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摘要

本文在考慮潛在因子與多重檢定的問題下檢驗日本共同基金的績效。我們主

要遵循 Giglio, Liao, and Xiu (2021)的方法來辨識潛在的定價因子，處理基金報酬

資料中的缺失值問題，且運用 screening Benjamini and Hochberg procedure控制偽

發現率（false discovery rate, FDR）。結果顯示，在這些基金中僅有 0.47%在長期

內被辨識為具有顯著績效。然而，我們也發現在短期內有較高比例的基金展現出

顯著的績效，而這些基金在不同子期間的表現持續優於其他基金，但並未成為長

期具有顯著績效的基金。最後，我們在不同的 FDR水準下構建了由顯著績效基金

組成的投資組合，這些投資組合的樣本外績效均優於日經 225，顯示出這些基金

在樣本內的表現能成功轉化為樣本外收益，並帶來顯著的經濟價值。

關鍵字：共同基金表現、多重檢定問題、偽發現率、主成分分析、矩陣完備化、

自助重抽法
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Abstract

This paper examines the performance of Japanese mutual funds while addressing

latent factors and the issue of multiple testing. We follow the methodology of Giglio, Liao,

and Xiu (2021) to identify latent factors, handle missing values, and apply the screening

Benjamini andHochberg procedure to control the false discovery rate (FDR). Among these

funds, only 0.47% are identified as outperforming funds. However, a greater proportion

of mutual funds demonstrate superior performance in the short term, which continues to

outperform others across different subperiods, though their performance does not sustain

over the long term. Finally, we construct portfolios of outperforming funds controlled

at varying FDR levels, all of which outperform the Nikkei 225 out-of-sample, indicating

that these in-sample alphas successfully translate to out-of-sample returns and generate

significant economic values.

Keywords: Mutual funds performance,Multiple testing problem, False discovery rate, Prin-

cipal component analysis, Matrix completion, Bootstrap
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Chapter 1 Introduction

Compared to passive mutual funds, active mutual funds may potentially generate

higher returns if it can outperform the index. Therefore, identifying outperforming mutual

funds (i.e., funds with positive alphas) is a key concern for investors. Although there is

a large number of literature evaluating mutual funds performance, most studies focus on

US mutual funds (e.g., Kosowski et al., 2006; Fama and French, 2010; Barras et al., 2010;

Cuthbertson et al., 2010). In contrast, relatively few studies examine Japanese mutual

funds, and those that do (e.g., Cai et al., 1997; Pilbeam and Preston, 2019) primarily

analyze early-period performance. This motivates us to investigate the performance of

Japanese active mutual funds by updating the sample period and using a novel method to

identify outperforming mutual funds.

The most common approach to identify outperforming mutual funds is to estimate

their alphas using a benchmark model, followed by conducting many individual hypoth-

esis tests to infer whether their true alphas are positive. However, due to the multiple

testing problem, conducting these tests simultaneously can lead to many funds showing

significant alphas even when their true alphas are non-positive. Furthermore, the complex

dependency structure among these mutual funds may cause the pre-specified benchmark

model to fail to capture all common risk factors (Fama and French, 2010), resulting in the

omitted variable problem and potentially biasing the alpha estimator.

1
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To address the omitted variable problem, we adopt the methodology of Giglio, Liao,

and Xiu (2021), considering a benchmark model with latent factors and applying the prin-

cipal component analysis (PCA) proposed by Giglio and Xiu (2017) to identify these un-

observable common factors. However, in practice, mutual fund data often include missing

values, making it difficult to apply PCA directly. Therefore, we follow Giglio, Liao, and

Xiu (2021) and employ matrix completion (Ma et al., 2011; Cai et al., 2010; Goldfarb and

Ma, 2011) to impute missing values by approximating the observed data using a low-rank

matrix.

Once alphas are estimated, we then evaluate their p-values for hypothesis testing.

Although Giglio, Liao, and Xiu (2021) propose an asymptotically normal test statistic, its

finite sample performance may be affected when the data have missing values. There-

fore, we use wild bootstrap to evaluate the corresponding p-values. Unlike Giglio, Liao,

and Xiu (2021), we bootstrap the test statistic rather than alpha since the test statistic is

standardized by the standard deviation and the number of observations, providing better

statistical properties (Kosowski et al., 2006).

Finally, to address themultiple testing problem, onemay apply the Bonferronimethod

to control the family-wise error rate (FWER), which is defined as the probability ofmaking

at least one false rejection. However, the Bonferroni method becomes overly conserva-

tive as the number of tests increases. To improve test power, Holm (1976) proposes a

stepwise procedure, while White (2000), Hansen (2005), Romano and Wolf (2005), and

Hsu et al. (2010) develop bootstrap techniques that account for dependencies among tests.

Nonetheless, methods that control the number of rejections tend to lack power when faced

with thousands of hypothesis tests. As a result, some researchers prefer to control the false

discovery rate (FDR), which is the expected proportion of false discoveries among all re-

2
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jections. The well-known Benjamini and Hochberg (1995; BH) procedure is commonly

used to control the FDR. However, the BH procedure still lacks power when the number

of tests is large. Therefore, in this paper, we follow the screening criterion proposed by

Giglio, Liao, and Xiu (2021) to enhance the power of the BH procedure by filtering out

funds with extremely negative alphas.

In summary, this paper examines the performance of 1483 Japanese mutual funds

over the period from 2002 to 2023 using a benchmark model with latent factors and a

screening BH procedure to control the luck. We find that, while only 0.47% of mutual

funds outperform the benchmark when controlling the FDR at 10%, more mutual funds

demonstrate superior performance in the short term, especially during the 2010→2019 and

2012–2021 subperiods, with 3.14% and 9.30% of mutual funds , respectively. However,

these short-term superior performance tend to vanish quickly. We further examine their

rank persistence and find that funds with short-term superior performance consistently

outperform others but lack the strength to maintain their superior performance over the

long term. Lastly, we investigate whether these in-sample positive alphas can translate

into out-of-sample economic values by forming portfolios that control the FDR at lev-

els of 10%, 15%, and 20%, and evaluating their cumulative wealth from 2012→2023.

Our results demonstrate that all these portfolios exhibit superior performance compared

to Nikkei 225, indicating these funds with in-sample positive alpha have the ability to beat

the benchmark in out-of-sample performance.

The rest of this paper is organized as follows: Section 2 provides a literature review

on the multiple testing problem and the bootstrap methods used to evaluate p-values in

mutual fund data. Section 3 outlines the methodology employed in this study. Section 4

presents the empirical findings, while Section 5 offers the conclusions.

3
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Chapter 2 Literature Review

2.1 Multiple Testing Problem

Multiple hypothesis testing refers to situations where more than one null hypothesis

is tested simultaneously. This often occurs in financial empirical studies. For example,

one might be interested in identifying superior trading rules (or outperforming mutual

funds) from thousands of technical strategies (or mutual funds). When there are multiple

hypotheses under consideration, the multiple testing problem arises if each hypothesis is

tested without properly controlling the type I error. For example, suppose we are testing

100 hypotheses and their test statistics are independent. With a significance level of 5%

for each test, the probability of rejecting at least one true null hypothesis is 1→ 0.95100 =

99.4%, which is much larger than the pre-specified individual significance level. In this

case, it is necessary to apply proper methods to avoid false rejections.

Consider a multiple hypothesis testing situation when there areM hypotheses. Table

2.1 illustrates the possible outcomes when testing these M hypotheses simultaneously.

Suppose mo ofM hypotheses are true under the null, andM -mo are true alternatives. In

theseM hypotheses, R of them have been rejected. Among these R rejected hypotheses,

FP of them are falsely rejected (also called false rejections or false discoveries). Con-

versely, FN are true alternatives that have not been rejected (also called false negatives).

4
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Table 2.1: Outcome of hypothesis testing

H0 is true H1 is true Total

Reject H0 FP TP R
Not reject H0 TN FN M -R

mo M -mo M

To address the multiple testing problem, researchers aim to control the overall Type

I error across a family of hypothesis tests. Suppose the parameter of interest is αk for

k = 1, · · · ,M , and the objective is to test whether αk ≤ 0. One approach is to conduct a

joint hypothesis test:

H : αk ≤ 0 ∀ k = 1, · · · ,M vs. H ′
k : ∃ k with αk > 0, (2.1)

which directly controls the overall Type I error across these M tests. However, joint

hypothesis testing only determines whether at least one αk rejects the null hypothesis,

while researchers are often interested in identifying which specific hypotheses reject the

null. Therefore, an alternative approach is to conductM individual hypothesis tests (i.e.,

multiple tests):

Hk : αk ≤ 0 vs. H ′
k : αk > 0 for k = 1, · · · ,M , (2.2)

using appropriate critical values for each individual test to control specific error measures

across these M tests and determine which hypotheses reject the null. For example, one

could control the probability of FP > 0 to avoid any false rejections among these M

hypotheses (i.e., FWER). Alternatively, one might focus on controlling the proportion

of false rejections relative to the total number of rejections (FP/R), such as the false

discovery proportion (FDP) or the expectation of FDP, referred to as the false discovery

rate (FDR). In the following sections, we will provide more details on these error measures

5
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and the methods for determining the appropriate critical values for both the joint test and

multiple tests.

2.2 Family-wise Error Rate (FWER)

The most classical method used to deal with the multiple testing problem is to control

the FWER. The FWER is defined as the probability of falsely rejecting at least one true

null hypothesis:

FWER = P{FP ≥ 1}. (2.3)

Once the FWER is controlled, the probability of Type I error does not increase when the

number of hypotheses increases. One well-knownmethod used to control the FWER is the

Bonferroni method. To maintain the FWER at the level of ε, Bonferroni suggests setting

the individual significance level at ε/M . This procedure is justified by the following

inequality:

FWER = P{
⋃

k∈I0

(
Reject Hk

0

)
} ≤

∑

k∈I0

P
(
Reject Hk

0

)
≤
∑

k∈I0

ε

M
≤ ε, (2.4)

where I0 is the set of indices of the true null hypotheses andHk
0 is the k-th null hypothesis.

Although the Bonferroni method can be used to control for the FWER, it becomes too

conservative whenM is large (i.e. ε/M is too small), resulting in few rejections.

To enhance the power of the Bonferroni method, Holm introduces a stepwise pro-

cedure. In the Holm method, the p-values of M statistics are initially ordered as p(1) ≤

p(2) ≤ ... ≤ p(M). To control for the FWER at the level of ε, the Holm method begins by

6
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testing the most significant hypothesis (i.e. k = 1) and rejecting the null hypothesis if

p(k) <
ε

(M → k + 1)
for k = 1, 2 . . .M. (2.5)

If the null hypothesis corresponding to p(k) is rejected, the procedure continues to test

subsequent hypotheses until a null hypothesis cannot be rejected. Notably, while testing

the most significant hypothesis, the threshold of the Holm method is identical to that of

the Bonferroni method. However, as it moves to less significant hypotheses, the threshold

of the Holm method decreases. Therefore, the Holm method typically rejects more hy-

potheses than the Bonferroni method while controlling the same FWER, making it more

powerful.

Note that although the Holm method improves the power of the Bonferroni method,

it still lacks of power if M is large. Moreover, one drawback of both the Bonferroni and

the Holmmethods is that they do not consider the dependence structure of the test statistics

(and hence the p-values), leading to overly stringent thresholds. For instance, if there is a

dependence structure causing all p-values to be the same, the Bonferroni threshold should

be adjusted from ε/M to ε. In practice, test statistics for multiple hypotheses are usually

dependent, which diminishes the power of the Bonferroni and the Holm methods.

2.3 Joint test

To address the dependency among these hypotheses, White (2000) proposes the real-

ity check to examine whether superior strategy exists. Let fk for k = 1, · · · ,M denote the

performance measure of the strategy k compared with the benchmark. The null hypothesis

7
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that no superior strategy exists among theseM strategies is:

H0k : E(fk) ≤ 0 for k = 1, . . . ,M. (2.6)

To test these hypotheses, White (2000) uses the concept of the least favorable con-

figuration to the alternative and enforces the null hypothesis as E(fk) = 0 for all k. The

performance of the best strategy can then be written as the maximum value of the normal-

ized sample average of ft,k:

V̄M ≡ max
k=1,...,M

√
nf̄k, (2.7)

where ft,k is the return of k-th strategy at time t, and f̄k =
∑n

t=1 ft,k/n is its sample

average. If the test statistic V̄M is larger than the critical value, it implies that at least one

superior strategy exists.

White (2000) suggests employing the stationary bootstrap proposed by Politis and

Romano (1994) to determine the critical value of V̄M . Let f ∗
k (b) be the b-th bootstrap

sample for fk, with its sample average defined as f̄ ∗
k (b) =

∑n
t=1 f

∗
t,k(b)/n. Then, the

empirical distribution of V̄ ∗
M is constructed by:

V̄ ∗
M(b) ≡ max

k=1,...,M

√
n(f̄ ∗

k (b)→ f̄k) for b = 1, . . . , B. (2.8)

Finally, we can determine the critical value of V̄M by evaluating the percentile value of

the empirical distribution V̄ ∗
M and infer whether a superior strategy exists.

It is important to note that White’s reality check utilizes the stationary bootstrap to

preserve the dependency structure of individual statistics. However, Hansen (2005) points

out two drawbacks of this method. Firstly, the test statistic
√
nf̄k is not studentized. Sec-

8
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ondly, White (2000) uses the least favorable configuration to the alternative, making the

reality check conservative and susceptible to the inclusion of poor or irrelevant strategies.

Therefore, Hansen (2005) introduces a new method for superior predictive ability (SPA)

by studentizing the test statistic:

V̄M ≡ max
(

max
k=1,...,M

√
nf̄k
σ̂k

, 0

)
, (2.9)

where σ̂k is the consistent estimator of the standard deviation of
√
nf̄k. The studentized

statistic generally results in better power performance than the non-studentized one.

Furthermore, to address the problem arising from the least favorable configuration,

Hansen (2005) suggests generating the empirical distribution Ṽ ∗
M by:

Ṽ ∗
M(b) ≡ max

(
max

k=1,...,M

√
nZ̄∗

k(b)

σ̂k
, 0

)
for b = 1, . . . , B, (2.10)

where Z̄∗
k(b) is the sample average of the adjusted bootstrap performance measure Z∗

t,k(b),

and Z∗
t,k(b) is defined as:

Z∗
t,k(b) ≡ f̄ ∗

t,k(b)→ f̄k {f̄k≥−
√

(σ̂2
k/n)2loglogn}

. (2.11)

In Hansen’s bootstrap procedure, the bootstrap performance f̄ ∗
t,k(b) is not centered by the

sample average performance f̄k if the sample average is much too low, specifically less

than less than→
√
(σ̂2

k/n)2loglogn. Therefore, the SPA test is not susceptible to the inclu-

sion of poor or irrelevant strategies, making it more powerful than White’s reality check.

The methods mentioned above are widely used in economics and finance. Sullivan

et al. (1999) apply White’s reality check and find that superior trading rules exist for the

DJIA from 1897 to 1986, but the best strategy does not maintain its performance from

9
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1987 to 1996. Hsu and Kuan (2005) employ White’s reality check and the SPA test with

more comprehensive trading rules. They discover these rules outperform onNASDAQbut

do not outperform on S&P 500 and DJIA. Qi and Wu (2006) examine trading rules across

seven exchange rates and find that superior trading rules exist in five markets. Chen,

Huang and Lai (2011) and Metghalchi et al. (2012) find that the 14-day MFI strategy

outperform in Taiwan stock market.

2.4 k-FWER

In fact, researchers are not only concerned about false rejections but also about the

ability to reject the null hypothesis when the null is false (i.e., the power of the test).

When the number of hypotheses M is large, the FWER criterion becomes too stringent,

making it difficult to reject hypotheses when they are false. Therefore, researchers relax

the control of the FWER and propose the k-FWER, which allows for more false rejections.

The k-FWER is defined as the probability of rejecting at least k true null hypotheses:

k-FWER = P{FP ≥ k}. (2.12)

By allowing up to k → 1 false rejections, the k-FWER is more powerful than the FWER

and can reject more hypotheses.

Moreover, in many financial applications, such as identifying outperforming mutual

funds and superior trading rules, researchers are not only interested in determiningwhether

the best mutual fund (or trading rule) beats the benchmark but also in identifying all mutual

funds (or trading rules) with superior performance. To address this problem, researchers

use the stepwise procedure. The stepwise procedure is similar to the Holm procedure.

10

http://dx.doi.org/10.6342/NTU202404642


doi:10.6342/NTU202404642

It begins with a single-step approach and then continues by adjusting the critical values

based on the remaining hypotheses in subsequent steps. This sequential adjustment allows

the stepwise procedure to reject more hypotheses than the single-step approach while con-

trolling the same error rate, thereby enhancing the power of the test.

Romano andWolf (2007) propose the k-StepM, whichmodifiesWhite’s reality check

by controlling the k-FWER and applying the stepwise procedure. With these modifi-

cations, the k-StepM can identify as many superior strategies as possible. The sum-

mary of k-StepM is as follows. Let R be a real number set and |R| denote the number

of elements in set R. For any subset k ⊆ {1, ...,M}, ĉk(ε, k) is the ε-th quantile of

k-max{ψb
j | j ∈ k}, where k-max{R} is the k-th largest value in R and {ψb

j | j ∈ k}

are the simulated distributions that can be constructed by the bootstrap procedure. The

bootstrap procedure is similar to the Equation (2.8) (further details can be found in White

(2000) and Romano and Wolf (2007)). The algorithm of the k-StepM is as follows:

1. Let B1 = {1, ...,M} be the initial set of hypotheses. For each hypothesis Hs
0 with

s ∈ B1, reject Hs
0 if

√
nT̂s ≥ max{ĉB1(ε, k), 0}, (2.13)

where T̂s =
f̂s
σ̂s
is the studentized test statistic. Then, let R1 be the set of indices of

the rejected hypotheses. If |R1| ≤ k, stop the algorithm; otherwise, proceed to the

next step.

2. Let B2 be the set of the indices of the hypotheses that are not rejected in previous

step, i.e., B2 = B1\R1. For Hs
0 with s ∈ B2, reject Hs

0 if

√
nT̂s ≥ max

I⊂R1, |I|=k−1
{ĉB2∪I(ε, k), 0}. (2.14)

11
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3. Repeat step 2 by substituting R1 and B2 with Rj−1 and Bj for j ≥ 3 until there are

no further rejections.

It is important to note that the k-StepM reassesses k → 1 strategies that have already

been rejected when evaluating the critical value at each step. This is because the k-StepM

allows for up to k → 1 false rejections. Since we cannot determine which rejected hy-

potheses are true alternatives, it is necessary to reconsider all possible subsets of rejected

hypotheses to ensure that this method controls the k-FWER at every step.

Although the k-StepM enhances the power of White’s reality check by applying the

stepwise procedure and controlling the k-FWER, it still suffers from the drawback of

the least favorable configuration. Therefore, Hsu, Kuan, and Yen (2014) propose the

k-StepSPA, which improves the k-StepM by incorporating ideas from the SPA test. For

each test s, define ûs as

ûs = T̂s √
nT̂s≤−ak

, where ak =
√

2loglogn. (2.15)

Note that ûs is used to re-center the simulated distribution if the sample average perfor-

mance
√
nT̂s is much too low, specifically less than →

√
2loglogn. Consequently, the

simulated distribution becomes k-max{ψb
j +

√
nûj | j ∈ K}. The simulation results of

Hsu, Kuan, and Yen (2014) show that the k-StepSPA has greater power than the k-StepM.

2.5 False Discovery Rate (FDR)

Although k-FWER relaxes the constraint of the FWER by allowing up to k→ 1 false

rejections, when there are thousands of tests and lots of them are true alternatives, limiting
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the number of false rejections to a fixed k may still be too stringent. Moreover, for some

multiple hypothesis testing problems, the goal is to identify as many true alternatives as

possible, and false discoveries are relatively less harmful. For example, in the mutual

fund performance problem, the primary goal is to find outperforming mutual funds. Even

if there are some false discoveries, they are usually zero-alpha funds, which do not cause

significant losses to investors. To address such problems, researchers find it more appeal-

ing to control the FDR. The FDR is defined as the expected value of the FDP:

FDR ≡ E(FDP) = E(FP
R

| R > 0)P(R > 0). (2.16)

Since the FDR is used to control the rate of false discoveries, it is more tolerant of false

discoveries. Therefore, it can identify more true alternatives compared to the FWER.

Benjamini and Hochberg (1995; BH) propose the first FDR-controlling method that

utilizes the stepwise procedure. Let p(1) ≤ p(2) ≤ ... ≤ p(M) denote the ordered sequence

of p-values corresponding to hypotheses H(1), H(2)..., H(M). To control the FDR at the

level of ε, the BH procedure begins by testing the least significant hypothesis (i.e. k = M )

with the inequality:

p(k) ≤
k × ε

M
. (2.17)

If p(k) does not satisfy the inequality, the procedure continues to test subsequent hypotheses

until the first k∗ satisfies the inequality. Finally, we can reject the hypotheses H(i) for all

i ≤ k∗.

In Equation (2.17), the critical value of the BH procedure depends on the number of

hypotheses M , leading to a potential lack of power if many hypotheses have extremely

high p-values (i.e., M becomes larger, but the order of p-values likely to be rejected
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remains almost the same). To address this issue, Giglio, Liao, and Xiu (2021) suggest

screening the hypotheses that are obviously true nulls first to reduce the total number of

hypotheses, thereby improving the power of the procedure. The screening threshold is

defined as follows:

ti > →c · log(logT )
√
logM for i ≤ M, (2.18)

where ti is the test statistic for i-th hypothesis, M is the number of tests, T is the time

dimension, and c is a constant. Unlike the threshold in Giglio, Liao, and Xiu (2021), we

add a constant c since we find they do so while implementing their screening method. Al-

though c does not affect this method’s asymptotic properties, it can improve the empirical

results, and they set c = 1/3 in their implementation (see the Python code provided by

Giglio, Liao, and Xiu, 2021).

Another way to improve the BH procedure is to estimatem0. Note that under the as-

sumption that the p-values corresponding to true nulls are independent, the BH procedure

controls the FDR at the level ε by satisfying the following inequality (details in BH, 1995,

Theorem 1):

E
(
FP
R

)
≤ m0

M
ε ≤ ε. (2.19)

This inequality indicates that the FDR is controlled by the number of true nulls (m0).

However, the threshold in the BH procedure only usesM and does not include information

aboutm0, potentially reducing the procedure’s power. Therefore, Storey (2002) proposes

an estimator for the proportion of true nulls π0 (i.e.,m0/M ):

π̂0(λ) =
#{p̂i > λ}
(1→ λ)M

, (2.20)

where λ ∈ (0, 1) is the threshold that defines the boundary of true nulls (hypotheses with
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p-values greater than λ are considered true nulls). This estimator relies on two assump-

tions: first, p-values under true alternatives are close to zero; and second, p-values cor-

responding to true nulls are independent and uniformly distributed on the interval [0, 1].

Under these assumptions, approximatelym0(1→ λ) p-values lie in the interval (λ, 1] if λ

is sufficiently large. Storey (2002) suggests using #{p̂i > λ} to estimate m0(1 → λ) and

hence estimate m0 by #{p̂i > λ}/(1 → λ). This leads to the estimator of π̂0(λ). It is im-

portant to note that the null hypothesis in Storey’s method must be an equality; otherwise,

the true nulls do not follow a uniform distribution.

To select λ that satisfies the assumptions mentioned above, we can plot the p-values

on a histogram (see Figure 2.1) and choose λ for which the histogram of p-values be-

comes flat (i.e., satisfies uniform distribution). An alternative approach for choosing λ is

to minimize the estimated mean square error (MSE) of π̂0 by using the bootstrap procedure

(Storey, 2002). In practice, these two methods result in similar values of λ.

Once we have π̂0, we can estimate the FDR with the pre-specified threshold of the

rejection region κ by using the following estimator:

F̂DRε(κ) =
π̂0(λ) · κ ·M
#{p̂i ≤ κ} . (2.21)

Here, π̂0(λ) · κ · M is used to estimate the number of false rejections by assuming true

nulls are uniformly distributed, and #{p̂i ≤ κ} is used to estimate the number of significant

funds. Therefore, we obtain the estimator of the FDR and can select κ with an acceptable

F̂DR.

To compare the power of Storey’s methodwith the BH procedure, we rewrite Storey’s

method in a form similar to the BH procedure. Let p(1) ≤ p(2) ≤ ... ≤ p(M) be the ordered
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Figure 2.1: Histogram ofmutual funds p-values. This figure uses 1483 Japanese mutual funds dur-
ing 2002→ 2023 and shows the histogram of p-values of the t-statistic of alpha from the Carhart’s
four-factor model.

sequence of p-values. Storey’s method aims to find the largest rejected index (̂ while

controlling the FDR at the significance level ε:

(̂ = max{( : F̂DR(p(#)) ≤ ε}, (2.22)

where F̂DR(p(#)) = π̂0(λ) · p(#) ·M/(. Therefore, Equation (2.22) can be written as:

(̂ = max{( : p(#) ≤
(

M
ε · 1

π̂0
}. (2.23)

Comparing this equation to the Equation (2.17), we have that (̂ ≥ k̂ since 1/π̂0 ≥ 1.

This indicates that the threshold of the rejection region in Storey’s method is larger than

the one in the BH procedure. Therefore, Storey’s method is more powerful than the BH

procedure.
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Notably, unlike other approaches, Storey (2002) first fixes the rejection region and

then estimates the FDR. Although this method may seem counterintuitive, it allows for

leveraging prior knowledge to choose the rejection region appropriately, leading to better

testing results.

FDR-based methods have been widely used across various fields of research. In

medicine, Benussi et al. (2020) utilize the BH procedure to investigate the relationship be-

tween COVID-19 and neurologic diseases. They conclude that patients with both COVID-

19 and neurological conditions have significantly higher in-hospital mortality compared

to those without COVID-19. In ecology, Betts et al. (2017) study the threat to forest-

exclusive species while controlling the FDR by applying the BH procedure. They find

that the threat is associated with the interaction between forest loss and the proportions of

initial forest cover. In finance, Barras et al. (2010) use Storey’s method and find that only

0.6% of U.S. funds outperform the benchmark. Moreover, they observe a rapid decline in

the proportion of funds with true positive alphas, which dropped from 14.4% in 1993 to

0.6% in 2006, while the proportion of funds with true negative alphas increased from 9.2%

to 24.0% over the same period. Cuthbertson et al. (2012) also apply Storey’s method to

analyze UK equity mutual funds, finding that only 3.7% of mutual funds outperform the

benchmark. Furthermore, they show that these outperformances are not persistent, while

poor performances are persistent.

2.6 Bootstrap Approach

Another series of studies, including those by Kosowski et al. (2006; KTWW) and

Fama and French (2010; FF), investigate whether outperforming mutual funds exist and
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address the multiple testing problem by employing different bootstrap approaches. The

bootstrap approach is applied becauseKTWWfind that the finite sample distribution of the

t-statistics for individual fund alphas exhibits non-normality and dependence structures

under the null hypothesis (where the true alpha is less than or equal to zero). Consequently,

the bootstrap method is more appropriate for evaluating the p-values of the t-statistics.

Before applying the bootstrap procedure, we need to first measure the mutual fund

performance. Both KTWW and FF do this by estimating alpha for each fund using the

Carhart four-factor model and then recording the estimated alphas, factor loadings, and

residuals. In each bootstrap iteration of KTWW’s method, they independently resample

the residuals for each fund and generate pseudo-time series return data of each fund by

adding the resampled residuals to the original order of factor values and their correspond-

ing factor loadings. Note that to generate the zero-alpha pseudo-time series data, KTWW

set alpha equal to zero.

After generating the zero-alpha pseudo-time series data, KTWWre-estimate the Carhart

four-factor model using these pseudo-time series data to evaluate the t-statistic under the

null hypothesis (i.e., alpha is less than or equal to zero). They then infer the existence

of outperforming mutual funds by comparing the t-statistics of alpha from the original

data with those from the resampled zero-alpha data across different percentiles. If the

t-statistics from the original data are large relative to the null distribution, we can con-

clude that some of the mutual funds outperform the benchmark. The reason for using the

t-statistic of alpha rather than alpha itself is that the t-statistic is standardized by the mu-

tual fund’s standard deviation and the number of observations, providing better properties

than alpha.
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However, since KTWW resamples each fund’s residuals independently, this boot-

strap procedure fails to preserve the cross-sectional dependency of residuals among mu-

tual funds. To address this issue, FF modify KTWW’s bootstrap procedure by resampling

cross-sectionally. Specifically, at each bootstrap iteration, FF resample the time indexes

and use the entire cross-sectional returns for that time period to construct pseudo-time se-

ries data. Similarly, FF set alpha to zero to generate zero-alpha pseudo-time series data

and compare the t-statistics of alpha from the original data with those from the resampled

zero-alpha data to infer the existence of outperforming mutual funds.

Since FF’s bootstrap procedure resamples all mutual fund data simultaneously, it

successfully preserves the dependency structure among mutual fund residuals. However,

since mutual fund data often contain missing values, FF’s bootstrap procedure may result

in a different number of observations for each fund between the resampled data and the

real-world data, potentially making the bootstrap distribution different from the real-world

distribution.

Although both KTWW and FF apply their bootstrap methods to the same data, they

reach opposite conclusions. KTWW find that outperforming mutual funds exist, while FF

conclude that no mutual funds outperform the benchmark. To determine which method

is more appropriate for real-world data, Harvey and Liu (2022) designed a simulation

to test the Type I error and the power of these two bootstrap methods. The simulation

results of Harvey and Liu (2022) show that KTWW’s bootstrap procedure overrejects

the null hypothesis because it fails to capture the dependency of residuals. In contrast,

FF’s bootstrap procedure lacks power due to discrepancies in the number of observations

between the resampled and real-world data.
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To provide a more powerful method, Harvey and Liu (2022) modify FF’s method

using the idea of the interquartile range:

b̂and(i) = [Q̂1,i → φ× (Q̂3,i → Q̂1,i), Q̂3,i + φ× (Q̂3,i → Q̂1,i)] (2.24)

where φ is the scale parameter that determines the width of bandwidth, Q̂1,i and Q̂3,i are

the first and the third quantiles of the bootstrapped t-statistic distribution for mutual fund

i, respectively. Harvey and Liu (2022) only consider the bootstrap t-statistics that fall

within this bandwidth and remove the extreme values from the bootstrapped t-statistics,

thereby enhancing the power of the test.
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Chapter 3 Methodology

Our objective is to evaluate the performance of Japanese mutual funds and iden-

tify outperforming funds. To achieve this, we begin by estimating alpha with a specified

benchmark model and use alpha as the performance measure for each mutual fund. How-

ever, since these theoretical benchmark models may be stylized, they often fail to capture

the full dependence structure of excess returns. This raises the problem of omitted vari-

ables (i.e., the existence of latent factors), which can potentially bias the alpha estimator.

To address this issue, we apply the asset pricing model proposed by Giglio, Liao, and

Xiu (2021) to identify these latent factors. Their method utilizes the concepts of matrix

completion and Principal Component Analysis (PCA) to handle the problem of missing

data and omitted variables. Once these latent factors are identified, we can accurately

estimate the alpha for each mutual fund.

Since some of our factors may be nontradable, we apply cross-sectional regression

to estimate the risk premiums of the factors and alphas for each mutual fund. Then, to im-

prove the performance of finite sample inference, we employ thewild bootstrap to evaluate

the p-values for the t-statistics. Finally, we control the FDR and identify outperforming

funds by applying the adjusted BH procedure. In the following sections, we will illustrate

these methods in more detail.
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3.1 Mutual Fund Performance Measurement

To evaluate the performance of each mutual fund, we assume that the excess returns

rt follow the linear asset pricing model:

rt = α + βλ+ β(ft → E(ft)) + εt, (3.1)

where λ is a K × 1 vector denoting the risk premium of the factors, ft is a K × 1 vector

denoting the factor values at time t, εt is aM × 1 vector denoting the idiosyncratic factor,

and β is aM×K matrix where the (i, j) -th element is the factor loading of the i-th mutual

fund with respect to the j-th factor. Note that λ is identical to E(ft) if ft is tradable.

One well-known benchmark model for evaluating mutual fund performance is the

Carhart (1997) four-factor model, defined as follows:

ri,t = αi + βi,rm · rm,t + βi,SMB · SMBt + βi,HML · HMLt + βi,MOM ·MOMt + εi,t, (3.2)

where ri,t is the excess return of fund i at time t over the monthly risk-free rate (defined by

the monthly U.S. T-bill rate). rm,t is the excess return of the Japan value-weighted market

portfolio over the monthly risk-free rate at time t. SMBt, HMLt, and MOMt denote the

size, book-to-market ratio, and momentum factors for Japan, respectively. All these data

can be found on Kenneth French’s website.

However, after applying the Carhart four-factormodel, we find that the cross-sectional

alphas are still correlated with each other. This suggests that the four-factor model does

not capture all the dependency structures among excess returns. To prevent the estimator

of alpha from being biased, we extend the four-factor model by including latent factors.
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The extended benchmark model that includes both observed factor fo,t and latent factor

f#,t is as follows:

rt = α + β′
oλo + β′

#λ# + β′
o [fo,t → E(fo,t)] + β′

# [f#,t → E(f#,t)] + εt, (3.3)

where fo,t is a Ko × 1 vector denoting the observed factors, and f#,t is a K# × 1 vector

denoting the latent factors, with Ko and K# being the numbers of observed and latent

factors, respectively.

Before explaining the estimation procedure for alpha, we first introduce some nota-

tions used in this paper. Matrices are denoted by uppercase italic letters, and their column

vectors are denoted by lowercase italic letters (e.g., X = (x1, x2, . . . , xT ), where xt rep-

resents a vector of data at time t). Let 1M be the M × 1 vector of ones. For any m × n

matrix X , we use HX = X(X ′X)−1X ′ to denote its hat matrix and MX = Im → HX to

denote its annihilator matrix. Since some return data contain missing values, we define

Ti as the set of observed time periods with Ti elements for mutual fund i, and Mt as the

set of observed mutual funds with Mt elements at time t. Let Fo,i be the Ko × Ti matrix

of {fo,t : t ∈ Ti}, denoting the observed factors for mutual fund i. Similarly, we define

the matrix of latent factors for mutual fund i as F#,i, representing {f#,t : t ∈ Ti}. Let Ri

be the Ti × 1 vector of {rit : t ∈ Ti}, denoting the excess returns for mutual fund i, and

r̄i =
∑

t∈Ti rit/Ti denotes the average excess return for mutual fund i over its observed

time periods.

To estimate alpha using the benchmark model with latent factors as shown in Equa-

tion (3.3), we first need to estimate the factor loadings for both the observed and latent
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factors, βo,i and β#,i, for each mutual fund through a time-series regression:

Ri = ai + F ′
o,iβo,i + F ′

#,iβ#,i + εi, (3.4)

where ai is the intercept of the time-series regression. However, since the latent factor F#,i

is unobservable, we can only estimate βo,i first. The effect of F ′
o,i onRi in this time-series

regression can be obtained by regressing the residual from the regression of Ri on 1Ti

(denoted asM1TiRi) on the residual from regression of F ′
o,i on 1Ti (denoted asM1TiF

′
o,i).

The estimator of βo,i is then given by:

β̂o,i = (Fo,iM1TiF
′
o,i)

−1(Fo,iM1TiRi). (3.5)

It is important to note that β̂o,i
p→→ βo,i only if Fo,i is uncorrelated with F#,i. However,

since we do not impose this assumption here, the estimator of βo,i might be biased, which

could potentially lead to bias in the alpha estimator. Therefore, we will de-bias the esti-

mator of alpha in Section 3.3.

Subsequently, to estimate the factor loadings of the latent factors, we begin by ex-

tracting their effect from excess returns by subtracting the effects of alpha, risk premium,

and observed factors from Equation (3.3):

zit = rit → r̄i → β̂′
o,i(fo,t → f̄o,i), (3.6)

where r̄i is the estimator of E(ri), representing the effects of alpha and risk premium1.

The term f̄o,i denotes the average observed factors for mutual fund i over its observed

time periods, defined as f̄o,i =
∑

t∈Ti fo,t/Ti. Consequently, the matrix ZM×T = (zit)

1We can derive this by taking the expectation on both sides of Equation (3.3) and have E(ri) = αi +
β′
o,iλo,i + β′

!,iλ!,i
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contains only the effect of latent factors and is referred to as the residual matrix. Note that

zit is defined only when rit is observable; otherwise, it is treated as missing.

Once we obtain the residual matrixZ, we can decompose it by applying PCA to iden-

tify the latent factors F#,i and estimate their corresponding factor loadings β#. However, in

practice, mutual fund data often contain missing values since some funds only have short

lifespans while new funds frequently enter the market, making it difficult to apply PCA

directly. To address this problem, in the next section, we apply the matrix completion

used in Giglio, Liao, and Xiu (2021) to identify the latent factors and estimate their factor

loadings.

3.2 Matrix Completion

Matrix completion is a technique for filling in missing values within observed data.

The main assumption in the matrix completion approach used in this paper is that the

observed residualmatrixZ can be decomposed into a lower-rankmatrixX , which captures

the underlying structures of Z, and a matrix N , which contains only noise:

zij = Xij +Nij if zij is observable. (3.7)

Under this assumption, the goal of matrix completion is to find a simplified matrixX that

preserves the essential information from the residual matrix Z. Therefore, the objective

function can be written as:

min
X

‖(Z →X) ◦ Ω‖2F + rank(X), (3.8)
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where Ω is a M × T binary matrix that indicates the observed data, with the (i, j)-th

element equals to 1 if zij is defined, ◦ denotes the Hadamard product, used for element-

wise multiplication between two matrices, and ‖X‖F is the Frobenius norm of the matrix

X where ‖X‖F = (Tr(X ′X))1/2. Therefore, the first term of the objective function aims

to minimize the noise while the second term is used for constraining the rank of X .

However, the rank minimization problem is NP-hard, and all known algorithms for

solving it are exponential-time algorithms, which become inefficient for high-dimension

inputs. Therefore, an alternative approach is to replace the rank with the nuclear norm.

The intuition behind using the nuclear norm is that rank is the count of non-zero singular

values, while the nuclear norm is the sum of these singular values, much like using their

magnitude as an approximation of rank. Importantly, the nuclear norm is a convex function

and can be solved efficiently. Therefore, we reformulate the objective function in Equation

(3.8) by substituting the rank with the nuclear norm and have:

min
X

‖(Z →X) ◦ Ω‖2F + λMT‖X‖n, (3.9)

where λMT > 0 is a regularization parameter, and ‖X‖n denotes the nuclear norm of

matrix X .

We can then solve this objective function by using the optimal solution that proved

by Ma et al. (2011). For any τ > 0, the optimal solution X̂ should satisfy the following

equation:

X̂ = Dν(X̂ → τΩ ◦ (X̂ → Z)), ν = τλMT/2, (3.10)
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where Dν is a singular value thresholding operator defined as:

Dν(Y ) := U Σν V
′, Σν = diag(max{σii → ν, 0}), (3.11)

where Y = UΣV ′ is the result of singular value decomposition (SVD) of matrix Y and

its singular value σii are all positive. Finally, we can use the iterative algorithm proposed

by Ma et al. (2011) to find X̂ . The algorithm is as follows:

1. Let ν = τλMT/2, k = 0, and set the initial state X0 = Z ◦ Ω.

2. Update Xk+1 = Dν(Xk → τΩ ◦ (Xk → Z)) and let k = k + 1.

3. Repeat the second step until Xk converges.

Note that this algorithm has two hyperparameters, τ and λMT . As mentioned previously,

λMT is the regularization parameter controlling the balance between reducing the noise

and enforcing the low-rank structure ofX . The hyperparameter τ serves as a threshold for

Dτ , acting as a cutoff for singular values, replacing low singular values with zero to help

identify a low-rank matrix while minimizing noise. Following the suggestion of Giglio,

Liao, and Xiu (2021), we choose τ = 0.9 and λMT = 2.2 · ‖Ω ◦W‖2, where W is a

noise matrix withW ∼ N(0,Σε). The (i, j) -th element of Σε is the estimated covariance

between mutual fund i and j. We follow the estimation procedure with the Python code

provided by Giglio, Liao, and Xiu (2021) to estimate Σε through SVD.

Once we obtain the lower-rank matrix X̂ , we apply PCA to X̂ to estimate the de-

meaned latent factors, v#,t, where v#,t = f#,t →
∑T

t=1 f#,t/T , and their corresponding load-
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ings, β#,t. The estimators for the latent factors and their loadings are as follows:

v̂#,t =

(
∑

i∈Mt

bib
′
i

)−1 ∑

i∈Mt

bizit, t = 1,. . .,T , (3.12)

β̂#,i =

(
∑

i∈Ti

v̂#,tv̂
′
#,t

)−1∑

i∈Ti

v̂#,tzit, i = 1,. . .,M, (3.13)

where bi =
√
Mρi for i ≤ K#, and (ρ1, . . . , ρK!

) are the left singular vectors of X̂ corre-

sponding to the largestK# eigenvalues. Finally, we combine the observed factor loadings

with latent factor loadings as β̂ =
(
β̂o, β̂#

)
, and also combine the demeaned factors as

v̂t = ((fo,t → f̄o)′, v̂′#,t)
′, where f̄o =

∑T
t=1 fo,t/T .

3.3 Estimate alpha and the test statistics

With the estimated factor loadings β̂, we can estimate the risk premiums of the fac-

tors, λ = (λ′o,λ
′
#)

′, by taking the expectation on both sides of Equation (3.3):

E(rt) = α + β′λ. (3.14)

We then estimate λ by regressing r̄ on β̂ using the cross-sectional regression:

λ̂ = (β̂′M1M β̂)
−1(β̂′M1M r̄), (3.15)

where r̄ = (r̄1, . . . , r̄M)′. Finally, we can estimate alpha by subtracting the product of the

risk premiums and factor loadings from the excess return for each mutual fund.

However, due to the bias in the β̂ discussed in Section 3.1 and the unbalanced panel

effect, the alpha estimator is biased. To address this problem, Giglio, Liao, and Xiu (2021)
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propose a de-biasing estimator of alpha, denoted as Ai. The unbiased estimator of alpha

is as follows:

α̂i = r̄i → β̂iλ̂+ Âi, i = 1, . . . ,M, (3.16)

where Âi = β̂′
#,i(Ĥo,i → Ĥo)λ̂o → ξ̂′iĝ, (3.17)

ĝi =
1

Ti

∑

t∈Ti

v̂′tβ̂i, ξ̂′i = e′i → β̂′
i(β̂

′M1M β̂)
−1β̂′M1M , e′i = (0, . . . , 1, . . . , 0),

Ĥo,i = V̂#,iM1TiF
′
o,i(Fo,iM1TiF

′
o,i)

−1, and Ĥo = V̂#M1TF
′
o(FoM1TF

′
o)

−1.

Here, V̂# is theK#×T matrix of {v̂#,t : t ≤ T}, and V̂#,i is theK#×Ti matrix of {v̂#,t : t ∈

Ti}. For further details on this derivation, refer to Giglio, Liao, and Xiu (2021), Appendix,

Proof of Theorem A.2.

Finally, Giglio, Liao, and Xiu (2021) propose an estimator for the variance of alpha

to construct the t-statistic for evaluating the mutual performance. The variance estimator,

denoted by σ̂2
i , for mutual fund i, is as follows:

σ̂2
i =

1

T

∑

t∈Ti

û2
it(1→ v̂′tΣ̂

−1
f λ̂)2 +

1

M2
V̂ar(α̂)β̂′

iŜ
−1
β̂
β̂i, (3.18)

where ûit = rit → r̄i → β̂′
iv̂t is the residual of Equation (3.3), Σ̂f =

∑T
t=1 v̂tv̂

′
t/T , and

Ŝβ̂ = β̂′M1M β̂/M . The first component in Equation (3.18) is the variance from time-

series estimation (Equation (3.5) and (3.13)), while the second component is the variance

from cross-sectional estimation (Equation (3.15)). Further details can be found in Giglio,

Liao, and Xiu (2021), Appendix, Theorem A.1. The t-statistic of alpha is then calculated

as:

t̂α̂i =
√

Ti ·
α̂i

σ̂i
, i = 1, . . . ,M. (3.19)
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Giglio, Liao, and Xiu (2021) show that t̂α̂i is asymptotically normal so that its p-values

can be computed directly. However, due to the missing values in mutual fund data, the

performance of asymptotically inference in finite sample may be a concern. Therefore,

we follow the suggestion of KTWW (2006) but apply the wild bootstrap procedure to

evaluate the p-values.

3.4 Wild Bootstrap procedure

To improve the finite sample performance, the bootstrap procedure is an appealing

approach for evaluating the critical value of test statistics. Therefore, we apply the wild

bootstrap proposed by Liu (1988) to evaluate the p-values since it can avoid the problem

of discrepancies in the number of observations, making it suitable for assessing mutual

fund performance. Moreover, as shown by Mammen (1993), the wild bootstrap can ac-

commodate heteroskedasticity, reducing the false rejections of the null hypothesis. Let

ε̂it = rit → r̄i → β̂′
iv̂t be the residual of our asset pricing model. The wild-bootstrap proce-

dure is as follows:

1. Generate a sequence of weighted residuals {wit : i ≤ M, t ≤ T} that satisfy

E(wit) = 0 and Var(wit) = 1. Mammen (1993) suggest using the following equa-

tion to generate wit:

wit =
1√
2
ηit +

1

2
(ε2it → 1), (3.20)

where ηit and εit are independent standard normal random variables. Then, we can

generate the bootstrap return by:

r∗it = β̂′
iλ̂+ β̂′

iv̂t + ε̂∗it, ε̂∗it = ε̂itwit, for t ∈ Ti. (3.21)

30

http://dx.doi.org/10.6342/NTU202404642


doi:10.6342/NTU202404642

2. For each bootstrap iteration, estimate its factor loading and risk premium by:

β̂∗
i = (V̂iM1Ti V̂

′
i )

−1(V̂iM1TiR
∗
i ), (3.22)

where R∗
i is a Ti × 1 vector, denoting the bootstrap return for mutual fund i, and V̂i

is aK × Ti matrix, denoting the factor values when mutual fund i exists. Then, we

estimate the risk premium λ∗ by substituting β̂ and r̄ in Equation (3.15) with β̂∗ and

r̄∗.

3. For each mutual fund, estimate its alpha by the de-biased estimator:

α̂∗
i = r̄∗i → β̂∗′

i λ̂
∗ → ξ̂∗

′

i ĝ∗, i = 1, . . . ,M, (3.23)

where ξ̂∗
′

i = e′i → β̂∗′
i (β̂∗′M1M β̂

∗)−1β̂∗′M1M , and ĝ∗i =
∑

t∈Ti v̂
′
tβ̂

∗
i /Ti. Then, com-

pute the bootstrap t-statistic of alpha, t̂∗α̂i,b
, by substituting β̂, λ̂, α̂ and û in Equation

(3.18) and (3.19) with β̂∗, λ̂∗, α̂∗ and ε̂∗.

4. Repeat steps 1 to 3 B times to obtain the bootstrapped distribution of t̂∗α̂i,b
when the

true t-statistic is zero. Finally, we evaluate the p-value of the test that tα > 0 for

each fund by

pi =
1

B

B∑

b=1

{t̂∗α̂i,b > t̂α̂i}, i = 1, . . . , M, (3.24)

where is a (1, 0) indicator variable, and t̂α̂i is obtained from Equation (3.19).

Note that since we use the estimated latent factors as the observed factors in the bootstrap

procedure, the estimator to correct the bias of alpha in Equation (3.23) is different from

the estimator in Equation (3.16) and (3.17).

It important to note that unlike the bootstrap procedure in Giglio, Liao, and Xiu
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(2021), we do not bootstrap on alpha; instead, we bootstrap on the t-statistic of alpha. It is

because the t-statistic is standardized by the standard deviation and the number of obser-

vations, which provides better properties (KTWW, 2006). Finally, we apply the screening

BH procedure (Equations (2.17) and (2.18)) to these p-values and infer the existence of

ouperforming mutual funds.
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Chapter 4 Empirical Results

4.1 Mutual Fund Data

To analyze the performance of Japanese mutual funds, we use the adjusted closing

price at the end of each month from January 2002 to December 2023, sourced from the

Bloomberg database, to evaluate monthly returns. Since the returns are based on ad-

justed closing prices, they already account for stock dividends, splits, management fees,

taxes, etc. Our analysis focuses on open-ended mutual funds that primarily invest in the

Japanese equity market. We exclude funds with names containing “index”, “idx”, “ETF”,

or “tracker fund” to focus on active mutual funds. Furthermore, we select funds with

a minimum of 60 months of return data to ensure precise alpha estimation. Our final

database contains a total of 1483 mutual funds.

Table 4.1 presents the number of funds, descriptive statistics of their average monthly

excess returns, and the proportion of missing values (denoted as “Missing Proportion”)

over the sample period (2002→2023) and overlapping ten-year subperiods. For each sub-

period, only funds with at least 60 observations are included. The descriptive statistics

include the mean, standard deviation, and key percentiles of the distribution of average

return for each time period.
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Table 4.1: Summary Statistic.

Standard 50th 90th Missing
Time Periods N Mean Deviation Percentile Percentile Max Proportion

Full Sample 1483 0.47 0.0045 0.48 0.98 4.51 46.85
2002 → 2011 629 →0.22 0.0045 →0.20 0.26 1.47 15.91
2003 → 2012 678 →0.01 0.0043 0.06 0.48 2.21 17.31
2004 → 2013 700 0.18 0.0039 0.25 0.61 1.55 17.26
2005 → 2014 715 0.32 0.0050 0.31 0.92 3.04 16.88
2006 → 2015 743 0.25 0.0059 0.16 1.05 4.51 16.29
2007 → 2016 783 0.36 0.0056 0.26 1.12 4.51 16.13
2008 → 2017 803 0.63 0.0047 0.55 1.22 4.51 15.49
2009 → 2018 860 0.78 0.0040 0.76 1.16 4.51 16.27
2010 → 2019 924 0.77 0.0039 0.78 1.17 4.51 16.38
2011 → 2020 1017 0.74 0.0045 0.77 1.23 3.11 17.41
2012 → 2021 1065 0.93 0.0046 0.98 1.46 3.46 17.01
2013 → 2022 1073 0.74 0.0041 0.77 1.18 2.99 15.42
2014 → 2023 1069 0.60 0.0034 0.62 0.98 2.83 13.66

Notes: N represents the number of funds in each time period. The value of Mean, 50th
percentile, 90th percentile, Max, and Missing Proportion are reported in percentage (%).

As shown in Table 4.1, the full sample contains 46.85% missing values, while each

subperiod has approximately 16% missing values, showing the necessity of employing

matrix completion to identify latent factors in the benchmark model. The lower propor-

tion of missing values in each subperiod is because we only include funds with at least five

years of data, which reduces the missing value proportion compared to the full sample. Ta-

ble 4.1 also shows that the maximum average excess returns among these mutual funds are

notably high, particularly from 2006→2015 to 2010→2019, with returns averaging 4.51%.

However, we still need to control the risk factors and the FDR to determine whether these

funds truly outperform the benchmark. Lastly, we observe that the mean, 50th percentile,

90th percentile, and maximum excess returns are low in the first few subperiods. They

then slightly increase to 2012→2021 and decline in the last two subperiods. This suggests

that the proportion of outperforming mutual funds may vary across different subperiods.

To estimate the alpha of each mutual fund, we use the Carhart four-factor as the ob-
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served factors and follow the methodology described in Sections 3.1 to 3.3. Figure 4.1

displays the scree plot of the top 15 eigenvalues from the residual covariance matrices for

both the Carhart four-factor model and its extended model, which incorporates additional

latent factors. The solid line represents the eigenvalues of the residual matrix from the

Carhart four-factor model. The relatively high values of the first two eigenvalues, com-

pared to the others, indicate that certain common patterns remain in the residuals even after

applying the Carhart four-factor model. To address this, we apply the elbow method1 and

incorporate four additional latent factors. The dashed line, representing the eigenvalues

of the residual matrix from the extended model, shows a significant drop in the first three

eigenvalues, indicating that the latent factors effectively capture these common patterns.

Furthermore, the flattening of the dashed line across all values suggests that no significant

common patterns remain among the mutual funds after applying the model with latent

factors.

Figure 4.1: Scree plots of eigenvalues

Figure 4.2 displays the histogram of alpha and the t-statistic of alpha for Japanesemu-
1The elbow method is a heuristic technique used to determine the optimal number of principal com-

ponents in PCA. This method involves plotting the ordered eigenvalues and identifying the ”elbow” point
in the curve, which represents a significant change in the rate of decline. The number of principal compo-
nents corresponding to this point is then selected, as it typically captures most of the data’s variance without
including too many components that contribute little additional information.
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tual funds. Among the 1483 mutual funds, the average alpha is -0.644 basis points (bps),

with 49.8% of them showing a positive alpha (and a positive t-statistic). Compared to the

mean of average excess return shown in Table 4.1 (0.47%), the mean of positive alpha

decreases significantly, indicating that some of these excess returns are due to risk-taking.

Additionally, 6.47% of the mutual funds have a t-statistic greater than 1.96, suggesting

that some of these funds have a statistically significant alpha. However, due to themultiple

testing problems, some funds may outperform the benchmark purely by luck. Therefore,

in the next section, we will control the FDR to identify the truly outperforming mutual

funds.

(a) Histogram of alpha (b) Histogram of t-statistic of alpha

Figure 4.2: Histograms of mutual funds alpha and the t-statistic of alpha

4.2 Long-Term Mutual Fund Performance

In our empirical analysis, we begin by identifying outperforming mutual funds based

on long-term performance during the period from 2002 to 2023. We use the t-statistic

of alpha as the test statistic and implement 1000 wild bootstrap replications outlined in

Section 3.4 to construct the null distribution and evaluate the p-values for each fund. Fi-

nally, we apply the screening BH procedures, as described in equations (2.17) and (2.18),

to identify outperforming mutual funds. Following Barras et al. (2010) and Cuthbertson
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et al. (2012), we control the FDR at 10%, 15%, 20%. Table 4.2 presents the proportion of

the outperforming funds, along with their average alphas.

Table 4.2: Long-Term Performance: Proportion of funds and average α.

FDR (ε)
10% 15% 20%

Proportion of the outperforming funds (%) 0.47 0.74 0.94
Average alpha (bps/month) 56.75 57.49 51.83

Among the 1483 mutual funds, we find that although 10.99% have a p-value lower

than 0.1 in individual tests (not reported in the table), only 0.47% are identified as outper-

forming funds (i.e., having a significant positive t-statistic for alpha) after controlling the

FDR at 10%. This suggests that most Japanese mutual funds outperform the benchmark

purely by luck and are filtered out by the screening BH procedure.

We also observe that as ε increases from 10% to 20%, the proportion of outperform-

ing funds rises because more false discoveries are tolerated. For example, the proportion

of outperforming funds grows from 0.47% to 0.94% as ε increases from 10% to 20%. In-

terestingly, the average alpha of outperforming funds reaches its peak at 57.49 bps when

ε =15%. This suggests that the additional outperforming funds identified by raising ε to

15% generate higher alpha compared to those identified when ε =10%. However, when

ε =20%, the average alpha declines to 51.83 bps, potentially due to the inclusion of funds

with weaker performance.

Lastly, when comparing the screening BH procedure to the BH procedure, we find

that the screening BH procedure identifies four more outperforming mutual funds when

ε = 20% (not reported here). Although the increase is just a few, it indeed enhances the

power of the test. Therefore, for the remainder of this paper, we use the screening BH

procedure to control the FDR.
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Overall, the long-term performance analysis shows that only 0.47% mutual funds in

Japan truly outperform the benchmark, with a relatively high average alpha of 56.75 bps

per month (6.81% per year). Even when allowing for more false discoveries by increasing

ε to 20%, still only 0.94% of the funds are identified as outperforming. However, it is

possible that these mutual funds have the ability to outperform the benchmark over shorter

periods, but their superior performance tend to vanish and fail to sustain over the long

term. To further explore this probability, we will analyze their short-term performance

across different time periods in the next section.

4.3 Short-Term Performance

To examine mutual fund performance in the short-term, we divide the data into thir-

teen overlapping 10-year groups, beginning with the period from 2002 to 2011 and ending

with 2014 to 2023. For each group, we include only mutual funds with at least 60 months

of data. We then apply the same methodology used in the long-term performance anal-

ysis to estimate each group’s alpha independently. Table 4.3 presents the results of the

short-term performance analysis. For each row of Table 4.3, we report the average alpha

for each subperiod (denoted as “Full Avg α”), the proportion of outperforming funds (de-

noted as “Prop”) and the average alpha of these outperforming funds (denoted as “Avg

α”) while controlling the FDR at 10%, 15%, and 20% using the screening BH procedure.

From Table 4.3, we first observe that in the beginning four time periods, the pro-

portion of outperforming funds is lower than the long-term proportion (0.47%). How-

ever, during the subperiods 2010→2019 and 2012→2021, the proportion of outperforming

funds increases to 3.14% and 9.30%, respectively, and suddenly decreases to 0.28% and
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Table 4.3: Short-Term Performance: Proportion of funds and average α

Full ε = 10% ε = 15% ε = 20%
Time Periods Avg α Prop Avg α Prop Avg α Prop Avg α

2002 → 2011 →22.00 0.00 0.00 0.00 0.00 0.00 0.00
2003 → 2012 →15.20 0.29 80.32 0.29 80.32 0.29 80.32
2004 → 2013 →7.73 0.29 86.80 0.29 86.80 0.29 86.80
2005 → 2014 →5.38 0.00 0.00 0.00 0.00 0.42 76.07
2006 → 2015 4.87 0.94 64.98 0.94 64.98 1.08 70.00
2007 → 2016 4.69 0.26 72.49 0.26 72.49 0.26 72.49
2008 → 2017 8.93 0.25 67.42 0.25 67.42 0.50 71.15
2009 → 2018 12.22 0.93 66.91 1.28 65.31 1.86 62.09
2010 → 2019 20.51 3.14 59.56 5.84 56.31 6.39 55.45
2011 → 2020 18.24 1.18 66.65 4.03 59.01 8.16 52.10
2012 → 2021 25.88 9.30 57.13 15.87 52.19 25.63 47.96
2013 → 2022 11.61 0.28 48.41 0.28 48.41 1.49 55.63
2014 → 2023 8.85 1.40 49.36 1.96 50.57 3.55 47.31

Note: The proportion of mutual funds (denoted as “Prop”) is reported in per-
centage (%), while the average alpha of all mutual funds in each subperiod
(denoted as “Full Avg α”) and the average alpha of outperforming funds in
each subperiod (denoted as “Avg α”) are reported in bps/month.

1.40% in the subsequent subperiods. This suggests that Japanese mutual funds may out-

perform the benchmark in the short term, but their superior performances vanish quickly.

Additionally, when the full sample average alpha is high, more outperforming funds are

identified in those subperiods, particularly when ε is 15% and 20%. For example, in the

subperiods 2010→2019 through 2012→2021, their average alpha is 20.51 bps, 18.24 bps,

and 25.88 bps per month, with corresponding proportions of outperforming funds being

5.84%, 4.03%, and 15.87% when ε is 15% (6.39%, 8.16%, and 25.63% when ε is 20%).

This may be because a higher full sample average alpha reflects more favorable market

conditions for funds, leading to a higher proportion of outperforming funds.

Moreover, Table 4.3 also shows that the average alpha of outperforming funds is

much higher than the full sample average alpha, indicating that our procedure indeed se-

lects those with superior performance. It is also interesting to find that there is a dramatic
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drop in the proportion of outperforming funds between the subperiods 2012→2021 and

2013→2022. This decline also reflects the decrease in average excess returns reported in

Table 4.1.

Overall, although only 0.47% of mutual funds outperform the benchmark in the long

term, we find that more mutual funds demonstrate superior performance in the short term,

particularly in the subperiods 2010→2019 and 2012→2021. This raises the question of

whether these outperforming funds with short-term superior performance consistently out-

perform others but fail to sustain sufficiently strong performance to outperform the bench-

mark over the long term or whether they perform well only in specific subperiods and un-

derperform in others. To determine which explanation is more reliable, we will examine

the rank persistence of these mutual funds in the next section.

4.4 Rank Persistence Analysis

To examine the persistence of rank among these mutual funds, we rank mutual fund

performance in each subperiod defined in the previous section and analyze how these ranks

evolve over time. Specifically, we divide the data into thirteen overlapping 10-year groups

and apply a method similar to the one used in the short-term performance analysis to

evaluate the p-values of the t-statistic of alpha. For each period, we rank the mutual funds

into ten groups based on their p-values and evaluate the probability P(Current rank = j |

Previous rank =i), where 1 ≤ i, j ≤ 10, to determine how these ranks change over time.

Finally, we present the results using a 3D bar plot in Figure 4.3, which compares the ranks

from one and five years prior to the current rank. The value of the bar at position (i, j)

represents P(Current rank = j | Previous rank = i).
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(a) One-year-ago rank compared to current rank (b) Five-year-ago rank compared to current rank

Figure 4.3: 3D bar plot comparing the performance rank from one year and five years prior to the
current rank.

Panel (a) of Figure 4.3 shows that most mutual funds tend to remain in the same rank,

especially for those with the best and worst performance. Specifically, 71.67% of the top-

performing mutual funds remain in the top rank, while 70.54% of the worst-performing

funds stay in the bottom rank. Moreover, almost nomutual funds experience dramatic rank

changes, indicating that these mutual funds exhibit persistence over a one-year period. To

examine the persistence over a longer period, Panel (b) of Figure 4.3 compares the ranks

from five years ago to their current ranks. The results show that mutual funds with the

best and worst performance continue to exhibit persistence, while funds in the middle

ranks tend to have more random ranking over the five-year period.

The results above indicate that, although these short-term outperformingmutual funds

do not consistently exhibit superior performance across all periods, they tend to remain in

the top ranks over time. Furthermore, we are also interested in whether these in-sample

superior performances can generate economic value out-of-sample. To investigate this,

we will examine the out-of-sample performance of portfolios composed of these outper-

forming funds in the next section.
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4.5 Out-of-Sample Performance

In this section, we use the outperforming mutual funds identified in Section 4.3 to

construct portfolios of outperforming funds, while controlling the FDR (ε) at levels of

10%, 15%, and 20% to examine their out-of-sample performance and determine whether

these outperforming funds provide economic value to investors. Specifically, at each re-

balancing date, we evaluate the p-values of the t-statistic of alpha using data from the

previous ten years for each mutual fund. We then apply the screening BH procedure to

these p-values to identify outperforming funds and use these funds to construct equally

weighted portfolios. If no outperforming mutual funds are identified, the portfolio will be

empty in the subsequent year. Finally, we evaluate their out-of-sample performance by

examining their raw returns in the subsequent year. Each portfolio is held for one year

and rebalanced annually at the end of each year. Only funds with at least 60 months of

return data within the in-sample period are considered. The first portfolio is constructed

at the end of 2011, using 2002 to 2011 as the in-sample period and testing performance in

2012, while the final portfolio is constructed at the end of 2022, using 2013 to 2022 as the

in-sample period and testing performance in 2023.

We present the cumulative wealth of the FDR-controlled portfolios at various levels

and the portfolio information in Figure 4.4 and Table 4.4, respectively. All portfolios start

with an initial wealth value of 1. To evaluate the cumulative wealth, we multiply the raw

return for each year by the portfolio’s wealth at the beginning of that year, covering the

period from 2012 through 2023. Since the analysis focuses on the performance of Japanese

mutual funds, the Nikkei 225 index is used as the benchmark portfolio for comparison. It

is important to note that during periods when no outperforming funds are identified and
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Figure 4.4: Cumulative wealth of different portfolios.

Table 4.4: Portfolio information

Out-of-Sample Number of funds in each portfolio
Periods ε = 10% ε = 15% ε = 20%

2012 0 0 0
2013 2 2 2
2014 2 2 2
2015 0 0 3
2016 7 7 8
2017 2 2 2
2018 2 2 4
2019 8 11 16
2020 29 54 59
2021 12 41 83
2022 99 169 273
2023 3 3 16
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included in the portfolio, the cumulative wealth remains constant (flat) for that year.

From Figure 4.4, we first observe that over the out-of-sample periods, the cumula-

tive wealth of these three FDR-controlled portfolios increases steadily, with only slight

declines in 2018 and 2022. Moreover, these FDR-controlled portfolios generally gener-

ate higher returns than the Nikkei 225, indicating that the in-sample alphas successfully

translate into out-of-sample economic value.

We also evaluate the Sortino ratios (Sortino and Price, 1994) to take risk into account,

which are 1.90, 2.11, 1.38, and 1.90 for the portfolios with FDR controlled at 10%, 15%,

20%, and the Nikkei 225, respectively. This shows that FDR-controlled portfolios may

still outperform the Nikkei 225when risk is considered. However, this does not hold for all

portfolios; for instance, the portfolio with FDR controlled at 20% performs worse than the

Nikkei 225. This may be due to the higher tolerance for false discoveries, which increases

the downside standard deviation and thereby affects its risk-adjusted performance.

It is interesting to note that, although a portfolio with a lower ε is expected to perform

better due to a smaller proportion of false discoveries, Figure 4.4 shows that portfolios

controlling the FDR at 15% and 20% consistently outperform the portfolio controlling

the FDR at 10%. One possible explanation is that the in-sample alphas do not imply the

out-of-sample returns; hence, the out-of-sample performance of the outperforming funds

identifiedwhen ε = 10%does not always perform better compared to those only identified

by increasing ε further. Another explanation is that while false discoveries have non-

positive alphas, they may still generate positive returns out-of-sample (albeit with lower

probability), leading to portfolios with higher ε generating more returns.

Finally, as shown in Table 4.4, while the portfolios constructed in 2022 includes a
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large number of outperforming mutual funds, their out-of-sample performance are nega-

tive. This suggests that a greater number of outperforming funds does not necessarily lead

to superior out-of-sample performance in the Japanese FDR-controlled portfolios.
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Chapter 5 Conclusion

In this paper, we aim to examine mutual fund performance within a multiple testing

framework. We begin by using alpha from a benchmark model as the performance mea-

sure for these mutual funds. To estimate these alphas accurately, we adopt the approach of

Giglio and Xiu (2017), extending the Carhart four-factor model with latent factors to mit-

igate omitted variable bias. We then apply the matrix completion method used in Giglio,

Liao, and Xiu (2021) to handle missing values in mutual fund return data and employ

PCA to identify these latent factors. Finally, we implement the screening BH procedure

to control luck and identify mutual funds with truly superior performance.

Our results indicate that Japanese mutual funds tend to outperform the benchmark

in the short term, but their superior performance diminishes quickly, leaving only a small

number of funds that maintain superior performance over the long term. Moreover, mu-

tual funds with short-term superior performance tend to outperform others across all sub-

periods, though their performance is not strong enough to be classified as outperforming

funds in the long term. Finally, we find that portfolios of outperforming mutual funds

generate economic value and outperform the Nikkei 225, providing a profitable strategy

for investors.

Interestingly, contrary to our expectations, our long-term and out-of-sample analyses
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indicate that when the FDR is 15%, the identified outperforming funds may achieve the

highest long-term in-sample alpha and out-of-sample returns. This outcome may be due

to mutual funds with non-positive alphas randomly generating positive out-of-sample re-

turns or because the funds with best performance are not always identified when using a

lower ε. Therefore, a possible direction for future research is to investigate whether these

results arise from data noise or if there is an underlying pattern that can be captured by

econometric methods, ultimately determining the optimal FDR threshold for control.
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