results, as modeling algorithms can produce varying predictions even with identical input
data, emphasizing the importance of ensemble approaches (Araugjo et al. 2019). SDMs’
results have been proven to differ in different location of the worlds ocean (Valavi et al.,
2022), that is why so far generalization of distributional trend cannot be fully addressed
to the entire marine ecosystem. Another reason is that more specifically for marine
environments, detail the ISIMIP3 ocean sector protocols and associated uncertainties in
projections of key variables like temperature, pH, and oxygen (Lange et al. 2020). The
challenges of downscaling global climate models to regional seas are addressed by who
emphasize uncertainties in coastal regions and semi-enclosed seas like the North Sea
(Biichner et al. 2021).

To sum up, success in addressing these challenges requires innovative approaches
that account for dynamic species distributions while maintaining ecosystem function and
fisheries productivity. This includes developing dynamic quota allocation systems,
strengthening scientific cooperation for stock monitoring, and establishing robust dispute
resolution processes. Without such adaptations, the risk of overfishing and international
conflicts over marine resources could increase substantially as climate change continues

to alter marine ecosystems (Duncanson et al., 2023).

5. Conclusion

Understanding species distribution patterns proves crucial for effective fisheries
management and conservation planning. This knowledge enables the identification of
essential fish habitats, helps predict climate change impacts, and supports the design of
marine protected areas. Recent advances in tracking technologies and modeling

approaches have enhanced my ability to map and predict species distributions, though
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significant challenges remain in understanding how distributions will change under future
environmental conditions.

Advanced modeling approaches are thought to improve ability to predict future
distribution changes. These models increasingly incorporate multiple drivers and species
interactions, though significant uncertainties remain. However, my suggestions are that
future bigger spatial data coverage and comprehensive monitoring for robust projections
and plans for high mitigation should be conducted. Moreover, precise understanding of
each individual environmental factor impact on fish communities will minimize the
uncertainties in applying different methodological approaches. This will help in
committing further research to determine the extent to which the North Sea fish
community is impacted by the changing climate, as well as other communities in other
parts of the ocean.

Migration of marine living resources are creating unprecedented challenges for
management and conservation. Success in addressing these challenges will require
innovative approaches that can account for dynamic species distributions while
maintaining ecosystem function and fisheries productivity. International cooperation and
adaptive management frameworks will be crucial for navigating these changes effectively
in incorporation unified accessible frameworks.

Climate-induced thermal stress is forcing marine species to relocate, driving them
either toward higher latitudes or into deeper waters in search of more favorable
temperature conditions. This large-scale redistribution is transforming the structure of
marine communities, as species’ movements disrupt long-established ecological
relationships. When species relocate to maintain their preferred temperature ranges, they
alter the composition of both their original and new habitats, leading to cascading effects

that reshape entire food webs and ecosystem dynamics.
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Final results

Model Performance & Distribution Patterns

¢ Single temperature-based model achieved highest accuracy (TSS=0.95)

Species Response Variation under Temperature-based model:

e Pelagic species: Consistent southeast movement across observed species
(143+57 km by 2100)

e Demersal species: More variable patterns with expansion-contraction dynamics
under different scenarios (shift up to 607 km by 2100 under SSP5-8.5)

e Average distance range among all species: 233+196 km northwest by 2100

under SSP5-8.5

Future Modelling Implications

e Complex interplay of environmental variables requires refined frameworks
e Need for unified modelling approach in fisheries sector

e (Critical to understand multiple processes driving distributional changes
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Illustrations

Table 1. Identification of trophic level, commercial value and functional group (demersal

or pelagic) of selected filtered species.

Family Scientific name Common Name Trophic Commercial  Functional
Level Group
1 Anarhichadidae Anarhichas lupus Atlantic Wolffish 3.6+£0.0 No Demersal
2 Argentinidae Argentina sphyraena Argentine Herring 35+£05 No Pelagic
3 Bothidae Arnoglossus laterna Mediterranean Scaldfish 3.6+ 0.3 No Demersal
4 Callionymidae Callionymus Spotted Dragonet 3.3+£045 No Demersal
maculatus
5 Carangidae Trachurus trachurus  Atlantic Horse Mackerel 3.7+ 0.0 Yes Pelagic
6 Clupeidae Sardina pilchardus European Pilchard 3.1+0.1 Yes Pelagic
7 Cottidae Mpyoxocephalus Shorthorn Sculpin 39+0.0 No Demersal
scorpius
8 Cyclopteridae Cyclopterus lumpus Lumpfish 39+£0.0 No Demersal
9 Engraulidae Engraulis encrasicolus European Anchovy 3.1+0.36 Yes Pelagic
10 Merlucciidae Merluccius merluccius European Hake 44+0.0 Yes Demersal
11 Mullidae Mullus surmuletus Red Mullet 35+03 Yes Demersal
12 Rajidae Amblyraja radiata Thorny Skate 42+03 No Demersal
13 Rajidae Raja montagui Spotted Ray 39+0.2 Yes Demersal
14 Scombridae Scomber scombrus Atlantic Mackerel 3.6+0.2 Yes Pelagic
15  Scyliorhinidae Scyliorhinus canicula ~ Small-Spotted Catshark 3.8 +0.3 No Demersal
16 Sebastidae Sebastes viviparus Norway Redfish 4.0+ 0.67 No Demersal
17 Soleidae Buglossidium luteum Solenette 33+04 No Demersal
18 Triakidae Mustelus asterias Starry Smooth-Hound 3.6+03 No Demersal
19 Triglidae Chelidonichthys Red Gurnard 3.8+0.1 Yes Demersal
cuculus
20 Triglidae Chelidonichthys Tub Gurnard 4.0+0.0 Yes Demersal
lucerna
21 Triglidae Eutrigla gurnardus Grey Gurnard 39+£0.0 Yes Demersal
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Table 2. List of filtered species and their coefficients obtained from regression model.
Triple Asterisk (***) indicate high significance (p-value < 0.001). “Years” refers to years

of observed occurrence of each species.

Scientific name R? Intercept Slope Significance Years
| Amblyraja radiata 0.603 1418.491 -0.682 HoEE 42
2 Anarhichas lupus 0.779 1590.44 -0.787 Rk 42
3 Argentina sphyraena 0.609 -1021.243 0.527 HoEE 42
4 Arnoglossus laterna 0.694 -1560.86 0.791 Rk 42
5 Buglossidium luteum 0.517 -1018.883 0.522 Rk 42
6 Callionymus maculatus 0.543 -1547.886 0.791 ok 42
7 Chelidonichthys cuculus 0.854 -1373.777 0.693 Rk 41
8 Chelidonichthys lucerna 0.722 -895.777 0.451 ok 32
9 Cyclopterus lumpus 0.348 1238.605 -0.604 HoEE 42
10  Engraulis encrasicolus 0.676 -3122.853 1.573 Rk 35
11 Eutrigla gurnardus 0.605 -997.019 0.541 Rk 42
12 Merluccius merluccius 0.441 -1209.944 0.621 Ak 42
13 Mullus surmuletus 0.736 -2222.816 1.12 HAK 34
14 Mustelus asterias 0.803 -1265.599 0.637 HAK 31
15  Mpyoxocephalus scorpius 0.595 -1182.999 0.604 Rk 42
16 Raja montagui 0.79 -1047.771 0.53 Rk 42
17 Sardina pilchardus 0.701 -2106.776 1.06 Rk 31
18 Scomber scombrus 0.573 -1664.207 0.852 Rk 42
19 Scyliorhinus canicula 0.927 -2551.399 1.29 HoEE 42
20 Sebastes viviparus 0.558 511.551 -0.252 oo 41
21 Trachurus trachurus 0.427 -2621.308 1.335 Rk 42
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Table 3. List of models used to project species distributions.

Functional Group Model Name Abbreviation
Demersal (16) Sea Bottom Temperature SBT
Sea Bottom Temperature + Bottom pH SBT + pH_bot
Sea Bottom Temperature + Bottom Dissolved SBT + O2_bot
Oxygen
Bottom Dissolved Oxygen + Bottom pH 02_bot +pH_bot
Sea Bottom Temperature + Bottom Dissolved SBT + O2_bot +pH_bot
Oxygen +Bottom pH
Pelagic (5) Sea Surface Temperature SST

Sea Surface Temperature + Surface pH

Sea Surface Temperature + Surface Dissolved
Oxygen

Surface Dissolved Oxygen + Surface pH

Sea Surface temperature + Surface Dissolved
Oxygen + Surface pH

SST + pH_surf
SST + O2_surf

02_surf+ pH_surf
SST + O2_surf + pH_surf
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Table 4. Best Performance of Evaluation Metric (TSS) by Experiment for 16 Demersal
Species (A) and for 5 Pelagic Species (B). The “winning” experiment based on the highest
value of the model performance is in bold and underlined. “E” refers to the “Ensemble”
model that combines 6 different SDMs, “CTA” and “RF” refer to the types of SDMs.
Each column represents the certain experiment, containing different environmental

variables combinations.

Scientific Name pH_bot+0O2_ bot SBT SBT+02 bot SBT+pH bot SB_;_I;; I-II);lt)ot
Amblyraja radiata E:0.900 E:0.951 E:0.932 E:0.900 E:0.880
Anarhichas lupus E:0.899 E:0.948 E:0.933 E:0.901 E:0.873

Arnoglossus laterna E:0.932 E:0.950 E:0.941 E:0.923 E:0.922
Buglossidium luteum E:0.930 E:0.951 E:0.949 E:0.923 E:0.926
Callionymus maculatus E:0.904 E:0.951 E:0.910 E:0.906 E:0.865
Chelidonichthys cuculus E:0.910 E:0.948 E:0.939 E:0.912 E:0.901
Chelidonichthys lucerna E:0.900 E:0.945 E:0911 E:0.895 E:0.869
Cyclopterus lumpus E:0.913 E:0.951 E:0.933 E:0.911 E:0.900
Eutrigla gurnardus E:0.888 E:0.955 E:0.927 E:0.909 E:0.900
Merluccius merluccius E:0.915 E:0.955 E:0.935 E:0.902 E:0.890
Mullus surmuletus E:0.921 E:0.953 E:0.925 E:0.916 RF:0.902
Mustelus asterias E:0.893 E:0.950 E:0.926 E:0.897 E:0.872
Mpyoxocephalus scorpius E:0.910 CTA:0.949 E:0.925 CTA:0.908 E:0.891
Raja montagui E:0.906 E:0.954 E:0.923 E:0.902 E:0.880
Scyliorhinus canicula E:0.902 E:0.951 E:0.919 E:0.903 E:0.889
Sebastes viviparus E:0.899 E:0.946 E:0.914 E:0.891 E:0.878
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Table 5. Best Performance of Evaluation Metric (TSS) by Experiment for 5 Pelagic
Species. The “winning” experiment based on the highest value of the model performance
is in bold and underlined. “E” refers to the “Ensemble” model that combines 6 different

SDMs. Each column represents the certain experiment,

environmental variables combinations.

containing different

Scientific Name pH_surf+O2 surf SST  SST+O2 surf SST+pH surf SST+pH surf+
02 _surf
Argentina sphyraena E:0.919 E:0.949 E:0.938 E:0.913 E:0.896
Engraulis encrasicolus E:0.938 E:0.951 E:0.937 E:0.925 E:0.916
Sardina pilchardus E:0.937 E:0.949 E:0.924 E:0.933 E:0.924
Scomber scombrus E:0.923 E:0.951 E:0.929 E:0.915 E:0.899
Trachurus trachurus E:0.923 E:0.951 E:0.930 E:0.908 E:0.866
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20°E

10°E

Figure 1. Atlantic, Northeast (Major Fishing Area 27) Here are the detailed boundaries of
the ICES subareas 27.4, 27.5,27.6,27.7,27.8,27.9. North Sea refer to 4.a, 4.b, 4.c. (FAO,
2024).
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Figure 2. Circulation system of the North Sea (OSPAR, 2000). The width of arrows is

indicative of the magnitude of volume transport. Light blues arrows indicate relatively
pure Atlantic water, blue arrows indicate surface currents
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Figure 3. Original data visualization of occurrence maps for Argentina sphyraena in Q1
(Jan-Mar) season in1983 (A) and 2024 (B). The blue rectangles represent the observed
occurrence of the fish in the exact 1°x1° grid area from the trawling data.
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188 species Initial dataset

56 species that have linear trend (r*2>0,5)

[ 4

Demersal (16)

1. Amblyraja radiata
2. Anarhichas lupus
3. Arnoglossus laterna . . . .
4. Buglossidium luteun Biological data filtering
5. Callionymus maculatus
6. Chelidonichthys cuculus
7. Chelidonichthys lucerna
8. Cyclopterus lumpus
9. Eutrigla gurnardus
10. Merluccius merluccius
11. Mullus surmuletus
12. Mustelus asterias
13. Myoxocephalus scorpius
14. Raja montagui
15. Scyliorhinus canicula
16. Sebastes viviparus

Primary filtering

~

Pelagic (5)

4

1. Argentina sphyraena
2. Engraulis encrasicolus
3. Sardina pilchardus
4. Scomber scombrus
5. Trachurus trachurus

Figure 4. Chart for biological data filtering. Scientific species names refer to the ones

used in this research
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Figure 5. Combined changes (linear regression lines) in Demersal and Pelagic Species
Distribution in the North Sea (1983-2024) based on observed grids per year. X-axis
indicate years, y-axis indicate number of grids in which species were observed in each
year during the 1983-2024 period. Red colors refer to pelagic species, Blue - to demersal
and grey to those species that were not included in the research as they did not meet the
requirements.
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Amblyraja radiata
Anarhichas lupus
Argentina sphyraena
Arnoglossus laterna
Buglossidium luteum
Callionymus maculatus
Chelidonichthys cuculus
Chelidonichthys lucerna
Cyclopterus lumpus
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Merluccius merluccius

Species Name

Mullus surmuletus
Mustelus asterias
Myoxocephalus scorpius
Raja montagui
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Scyliorhinus canicula
Sebastes viviparus

Trachurus trachurus
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Figure 6. Selected species trophic levels based on the data from FishBase. The x-axis
indicates trophic level, y-axis show fish speceis’ scientific names. The thresholds explain

the range of the trophic level for each species.
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Figure 7. Projections of Sea Surface Temperature (A) and Sea Bottom Temperature (B)
under 3 climate scenarios (SSP1-2.6, SSP3-7.0, and SSP5-8.5) across two time periods:
2050 (top row) and 2100 (bottom row). 1 gird resolution is 60 arcmin. Colors indicate
temperature range.
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Figure 8. Projections of Surface Dissolved Oxygen Concentrations (A) and Bottom
Dissolved Oxygen Concentrations (B) under 3 climate scenarios (SSP1-2.6, SSP3-7.0,
and SSP5-8.5 across two time periods: 2050 (top row) and 2100 (bottom row). 1 gird
resolution is 60 arcmin. Colors indicate dissolved oxygen range.
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Figure 9. Projections of Surface pH (A) and Bottom Surface pH (B) under 3 climate
scenarios (SSP1-2.6, SSP3-7.0, and SSP5-8.5) across two time periods: 2050 (top row)
and 2100 (bottom row). 1 gird resolution is 60 arcmin. Colors indicate pH range.
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Figure 10A. Correlation Matrix of Environmental Variables. Values ranging from -1
(strong negative correlation) is colored in blue, to 1 (strong positive correlation) is colored
in red. o2 surf is Surface Dissolved Oxygen, 02 bot is Bottom Dissolved Oxygen,
ph_surf is surface pH level, ph_bot is bottom pH level, mean_depth is the mean depth at
each grid on 60 arcmin.

Figure 10B. Pairwise Relationships and Distributions of Environmental Variables (The
off-diagonal scatter plots depict pairwise relationships between variables. A red
regression line indicates the direction and strength of the relationship. Points in the
scatterplots represent data observations. The histograms represent the distribution
between the variables.
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Figure 11. Algorithm of SDM validation process. Schematic representation of the
modeling workflow showing three independent runs (Run 1-3), each employing 5-fold
cross-validation. Each run processes unique species occurrence data through six modeling
algorithms (GLM, GBM, RF, CTA, FDA, and MARS) with five training-testing data

integrations.
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Figure 12. Comparison of models’ performance metric (TSS) for demersal species (A)
and for pelagic species (B). Boxplots represent the distribution of validation score of 6
different SDMs across different model experiments.
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Scyliorhinus canicula (SBT)
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Figure 13. Projected distributional shifts of Scyliorhinus canicula in 2025 (top), 2050
(middle) and 2100 (bottom) under 3 climate scenarios (SSP1-2.6, SSP3-7.0, SSP5-8.5).
Color shading indicate probability of species occurrence (0-1). Color-shading stands for
probability of occurrence (0-1). Each grid refers to resolution 60 arcmin.
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Argentina sphyraena (SST)
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Figure 14. Projected distributional shifts of Argentina sphyraena in 2025 (top), 2050
(middle) and 2100 (bottom) under 3 climate scenarios (SSP1-2.6, SSP3-7.0, SSP5-8.5).
Color shading indicate probability of species occurrence (0-1). Color-shading stands for
probability of occurrence (0-1). Each grid refers to resolution 60 arcmin
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Figure 15. Distributional centroids vectors under temperature-based models. Mean shifts
change from 2024 to 2100 under 3 climate scenarios. The three panels illustrate arrows
that are species’ movement vectors (direction and magnitude) under SSP1-2.6 (A), SSP3-
7.0 (B), and SSP5-8.5 (C). Blue arrows: represent demersal species. Red arrows: indicate
pelagic species. The length of the arrows indicates the magnitude of the response. Longer
arrows reflect greater shifts in species distributions or probabilities of presence. Numbers
represent the distance in kilometers (km). Resolution of 1 grid is 60 arcmin. Each
horizontal cell is 1 degree in longitude (West-East displacement) and each vertical cell is
1 degree in latitude (South-North displacement).
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S.1. All species (188) occurrence record for the entire period 1983-2024 from the trawling
surveys. The x-axis represents the year during the 1983-2024 period, while the y-axis (0-
103 — max number of observed grids per year) indicates observed grids in the study area
per each year. Blue histograms correspond to the selected demersal species and red
histograms indicate pelagic species. Grey histograms refer to those species that were not
included in the research, as they did not meet the thresholds. Scientific names of species
are above the corresponding histograms.
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Amblyraja radiata (SBT)
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S.2.Projected distributional shifts of Amblyraja radiata (based on habitat suitability) in
2025 (top), 2050 (middle) and 2100 (bottom) under 3 climate scenarios (SSP1-2.6, SSP3-
7.0, SSP5-8.5). Color shading indicate probability of species occurrence in a grid of
habitat suitability (0-1). Color-shading stands for potential habitat suitability, where 1 —
suitable, 0 — unsuitable conditions. Each grid refers to resolution 60 arcmin. Applied
model is indicated in the heading of each figure.
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Anarhichas lupus (SBT)
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S.3. Projected distributional shifts of Anarhichas lupus radiata (based on habitat
suitability) in 2025 (top), 2050 (middle) and 2100 (bottom) under 3 climate scenarios
(SSP1-2.6, SSP3-7.0, SSP5-8.5). Color shading indicate probability of species occurrence
in a grid of habitat suitability (0-1). Color-shading stands for potential habitat suitability,
where 1 — suitable, 0 — unsuitable conditions. Each grid refers to resolution 60 arcmin.
Applied model is indicated in the heading of each figure.
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Arnoglossus laterna (SBT)
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S.4. Projected distributional shifts of Arnoglossus laterna radiata (based on habitat
suitability) in 2025 (top), 2050 (middle) and 2100 (bottom) under 3 climate scenarios
(SSP1-2.6, SSP3-7.0, SSP5-8.5). Color shading indicate probability of species occurrence
in a grid of habitat suitability (0-1). Color-shading stands for potential habitat suitability,
where 1 — suitable, 0 — unsuitable conditions. Each grid refers to resolution 60 arcmin.
Applied model is indicated in the heading of each figure.
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Buglossidium luteum (SBT)
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S.5. Projected distributional shifts of Buglossidium luteum radiata (based on habitat
suitability) in 2025 (top), 2050 (middle) and 2100 (bottom) under 3 climate scenarios
(SSP1-2.6, SSP3-7.0, SSP5-8.5). Color shading indicate probability of species occurrence
in a grid of habitat suitability (0-1). Color-shading stands for potential habitat suitability,
where 1 — suitable, 0 — unsuitable conditions. Each grid refers to resolution 60 arcmin.
Applied model is indicated in the heading of each figure.
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Callionymus maculatus (SBT)
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S.6. Projected distributional shifts of Callionymus maculatus radiata (based on habitat
suitability) in 2025 (top), 2050 (middle) and 2100 (bottom) under 3 climate scenarios
(SSP1-2.6, SSP3-7.0, SSP5-8.5). Color shading indicate probability of species occurrence
in a grid of habitat suitability (0-1). Color-shading stands for potential habitat suitability,
where 1 — suitable, 0 — unsuitable conditions. Each grid refers to resolution 60 arcmin.
Applied model is indicated in the heading of each figure.
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Chelidonichthys cuculus (SBT)
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S.7. Projected distributional shifts of Chelidonichtys cuculus radiata (based on habitat
suitability) in 2025 (top), 2050 (middle) and 2100 (bottom) under 3 climate scenarios
(SSP1-2.6, SSP3-7.0, SSP5-8.5). Color shading indicate probability of species occurrence
in a grid of habitat suitability (0-1). Color-shading stands for potential habitat suitability,
where 1 — suitable, 0 — unsuitable conditions. Each grid refers to resolution 60 arcmin.
Applied model is indicated in the heading of each figure.
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Chelidonichthys lucerna (SBT)
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S.8. Projected distributional shifts of Chelidonichthys lucerna radiata (based on habitat
suitability) in 2025 (top), 2050 (middle) and 2100 (bottom) under 3 climate scenarios
(SSP1-2.6, SSP3-7.0, SSP5-8.5). Color shading indicate probability of species occurrence
in a grid of habitat suitability (0-1). Color-shading stands for potential habitat suitability,

where 1 — suitable, 0 — unsuitable conditions. Each grid refers to resolution 60 arcmin.
Applied model is indicated in the heading of each figure.
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Cyclopterus lumpus (SBT)
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S.9. Projected distributional shifts of Cyclopterus lumpus radiata (based on habitat
suitability) in 2025 (top), 2050 (middle) and 2100 (bottom) under 3 climate scenarios
(SSP1-2.6, SSP3-7.0, SSP5-8.5). Color shading indicate probability of species occurrence
in a grid of habitat suitability (0-1). Color-shading stands for potential habitat suitability,
where 1 — suitable, 0 — unsuitable conditions. Each grid refers to resolution 60 arcmin.
Applied model is indicated in the heading of each figure.
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Eutrigla gurnardus (SBT)
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S.10. Projected distributional shifts of Eutrigla radiata (based on habitat suitability) in
2025 (top), 2050 (middle) and 2100 (bottom) under 3 climate scenarios (SSP1-2.6, SSP3-
7.0, SSP5-8.5). Color shading indicate probability of species occurrence in a grid of
habitat suitability (0-1). Color-shading stands for potential habitat suitability, where 1 —
suitable, 0 — unsuitable conditions. Each grid refers to resolution 60 arcmin. Applied
model is indicated in the heading of each figure.
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Merluccius merluccius (SBT)
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S.11. Projected distributional shifts of Merluccius merluccies radiata (based on habitat
suitability) in 2025 (top), 2050 (middle) and 2100 (bottom) under 3 climate scenarios
(SSP1-2.6, SSP3-7.0, SSP5-8.5). Color shading indicate probability of species occurrence
in a grid of habitat suitability (0-1). Color-shading stands for potential habitat suitability,
where 1 — suitable, 0 — unsuitable conditions. Each grid refers to resolution 60 arcmin.
Applied model is indicated in the heading of each figure.
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Mullus surmuletus (SBT)
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S.12. Projected distributional shifts of Mullus surmuletus radiata (based on habitat
suitability) in 2025 (top), 2050 (middle) and 2100 (bottom) under 3 climate scenarios
(SSP1-2.6, SSP3-7.0, SSP5-8.5). Color shading indicate probability of species occurrence
in a grid of habitat suitability (0-1). Color-shading stands for potential habitat suitability,
where 1 — suitable, 0 — unsuitable conditions. Each grid refers to resolution 60 arcmin.

Applied model is indicated in the heading of each figure.
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Mustelus asterias (SBT)
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S.13. Projected distributional shifts of Mustelus asterias radiata (based on habitat
suitability) in 2025 (top), 2050 (middle) and 2100 (bottom) under 3 climate scenarios
(SSP1-2.6, SSP3-7.0, SSP5-8.5). Color shading indicate probability of species occurrence
in a grid of habitat suitability (0-1). Color-shading stands for potential habitat suitability,
where 1 — suitable, 0 — unsuitable conditions. Each grid refers to resolution 60 arcmin.
Applied model is indicated in the heading of each figure.
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Myoxocephalus scorpius (SBT)
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S.14. Projected distributional shifts of Myoxocephalus scorpius radiata (based on habitat
suitability) in 2025 (top), 2050 (middle) and 2100 (bottom) under 3 climate scenarios
(SSP1-2.6, SSP3-7.0, SSP5-8.5). Color shading indicate probability of species occurrence
in a grid of habitat suitability (0-1). Color-shading stands for potential habitat suitability,
where 1 — suitable, 0 — unsuitable conditions. Each grid refers to resolution 60 arcmin.
Applied model is indicated in the heading of each figure.
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Raja montagui (SBT)
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S.15. Projected distributional shifts of Raja montagui radiata (based on habitat
suitability) in 2025 (top), 2050 (middle) and 2100 (bottom) under 3 climate scenarios
(SSP1-2.6, SSP3-7.0, SSP5-8.5). Color shading indicate probability of species occurrence
in a grid of habitat suitability (0-1). Color-shading stands for potential habitat suitability,
where 1 — suitable, 0 — unsuitable conditions. Each grid refers to resolution 60 arcmin.
Applied model is indicated in the heading of each figure.
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Scyliorhinus canicula (SBT)
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S.16. Projected distributional shifts of Scyliorhunus canicula radiata (based on habitat
suitability) in 2025 (top), 2050 (middle) and 2100 (bottom) under 3 climate scenarios
(SSP1-2.6, SSP3-7.0, SSP5-8.5). Color shading indicate probability of species occurrence
in a grid of habitat suitability (0-1). Color-shading stands for potential habitat suitability,
where 1 — suitable, 0 — unsuitable conditions. Each grid refers to resolution 60 arcmin.
Applied model is indicated in the heading of each figure.
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Sebastes viviparus (SBT)
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S.17. Projected distributional shifts of Sebastes viviparus radiata (based on habitat
suitability) in 2025 (top), 2050 (middle) and 2100 (bottom) under 3 climate scenarios
(SSP1-2.6, SSP3-7.0, SSP5-8.5). Color shading indicate probability of species occurrence
in a grid of habitat suitability (0-1). Color-shading stands for potential habitat suitability,
where 1 — suitable, 0 — unsuitable conditions. Each grid refers to resolution 60 arcmin.
Applied model is indicated in the heading of each figure.
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Argentina sphyraena (SST)
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S.18. Projected distributional shifts of Argentina sphyraena radiata (based on habitat
suitability) in 2025 (top), 2050 (middle) and 2100 (bottom) under 3 climate scenarios
(SSP1-2.6, SSP3-7.0, SSP5-8.5). Color shading indicate probability of species occurrence
in a grid of habitat suitability (0-1). Color-shading stands for potential habitat suitability,
where 1 — suitable, 0 — unsuitable conditions. Each grid refers to resolution 60 arcmin.
Applied model is indicated in the heading of each figure.
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Engraulis encrasicolus (SST)
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S.19. Projected distributional shifts of Engraulis encrasicolus radiata (based on habitat
suitability) in 2025 (top), 2050 (middle) and 2100 (bottom) under 3 climate scenarios
(SSP1-2.6, SSP3-7.0, SSP5-8.5). Color shading indicate probability of species occurrence
in a grid of habitat suitability (0-1). Color-shading stands for potential habitat suitability,
where 1 — suitable, 0 — unsuitable conditions. Each grid refers to resolution 60 arcmin.
Applied model is indicated in the heading of each figure.
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Sardina pilchardus (SST)
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S.20. Projected distributional shifts of Sardina pilchardus 2 radiata (based on habitat
suitability) in 2025 (top), 2050 (middle) and 2100 (bottom) under 3 climate scenarios
(SSP1-2.6, SSP3-7.0, SSP5-8.5). Color shading indicate probability of species occurrence
in a grid of habitat suitability (0-1). Color-shading stands for potential habitat suitability,
where 1 — suitable, 0 — unsuitable conditions. Each grid refers to resolution 60 arcmin.
Applied model is indicated in the heading of each figure.
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Scomber scombrus (SST)
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S.21. Projected distributional shifts of Scomber scombrus radiata (based on habitat
suitability) in 2025 (top), 2050 (middle) and 2100 (bottom) under 3 climate scenarios
(SSP1-2.6, SSP3-7.0, SSP5-8.5). Color shading indicate probability of species occurrence
in a grid of habitat suitability (0-1). Color-shading stands for potential habitat suitability,
where 1 — suitable, 0 — unsuitable conditions. Each grid refers to resolution 60 arcmin.
Applied model is indicated in the heading of each figure.
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Trachurus trachurus (SST)
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S.22. Projected distributional shifts of Trachurus trachurus radiata (based on habitat
suitability) in 2025 (top), 2050 (middle) and 2100 (bottom) under 3 climate scenarios
(SSP1-2.6, SSP3-7.0, SSP5-8.5). Color shading indicate probability of species occurrence
in a grid of habitat suitability (0-1). Color-shading stands for potential habitat suitability,
where 1 — suitable, 0 — unsuitable conditions. Each grid refers to resolution 60 arcmin.
Applied model is indicated in the heading of each figure.
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Amblyraja radiata (SBT + O2 Bottom)
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S.23. Projected distributional shifts of Amblyraja radiata radiata (based on habitat
suitability) in 2025 (top), 2050 (middle) and 2100 (bottom) under 3 climate scenarios
(SSP1-2.6, SSP3-7.0, SSP5-8.5). Color shading indicate probability of species occurrence
in a grid of habitat suitability (0-1). Color-shading stands for potential habitat suitability,
where 1 — suitable, 0 — unsuitable conditions. Each grid refers to resolution 60 arcmin.
Applied model is indicated in the heading of each figure.
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Anarhichas lupus (SBT + O2 Bottom)
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S.24. Projected distributional shifts of Anarhichas lupus radiata (based on habitat
suitability) in 2025 (top), 2050 (middle) and 2100 (bottom) under 3 climate scenarios
(SSP1-2.6, SSP3-7.0, SSP5-8.5). Color shading indicate probability of species occurrence
in a grid of habitat suitability (0-1). Color-shading stands for potential habitat suitability,
where 1 — suitable, 0 — unsuitable conditions. Each grid refers to resolution 60 arcmin.
Applied model is indicated in the heading of each figure.
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Arnoglossus laterna (SBT + O2 Bottom)
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S.25. Projected distributional shifts of Arnoglossus laterna radiata (based on habitat
suitability) in 2025 (top), 2050 (middle) and 2100 (bottom) under 3 climate scenarios
(SSP1-2.6, SSP3-7.0, SSP5-8.5). Color shading indicate probability of species occurrence
in a grid of habitat suitability (0-1). Color-shading stands for potential habitat suitability,
where 1 — suitable, 0 — unsuitable conditions. Each grid refers to resolution 60 arcmin.
Applied model is indicated in the heading of each figure.
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Buglossidium luteum (SBT + O2 Bottom)
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S.26. Projected distributional shifts of Buglossidium luteum (based on habitat suitability)
2025 (top), 2050 (middle) and 2100 (bottom) under 3 climate scenarios (SSP1-2.6, SSP3-
7.0, SSP5-8.5). Color shading indicate probability of species occurrence (0-1). Color-
shading stands for habitat suitability (0-1). Each grid refers to resolution 60 arcmin.
Applied model is indicated in the heading of each figure.
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Callionymus maculatus (SBT + O2 Bottom)
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S.27. Projected distributional shifts of Callionymus maculatus (based on habitat
suitability) 2025 (top), 2050 (middle) and 2100 (bottom) under 3 climate scenarios (SSP1-
2.6, SSP3-7.0, SSP5-8.5). Color shading indicate probability of species occurrence (0-1).
Color-shading stands for habitat suitability (0-1). Each grid refers to resolution 60 arcmin.
Applied model is indicated in the heading of each figure.
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Chelidonichthys cuculus (SBT + O2 Bottom)
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S.28. Projected distributional shifts of Chelidonichtys cuculus radiata (based on habitat
suitability) in 2025 (top), 2050 (middle) and 2100 (bottom) under 3 climate scenarios
(SSP1-2.6, SSP3-7.0, SSP5-8.5). Color shading indicate probability of species occurrence
in a grid of habitat suitability (0-1). Color-shading stands for potential habitat suitability,
where 1 — suitable, 0 — unsuitable conditions. Each grid refers to resolution 60 arcmin.
Applied model is indicated in the heading of each figure.
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S.29. Projected distributional shifts of Chelidonichthys lucerna radiata (based on habitat
suitability) in 2025 (top), 2050 (middle) and 2100 (bottom) under 3 climate scenarios
(SSP1-2.6, SSP3-7.0, SSP5-8.5). Color shading indicate probability of species occurrence
in a grid of habitat suitability (0-1). Color-shading stands for potential habitat suitability,
where 1 — suitable, 0 — unsuitable conditions. Each grid refers to resolution 60 arcmin.
Applied model is indicated in the heading of each figure.
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Cyclopterus lumpus (SBT + O2 Bottom)
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S.30. Projected distributional shifts of Cyclopterus lumpus radiata (based on habitat
suitability) in 2025 (top), 2050 (middle) and 2100 (bottom) under 3 climate scenarios
(SSP1-2.6, SSP3-7.0, SSP5-8.5). Color shading indicate probability of species occurrence
in a grid of habitat suitability (0-1). Color-shading stands for potential habitat suitability,
where 1 — suitable, 0 — unsuitable conditions. Each grid refers to resolution 60 arcmin.
Applied model is indicated in the heading of each figure.
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Eutrigla gurnardus (SBT + O2 Bottom)
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S.31. Projected distributional shifts of Eutrigla gurnardus radiata (based on habitat
suitability) in 2025 (top), 2050 (middle) and 2100 (bottom) under 3 climate scenarios
(SSP1-2.6, SSP3-7.0, SSP5-8.5). Color shading indicate probability of species occurrence
in a grid of habitat suitability (0-1). Color-shading stands for potential habitat suitability,
where 1 — suitable, 0 — unsuitable conditions. Each grid refers to resolution 60 arcmin.
Applied model is indicated in the heading of each figure.
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Merluccius merluccius (SBT + O2 Bottom)
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S.32. Projected distributional shifts of Merluccius merluccius radiata (based on habitat
suitability) in 2025 (top), 2050 (middle) and 2100 (bottom) under 3 climate scenarios
(SSP1-2.6, SSP3-7.0, SSP5-8.5). Color shading indicate probability of species occurrence
in a grid of habitat suitability (0-1). Color-shading stands for potential habitat suitability,
where 1 — suitable, 0 — unsuitable conditions. Each grid refers to resolution 60 arcmin.
Applied model is indicated in the heading of each figure.

doi:10.6342/NTU202500202
128



Mullus surmuletus (SBT + O2 Bottom)
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S.33. Projected distributional shifts of Mullus surmuletus radiata (based on habitat
suitability) in 2025 (top), 2050 (middle) and 2100 (bottom) under 3 climate scenarios
(SSP1-2.6, SSP3-7.0, SSP5-8.5). Color shading indicate probability of species occurrence
in a grid of habitat suitability (0-1). Color-shading stands for potential habitat suitability,
where 1 — suitable, 0 — unsuitable conditions. Each grid refers to resolution 60 arcmin.
Applied model is indicated in the heading of each figure.
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Mustelus asterias (SBT + O2 Bottom)
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S.34.Projected distributional shifts of Mustelus asterias radiata (based on habitat
suitability) in 2025 (top), 2050 (middle) and 2100 (bottom) under 3 climate scenarios
(SSP1-2.6, SSP3-7.0, SSP5-8.5). Color shading indicate probability of species occurrence
in a grid of habitat suitability (0-1). Color-shading stands for potential habitat suitability,
where 1 — suitable, 0 — unsuitable conditions. Each grid refers to resolution 60 arcmin.

Applied model is indicated in the heading of each figure.
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S.35. Projected distributional shifts of Myoxocephalus scorpius radiata (based on habitat
suitability) in 2025 (top), 2050 (middle) and 2100 (bottom) under 3 climate scenarios
(SSP1-2.6, SSP3-7.0, SSP5-8.5). Color shading indicate probability of species occurrence
in a grid of habitat suitability (0-1). Color-shading stands for potential habitat suitability,
where 1 — suitable, 0 — unsuitable conditions. Each grid refers to resolution 60 arcmin.
Applied model is indicated in the heading of each figure.
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Raja montagui (SBT + O2 Bottom)
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S.36. Projected distributional shifts of Raja montagui radiata (based on habitat
suitability) in 2025 (top), 2050 (middle) and 2100 (bottom) under 3 climate scenarios
(SSP1-2.6, SSP3-7.0, SSP5-8.5). Color shading indicate probability of species occurrence
in a grid of habitat suitability (0-1). Color-shading stands for potential habitat suitability,
where 1 — suitable, 0 — unsuitable conditions. Each grid refers to resolution 60 arcmin.
Applied model is indicated in the heading of each figure.
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Scyliorhinus canicula (SBT + O2 Bottom)
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S.37. Projected distributional shifts of Scyliorhunus canicula radiata (based on habitat
suitability) in 2025 (top), 2050 (middle) and 2100 (bottom) under 3 climate scenarios
(SSP1-2.6, SSP3-7.0, SSP5-8.5). Color shading indicate probability of species occurrence
in a grid of habitat suitability (0-1). Color-shading stands for potential habitat suitability,
where 1 — suitable, 0 — unsuitable conditions. Each grid refers to resolution 60 arcmin.

Applied model is indicated in the heading of each figure.
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Sebastes viviparus (SBT + 02 Bottom)
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S.38. Projected distributional shifts of Sebastes viviparus radiata (based on habitat
suitability) in 2025 (top), 2050 (middle) and 2100 (bottom) under 3 climate scenarios
(SSP1-2.6, SSP3-7.0, SSP5-8.5). Color shading indicate probability of species occurrence
in a grid of habitat suitability (0-1). Color-shading stands for potential habitat suitability,
where 1 — suitable, 0 — unsuitable conditions. Each grid refers to resolution 60 arcmin.
Applied model is indicated in the heading of each figure.
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Argentina sphyraena (SST + O2 Surface)
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S.39. Projected distributional shifts of Argentina sphyraena radiata (based on habitat
suitability) in 2025 (top), 2050 (middle) and 2100 (bottom) under 3 climate scenarios
(SSP1-2.6, SSP3-7.0, SSP5-8.5). Color shading indicate probability of species occurrence
in a grid of habitat suitability (0-1). Color-shading stands for potential habitat suitability,
where 1 — suitable, 0 — unsuitable conditions. Each grid refers to resolution 60 arcmin.
Applied model is indicated in the heading of each figure.
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Engraulis encrasicolus (pH Surface + O2 Surf:
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S.40. Projected distributional shifts of Engraulis encrasicolus radiata (based on habitat
suitability) in 2025 (top), 2050 (middle) and 2100 (bottom) under 3 climate scenarios
(SSP1-2.6, SSP3-7.0, SSP5-8.5). Color shading indicate probability of species occurrence
in a grid of habitat suitability (0-1). Color-shading stands for potential habitat suitability,
where 1 — suitable, 0 — unsuitable conditions. Each grid refers to resolution 60 arcmin.
Applied model is indicated in the heading of each figure.
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Sardina pilchardus (pH Surface + O2 Surface)
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S.41. Projected distributional shifts of Sardina pilchardus radiata (based on habitat
suitability) in 2025 (top), 2050 (middle) and 2100 (bottom) under 3 climate scenarios
(SSP1-2.6, SSP3-7.0, SSP5-8.5). Color shading indicate probability of species occurrence
in a grid of habitat suitability (0-1). Color-shading stands for potential habitat suitability,
where 1 — suitable, 0 — unsuitable conditions. Each grid refers to resolution 60 arcmin.
Applied model is indicated in the heading of each figure.
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Scomber scombrus (SST + O2 Surface)
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S.42. Projected distributional shifts of Scomber radiata (based on habitat suitability) in
2025 (top), 2050 (middle) and 2100 (bottom) under 3 climate scenarios (SSP1-2.6, SSP3-
7.0, SSP5-8.5). Color shading indicate probability of species occurrence in a grid of
habitat suitability (0-1). Color-shading stands for potential habitat suitability, where 1 —
suitable, 0 — unsuitable conditions. Each grid refers to resolution 60 arcmin. Applied
model is indicated in the heading of each figure.
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Trachurus trachurus (SST + O2 Surface)
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S.43. Projected distributional shifts of Trachurus trachurus radiata (based on habitat
suitability) in 2025 (top), 2050 (middle) and 2100 (bottom) under 3 climate scenarios
(SSP1-2.6, SSP3-7.0, SSP5-8.5). Color shading indicate probability of species occurrence
in a grid of habitat suitability (0-1). Color-shading stands for potential habitat suitability,
where 1 — suitable, 0 — unsuitable conditions. Each grid refers to resolution 60 arcmin.
Applied model is indicated in the heading of each figure.
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S.44. Distributional centroids vectors for multi-factor models. Shifts from 2024 to 2100
under 3 climate scenarios. The three panels illustrate arrows that are species’ movement
vectors (direction and magnitude) under SSP1-2.6 (A), SSP3-7.0 (B), and SSP5-8.5 (C).
Blue arrows: represent demersal species. Red arrows: indicate pelagic species. The length
of the arrows indicates the magnitude of the response. Longer arrows reflect greater shifts
in species distributions or probabilities of presence. Numbers represent the distance in
kilometers (km). Resolution of 1 grid is 60 arcmin. Each horizontal cell is 1 degree in
longitude (West-East displacement) and each vertical cell is 1 degree in latitude (South-
North displacement).
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