Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96370
Title: 多尺度變壓器模型於長時間序列預測之應用
MscTNT: Multi-Scale Transformer Model for Long Sequence Time Series Forecasting
Authors: 陳泰佑
Tai-You Chen
Advisor: 王勝德
Sheng-De Wang
Keyword: 時間序列預測,基於Transformer,Token Reduction,訓練及部屬成本,SOTA,
Time Series Forecasting,Transformer-based,Token Reduction,Computational Cost,SOTA,
Publication Year : 2025
Degree: 碩士
Abstract: 時間序列預測的核心在於捕捉時間軸上的依賴性與趨勢。採用較長的輸入序列,不僅能幫助模型學習數據中的長期趨勢和週期性模式,還可以使其能更好地擬合的數據漂移。因此對於提升預測性能,使用長輸入序列為不可或缺的要素之一。然而,現有基於 Transformer 的模型在處理長輸入序列時,計算成本將顯著增加。為了解決此類問題,我們提出了一種高效的 Transformer 架構模型——MscTNT。該模型能以較低的計算成本處理更長的歷史數據窗口,透過將輸入序列分為大粒度切片與小粒度子切片,並結合雙層級 Transformer 編碼器堆疊的設計,增強模型的表徵能力。這種設計能夠聚合多尺度特徵,有效學習時間序列中的時序依賴性。MscTNT 的結構設計具有高度靈活性,能在預測精度與訓練及部署的時間空間成本之間實現良好的權衡。透過合理的參數設置,MscTNT 可以實現高效的 token reduction,大幅降低計算成本;而在較高計算成本的設定下,該模型亦能以低於其他模型所需成本的條件下,達到接近 SOTA 的預測精度。
Time series forecasting focuses on capturing dependencies and trends across temporal sequences. Utilizing longer input sequences not only enables the model to learn long-term trends and periodic patterns within the data but also enhances its ability to model the evolving distribution drift. Consequently, the use of long input sequences is an essential factor in enhancing forecasting performance. However, when processing long input sequences, existing Transformer-based models face a significant increase in computational cost. To address this issue, we propose MscTNT, an efficient Transformer-based model capable of handling extended historical windows at reduced costs. MscTNT employs a dual-level Transformer encoder stack, which partitions the input sequence into coarse-grained patches and fine-grained subpatches to enhance representational capacity. This design facilitates the aggregation of multi-scale features and effectively captures temporal dependencies within the data. The structure of MscTNT ensures flexibility, enabling a balanced trade-off between predictive accuracy and the computational cost of training and deployment. By appropriately tuning the model parameters, MscTNT achieves efficient token reduction, substantially mitigating computational expenses. Alternatively, with higher-cost parameter settings, the model attains near state-of-the-art (SOTA) predictive accuracy at a lower computational overhead compared to other models.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96370
DOI: 10.6342/NTU202500515
Fulltext Rights: 同意授權(全球公開)
metadata.dc.date.embargo-lift: 2025-02-14
Appears in Collections:電機工程學系

Files in This Item:
File SizeFormat 
ntu-113-1.pdf2.95 MBAdobe PDFView/Open
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved