Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 財務金融學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96319
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor管中閔zh_TW
dc.contributor.advisorChung-Ming Kuanen
dc.contributor.author張育豪zh_TW
dc.contributor.authorYu-Hao Changen
dc.date.accessioned2024-12-24T16:20:01Z-
dc.date.available2024-12-25-
dc.date.copyright2024-12-24-
dc.date.issued2024-
dc.date.submitted2024-12-02-
dc.identifier.citationAndrikogiannopoulou, A. and Papakonstantinou, F. (2019). Reassessing false discoveries in mutual fund performance: Skill, luck, or lack of power? The Journal of Finance, 74(5):2667–2688.
Bai, J. and Ng, S. (2002). Determining the number of factors in approximate factor models. Econometrica, 70(1):191–221.
Barras, L., Scaillet, O., and Wermers, R. (2010). False discoveries in mutual fund performance: Measuring luck in estimated alphas. The journal of finance, 65(1):179–216.
Barras, L., Scaillet, O., and Wermers, R. (2019). Reassessing false discoveries in mutual fund performance: Skill, luck, or lack of power? a reply. Journal of Finance, Forthcoming, Swiss Finance Institute Research Paper, (19-61).
Benjamini, Y. (2010). Discovering the false discovery rate. Journal of the Royal Statistical Society Series B: Statistical Methodology, 72(4):405–416.
Benjamini, Y. and Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal statistical society: series B (Methodological), 57(1):289–300.
Benjamini, Y. and Yekutieli, D. (2001). The control of the false discovery rate in multiple testing under dependency. Annals of statistics, pages 1165–1188.
Benussi, A., Pilotto, A., Premi, E., Libri, I., Giunta, M., Agosti, C., Alberici, A., Baldelli, E., Benini, M., Bonacina, S., et al. (2020). Clinical characteristics and outcomes of inpatients with neurologic disease and covid-19 in brescia, lombardy, italy. Neurology, 95(7):e910–e920.
Betts, M. G., Wolf, C., Ripple, W. J., Phalan, B., Millers, K. A., Duarte, A., Butchart, S. H., and Levi, T. (2017). Global forest loss disproportionately erodes biodiversity in intact landscapes. Nature, 547(7664):441–444.
Cai, J., Chan, K. C., and Yamada, T. (1997). The performance of Japanese mutual funds. The Review of Financial Studies, 10(2):237–274.
Cai, J.-F., Candès, E. J., and Shen, Z. (2010). A singular value thresholding algorithm for matrix completion. SIAM Journal on optimization, 20(4):1956–1982.
Candes, E. J. and Plan, Y. (2010). Matrix completion with noise. Proceedings of the IEEE, 98(6):925–936.
Chen, C.-W., Huang, C.-S., and Lai, H.-W. (2011). Data snooping on technical analysis: Evidence from the taiwan stock market. Review of Pacific Basin Financial Markets and Policies, 14(02):195–212.
Cuthbertson, K., Nitzsche, D., and O’Sullivan, N. (2010). Mutual fund performance: Measurement and evidence. Financial Markets, Institutions & Instruments, 19(2):95–187.
Cuthbertson, K., Nitzsche, D., and O’Sullivan, N. (2012). False discoveries in UK mutual fund performance. European Financial Management, 18(3):444–463.
Fama, E. F. and French, K. R. (2010). Luck versus skill in the cross-section of mutual fund returns. The journal of finance, 65(5):1915–1947.
Giglio, S., Liao, Y., and Xiu, D. (2021). Thousands of alpha tests. The Review of Financial Studies, 34(7):3456–3496.
Giglio, S. and Xiu, D. (2021). Asset pricing with omitted factors. Journal of Political Economy, 129(7):1947–1990.
Goldfarb, D. and Ma, S. (2011). Convergence of fixed-point continuation algorithms for matrix rank minimization. Foundations of Computational Mathematics, 11(2):183– 210.
Hansen, P. R. (2005). A test for superior predictive ability. Journal of Business & Economic Statistics, 23(4):365–380.
Harvey, C. R. and Liu, Y. (2022). Luck versus skill in the cross section of mutual fund returns: Reexamining the evidence. The Journal of Finance, 77(3):1921–1966.
Harvey, C. R., Liu, Y., and Saretto, A. (2020). An evaluation of alternative multiple testing methods for finance applications. The Review of Asset Pricing Studies, 10(2):199–248.
Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian journal of statistics, pages 65–70.
Hsu, P.-H., Hsu, Y.-C., and Kuan, C.-M. (2010). Testing the predictive ability of technical analysis using a new stepwise test without data snooping bias. Journal of Empirical Finance, 17(3):471–484.
Hsu, P.-H. and Kuan, C.-M. (2005). Reexamining the profitability of technical analysis with data snooping checks. Journal of Financial Econometrics, 3(4):606–628.
Hsu, Y.-C., Kuan, C.-M., and Yen, M.-F. (2014). A generalized stepwise procedure with improved power for multiple inequalities testing. Journal of Financial Econometrics, 12(4):730–755.
Kosowski, R., Timmermann, A., Wermers, R., and White, H. (2006). Can mutual fund “stars"really pick stocks? new evidence from a bootstrap analysis. The Journal of finance, 61(6):2551–2595.
Ma, S., Goldfarb, D., and Chen, L. (2011). Fixed point and bregman iterative methods for matrix rank minimization. Mathematical Programming, 128(1):321–353.
Mammen, E. (1993). Bootstrap and wild bootstrap for high dimensional linear models. The annals of statistics, 21(1):255–285.
Metghalchi, M., Chang, Y.-H., and Garza-Gomez, X. (2012). Technical analysis of the taiwanese stock market. International Journal of Economics and Finance, 4(1):90–102.
Pilbeam, K. and Preston, H. (2019). An empirical investigation of the performance of Japanese mutual funds: Skill or luck? International Journal of Financial Studies, 7(1):6.
Qi, M. and Wu, Y. (2006). Technical trading-rule profitability, data snooping, and reality check: Evidence from the foreign exchange market. Journal of Money, Credit and Banking, pages 2135–2158.
Recht, B. (2011). A simpler approach to matrix completion. Journal of Machine Learning Research, 12(12).
Recht, B., Fazel, M., and Parrilo, P. A. (2010). Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization. SIAM review, 52(3):471–501.
Romano, J. P., Shaikh, A. M., and Wolf, M. (2008). Formalized data snooping based on generalized error rates. Econometric Theory, 24(2):404–447.
Romano, J. P., Shaikh, A. M., and Wolf, M. (2010). Hypothesis testing in econometrics. Annu. Rev. Econ., 2(1):75–104.
Romano, J. P. and Wolf, M. (2005). Stepwise multiple testing as formalized data snooping. Econometrica, 73(4):1237–1282.
Romano, J. P. and Wolf, M. (2007). Control of generalized error rates in multiple testing. The Annals of Statistics, 35(4):1378–1408.
Sortino, F. A. and Price, L. N. (1994). Performance measurement in a downside risk framework. the Journal of Investing, 3(3):59–64.
Storey, J. D. (2002). A direct approach to false discovery rates. Journal of the Royal Statistical Society Series B: Statistical Methodology, 64(3):479–498.
Storey, J. D. and Tibshirani, R. (2003). Statistical significance for genomewide studies. Proceedings of the National Academy of Sciences, 100(16):9440–9445.
Sullivan, R., Timmermann, A., and White, H. (1999). Data-snooping, technical trading rule performance, and the bootstrap. The journal of Finance, 54(5):1647–1691.
White, H. (2000). A reality check for data snooping. Econometrica, 68(5):1097–1126.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96319-
dc.description.abstract本文在考慮潛在因子與多重檢定的問題下檢驗日本共同基金的績效。我們主要遵循 Giglio, Liao, and Xiu (2021) 的方法來辨識潛在的定價因子,處理基金報酬資料中的缺失值問題,且運用 screening Benjamini and Hochberg procedure 控制偽發現率(false discovery rate, FDR)。結果顯示,在這些基金中僅有 0.47% 在長期內被辨識為具有顯著績效。然而,我們也發現在短期內有較高比例的基金展現出顯著的績效,而這些基金在不同子期間的表現持續優於其他基金,但並未成為長期具有顯著績效的基金。最後,我們在不同的 FDR 水準下構建了由顯著績效基金組成的投資組合,這些投資組合的樣本外績效均優於日經 225,顯示出這些基金在樣本內的表現能成功轉化為樣本外收益,並帶來顯著的經濟價值。zh_TW
dc.description.abstractThis paper examines the performance of Japanese mutual funds while addressing latent factors and the issue of multiple testing. We follow the methodology of Giglio, Liao, and Xiu (2021) to identify latent factors, handle missing values, and apply the screening Benjamini and Hochberg procedure to control the false discovery rate (FDR). Among these funds, only 0.47% are identified as outperforming funds. However, a greater proportion of mutual funds demonstrate superior performance in the short term, which continues to outperform others across different subperiods, though their performance does not sustain over the long term. Finally, we construct portfolios of outperforming funds controlled at varying FDR levels, all of which outperform the Nikkei 225 out-of-sample, indicating that these in-sample alphas successfully translate to out-of-sample returns and generate significant economic values.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-12-24T16:20:01Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-12-24T16:20:01Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 i
Acknowledgements ii
摘要 iii
Abstract iv
Contents v
List of Figures vii
List of Tables viii
Chapter 1 Introduction 1
Chapter 2 Literature Review 4
2.1 Multiple Testing Problem 4
2.2 Family-wise Error Rate (FWER) 6
2.3 Joint test 7
2.4 k-FWER 10
2.5 False Discovery Rate (FDR) 12
2.6 Bootstrap Approach 17
Chapter 3 Methodology 21
3.1 Mutual Fund Performance Measurement 22
3.2 Matrix Completion 25
3.3 Estimate alpha and the test statistics 28
3.4 Wild Bootstrap procedure 30
Chapter 4 Empirical Results 33
4.1 Mutual Fund Data 33
4.2 Long-Term Mutual Fund Performance 36
4.3 Short-Term Performance 38
4.4 Rank Persistence Analysis 40
4.5 Out-of-Sample Performance 42
Chapter 5 Conclusion 46
References 48
-
dc.language.isoen-
dc.subject多重檢定問題zh_TW
dc.subject自助重抽法zh_TW
dc.subject矩陣完備化zh_TW
dc.subject主成分分析zh_TW
dc.subject偽發現率zh_TW
dc.subject共同基金表現zh_TW
dc.subjectPrincipal component analysisen
dc.subjectFalse discovery rateen
dc.subjectMultiple testing problemen
dc.subjectMutual funds performanceen
dc.subjectBootstrapen
dc.subjectMatrix completionen
dc.title控制FDR和潛在因子下的共同基金表現zh_TW
dc.titleExamining Mutual Fund Performance with FDR-Control and Latent Factorsen
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee莊惠菁;許育進zh_TW
dc.contributor.oralexamcommitteeHui-Ching Chuang;Yu-Chin Hsuen
dc.subject.keyword共同基金表現,多重檢定問題,偽發現率,主成分分析,矩陣完備化,自助重抽法,zh_TW
dc.subject.keywordMutual funds performance,Multiple testing problem,False discovery rate,Principal component analysis,Matrix completion,Bootstrap,en
dc.relation.page52-
dc.identifier.doi10.6342/NTU202404642-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-12-02-
dc.contributor.author-college管理學院-
dc.contributor.author-dept財務金融學系-
顯示於系所單位:財務金融學系

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf5.91 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved