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Abstract

This paper examines the performance of Japanese mutual funds while addressing
latent factors and the issue of multiple testing. We follow the methodology of Giglio, Liao,
and Xiu (2021) to identify latent factors, handle missing values, and apply the screening
Benjamini and Hochberg procedure to control the false discovery rate (FDR). Among these
funds, only 0.47% are identified as outperforming funds. However, a greater proportion
of mutual funds demonstrate superior performance in the short term, which continues to
outperform others across different subperiods, though their performance does not sustain
over the long term. Finally, we construct portfolios of outperforming funds controlled
at varying FDR levels, all of which outperform the Nikkei 225 out-of-sample, indicating
that these in-sample alphas successfully translate to out-of-sample returns and generate

significant economic values.

Keywords: Mutual funds performance, Multiple testing problem, False discovery rate, Prin-

cipal component analysis, Matrix completion, Bootstrap

v doi:10.6342/NTU202404642


http://dx.doi.org/10.6342/NTU202404642

Contents

Page

UHERBERLE i
Acknowledgements ii
W& i
Abstract iv
Contents v
List of Figures vii
List of Tables viii
Chapter 1 Introduction 1
Chapter 2 Literature Review 4
2.1 Multiple Testing Problem . . . . . .. ... ... ... ... .... 4

2.2 Family-wise Error Rate (FWER) . . . . . ... ... ... ... ... 6

2.3 Jointtest . . . . . . . ... 7

24  E-FWER . . . . 10

2.5 False Discovery Rate (FDR) . . . . . . .. ... ... ... ..... 12

2.6 Bootstrap Approach . . . . ... ... Lo oo 17
Chapter 3 Methodology 21
3.1 Mutual Fund Performance Measurement . . . . . . . ... ... ... 22

v doi:10.6342/NTU202404642


http://dx.doi.org/10.6342/NTU202404642

3.2  Matrix Completion . . . . ... ... ... ... ... 0. 25

33 Estimate alpha and the test statistics . . . . . .. ... ..... ... 28
3.4  Wild Bootstrap procedure . . . . . ... ... 0L 30
Chapter 4 Empirical Results 33
4.1 Mutual Fund Data . . . . .. . ... .o o 33
4.2  Long-Term Mutual Fund Performance . . . . . ... ... ... ... 36
4.3 Short-Term Performance . . . . . . .. ... ... ... ....... 38
4.4 Rank Persistence Analysis . . . . .. ... ... ... ........ 40
4.5  Out-of-Sample Performance . . . . . ... ... ... ... ..... 42
Chapter 5 Conclusion 46
References 48

vi doi:10.6342/NTU202404642


http://dx.doi.org/10.6342/NTU202404642

2.1

4.1
4.2
4.3

4.4

List of Figures

Histogram of mutual funds p-values. This figure uses 1483 Japanese mu-

tual funds during 2002 — 2023 and shows the histogram of p-values of the

t-statistic of alpha from the Carhart’s four-factor model. . . . . . . . . .. 16
Scree plots of eigenvalues . . . . . . ... ... L. 35
Histograms of mutual funds alpha and the ¢-statistic of alpha . . . . . . . 36

3D bar plot comparing the performance rank from one year and five years
prior to the currentrank. . . . . . ... ... ... L. 41

Cumulative wealth of different portfolios. . . . . . .. ... ... .... 43

vil doi:10.6342/NTU202404642


http://dx.doi.org/10.6342/NTU202404642

2.1

4.1
4.2
4.3
4.4

List of Tables

Outcome of hypothesis testing . . . . . . ... ... ........... 5
Summary Statistic. . . . . . . . ... 34
Long-Term Performance: Proportion of funds and average a. . . . . . . . 37
Short-Term Performance: Proportion of funds and average o . . . . . . . 39
Portfolio information . . . . . .. ... ... oo 43

viil doi:10.6342/NTU202404642


http://dx.doi.org/10.6342/NTU202404642

Chapter 1 Introduction

Compared to passive mutual funds, active mutual funds may potentially generate
higher returns if it can outperform the index. Therefore, identifying outperforming mutual
funds (i.e., funds with positive alphas) is a key concern for investors. Although there is
a large number of literature evaluating mutual funds performance, most studies focus on
US mutual funds (e.g., Kosowski et al., 2006; Fama and French, 2010; Barras et al., 2010;
Cuthbertson et al., 2010). In contrast, relatively few studies examine Japanese mutual
funds, and those that do (e.g., Cai et al., 1997; Pilbeam and Preston, 2019) primarily
analyze early-period performance. This motivates us to investigate the performance of
Japanese active mutual funds by updating the sample period and using a novel method to

identify outperforming mutual funds.

The most common approach to identify outperforming mutual funds is to estimate
their alphas using a benchmark model, followed by conducting many individual hypoth-
esis tests to infer whether their true alphas are positive. However, due to the multiple
testing problem, conducting these tests simultaneously can lead to many funds showing
significant alphas even when their true alphas are non-positive. Furthermore, the complex
dependency structure among these mutual funds may cause the pre-specified benchmark
model to fail to capture all common risk factors (Fama and French, 2010), resulting in the

omitted variable problem and potentially biasing the alpha estimator.
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To address the omitted variable problem, we adopt the methodology of Giglio, Liao,
and Xiu (2021), considering a benchmark model with latent factors and applying the prin-
cipal component analysis (PCA) proposed by Giglio and Xiu (2017) to identify these un-
observable common factors. However, in practice, mutual fund data often include missing
values, making it difficult to apply PCA directly. Therefore, we follow Giglio, Liao, and
Xiu (2021) and employ matrix completion (Ma et al., 2011; Cai et al., 2010; Goldfarb and
Ma, 2011) to impute missing values by approximating the observed data using a low-rank

matrix.

Once alphas are estimated, we then evaluate their p-values for hypothesis testing.
Although Giglio, Liao, and Xiu (2021) propose an asymptotically normal test statistic, its
finite sample performance may be affected when the data have missing values. There-
fore, we use wild bootstrap to evaluate the corresponding p-values. Unlike Giglio, Liao,
and Xiu (2021), we bootstrap the test statistic rather than alpha since the test statistic is
standardized by the standard deviation and the number of observations, providing better

statistical properties (Kosowski et al., 2006).

Finally, to address the multiple testing problem, one may apply the Bonferroni method
to control the family-wise error rate (FWER), which is defined as the probability of making
at least one false rejection. However, the Bonferroni method becomes overly conserva-
tive as the number of tests increases. To improve test power, Holm (1976) proposes a
stepwise procedure, while White (2000), Hansen (2005), Romano and Wolf (2005), and
Hsu et al. (2010) develop bootstrap techniques that account for dependencies among tests.
Nonetheless, methods that control the number of rejections tend to lack power when faced
with thousands of hypothesis tests. As a result, some researchers prefer to control the false

discovery rate (FDR), which is the expected proportion of false discoveries among all re-
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jections. The well-known Benjamini and Hochberg (1995; BH) procedure’is commonly
used to control the FDR. However, the BH procedure still lacks power when the number
of tests is large. Therefore, in this paper, we follow the screening criterion proposed by
Giglio, Liao, and Xiu (2021) to enhance the power of the BH procedure by filtering out

funds with extremely negative alphas.

In summary, this paper examines the performance of 1483 Japanese mutual funds
over the period from 2002 to 2023 using a benchmark model with latent factors and a
screening BH procedure to control the luck. We find that, while only 0.47% of mutual
funds outperform the benchmark when controlling the FDR at 10%, more mutual funds
demonstrate superior performance in the short term, especially during the 2010—2019 and
2012-2021 subperiods, with 3.14% and 9.30% of mutual funds , respectively. However,
these short-term superior performance tend to vanish quickly. We further examine their
rank persistence and find that funds with short-term superior performance consistently
outperform others but lack the strength to maintain their superior performance over the
long term. Lastly, we investigate whether these in-sample positive alphas can translate
into out-of-sample economic values by forming portfolios that control the FDR at lev-
els of 10%, 15%, and 20%, and evaluating their cumulative wealth from 2012—2023.
Our results demonstrate that all these portfolios exhibit superior performance compared
to Nikkei 225, indicating these funds with in-sample positive alpha have the ability to beat

the benchmark in out-of-sample performance.

The rest of this paper is organized as follows: Section 2 provides a literature review
on the multiple testing problem and the bootstrap methods used to evaluate p-values in
mutual fund data. Section 3 outlines the methodology employed in this study. Section 4

presents the empirical findings, while Section 5 offers the conclusions.
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Chapter 2 Literature Review

2.1 Multiple Testing Problem

Multiple hypothesis testing refers to situations where more than one null hypothesis
is tested simultaneously. This often occurs in financial empirical studies. For example,
one might be interested in identifying superior trading rules (or outperforming mutual
funds) from thousands of technical strategies (or mutual funds). When there are multiple
hypotheses under consideration, the multiple testing problem arises if each hypothesis is
tested without properly controlling the type I error. For example, suppose we are testing
100 hypotheses and their test statistics are independent. With a significance level of 5%
for each test, the probability of rejecting at least one true null hypothesis is 1 — 0.95%0 =
99.4%, which is much larger than the pre-specified individual significance level. In this

case, it is necessary to apply proper methods to avoid false rejections.

Consider a multiple hypothesis testing situation when there are M hypotheses. Table
2.1 illustrates the possible outcomes when testing these M hypotheses simultaneously.
Suppose m,, of M hypotheses are true under the null, and M-m, are true alternatives. In
these M hypotheses, R of them have been rejected. Among these R rejected hypotheses,
FP of them are falsely rejected (also called false rejections or false discoveries). Con-

versely, FN are true alternatives that have not been rejected (also called false negatives).
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Table 2.1: Outcome of hypothesis testing

Hyistrue H;istrue Total

Reject H FP TP R
Not reject Hy TN FN M-R
My M-m, M

To address the multiple testing problem, researchers aim to control the overall Type

I error across a family of hypothesis tests. Suppose the parameter of interest is «y, for

k=1,---,M,and the objective is to test whether oz < 0. One approach is to conduct a
joint hypothesis test:
H:ap, <0 Vk=1,--- M vs. H:3k with o, > 0, (2.1)

which directly controls the overall Type I error across these M tests. However, joint
hypothesis testing only determines whether at least one oy, rejects the null hypothesis,
while researchers are often interested in identifying which specific hypotheses reject the
null. Therefore, an alternative approach is to conduct M individual hypothesis tests (i.e.,

multiple tests):

Hp:0, <0 vs. H,:0a, >0 fork=1,--- M, (2.2)

using appropriate critical values for each individual test to control specific error measures
across these M tests and determine which hypotheses reject the null. For example, one
could control the probability of FP > 0 to avoid any false rejections among these M
hypotheses (i.e., FWER). Alternatively, one might focus on controlling the proportion
of false rejections relative to the total number of rejections (FP/R), such as the false
discovery proportion (FDP) or the expectation of FDP, referred to as the false discovery

rate (FDR). In the following sections, we will provide more details on these error measures
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and the methods for determining the appropriate critical values for both the joint test and

multiple tests.

2.2 Family-wise Error Rate (FWER)

The most classical method used to deal with the multiple testing problem is to control
the FWER. The FWER is defined as the probability of falsely rejecting at least one true
null hypothesis:

FWER = P{FP > 1}. (2.3)

Once the FWER is controlled, the probability of Type I error does not increase when the
number of hypotheses increases. One well-known method used to control the FWER is the
Bonferroni method. To maintain the FWER at the level of -, Bonferroni suggests setting
the individual significance level at /M. This procedure is justified by the following

inequality:

FWER = P{ | J (Reject H{)} < > P (Reject Hf) < 3 - <. (2.4)

kely kely keZy

where 7 is the set of indices of the true null hypotheses and H} is the k-th null hypothesis.
Although the Bonferroni method can be used to control for the FWER, it becomes too

conservative when M is large (i.e. v/ M is too small), resulting in few rejections.

To enhance the power of the Bonferroni method, Holm introduces a stepwise pro-
cedure. In the Holm method, the p-values of M statistics are initially ordered as p(;) <

Pe) < ... < pu)- To control for the FWER at the level of -y, the Holm method begins by
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testing the most significant hypothesis (i.e. £ = 1) and rejecting the null hypothesis if

y

— L fork=1,2... M. 2.5
p(k><(M_k+l) or , (2:5)

If the null hypothesis corresponding to p(x) is rejected, the procedure continues to test
subsequent hypotheses until a null hypothesis cannot be rejected. Notably, while testing
the most significant hypothesis, the threshold of the Holm method is identical to that of
the Bonferroni method. However, as it moves to less significant hypotheses, the threshold
of the Holm method decreases. Therefore, the Holm method typically rejects more hy-
potheses than the Bonferroni method while controlling the same FWER, making it more

powerful.

Note that although the Holm method improves the power of the Bonferroni method,
it still lacks of power if M is large. Moreover, one drawback of both the Bonferroni and
the Holm methods is that they do not consider the dependence structure of the test statistics
(and hence the p-values), leading to overly stringent thresholds. For instance, if there is a
dependence structure causing all p-values to be the same, the Bonferroni threshold should
be adjusted from /M to v. In practice, test statistics for multiple hypotheses are usually

dependent, which diminishes the power of the Bonferroni and the Holm methods.

2.3 Joint test

To address the dependency among these hypotheses, White (2000) proposes the real-
ity check to examine whether superior strategy exists. Let f fork = 1,--- | M denote the

performance measure of the strategy & compared with the benchmark. The null hypothesis
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that no superior strategy exists among these M strategies is:

How :E(fi) <0 fork=1,..., M. (2.6)

To test these hypotheses, White (2000) uses the concept of the least favorable con-
figuration to the alternative and enforces the null hypothesis as E(f) = 0 for all k. The
performance of the best strategy can then be written as the maximum value of the normal-

ized sample average of f; ;:

VM = i nilaXM \/ﬁf_’m (27)

where f;, is the return of k-th strategy at time ¢, and f, = Soiy fer/n is its sample
average. If the test statistic V), is larger than the critical value, it implies that at least one

superior strategy exists.

White (2000) suggests employing the stationary bootstrap proposed by Politis and
Romano (1994) to determine the critical value of Vy;. Let f;(b) be the b-th bootstrap
sample for fi, with its sample average defined as f;(b) = >, fix(b)/n. Then, the
empirical distribution of V3, is constructed by:

Vi (b) = max Vn(fib) — fi) forb=1,..., B. (2.8)

=1,...,

Finally, we can determine the critical value of V), by evaluating the percentile value of

the empirical distribution V; and infer whether a superior strategy exists.

It is important to note that White’s reality check utilizes the stationary bootstrap to
preserve the dependency structure of individual statistics. However, Hansen (2005) points

out two drawbacks of this method. Firstly, the test statistic /n fx is not studentized. Sec-
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ondly, White (2000) uses the least favorable configuration to the alternative, making the
reality check conservative and susceptible to the inclusion of poor or irrelevant strategies.
Therefore, Hansen (2005) introduces a new method for superior predictive ability (SPA)

by studentizing the test statistic:

~

_ n £
Vi = max (k max Vit , 0) , (2.9)
where 6, is the consistent estimator of the standard deviation of v/n.f;. The studentized

statistic generally results in better power performance than the non-studentized one.

Furthermore, to address the problem arising from the least favorable configuration,

Hansen (2005) suggests generating the empirical distribution f/]\’} by:

. 7%
Vj}(b)zmax( max M,O) forb=1,...,B, (2.10)

k=1,....M Ok

where Z;(b) is the sample average of the adjusted bootstrap performance measure ZE (D),

and Z/, (b) is defined as:

Zy(5) = Jir0) = fil (7 /G2 matogiogn} (2.11)

In Hansen’s bootstrap procedure, the bootstrap performance ft* (D) is not centered by the

sample average performance f;, if the sample average is much too low, specifically less

than less than —/ (62 /n)2loglogn. Therefore, the SPA test is not susceptible to the inclu-

sion of poor or irrelevant strategies, making it more powerful than White’s reality check.

The methods mentioned above are widely used in economics and finance. Sullivan
et al. (1999) apply White’s reality check and find that superior trading rules exist for the

DIJIA from 1897 to 1986, but the best strategy does not maintain its performance from
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1987 to 1996. Hsu and Kuan (2005) employ White’s reality check and the SPA test with
more comprehensive trading rules. They discover these rules outperform on NASDAQ but
do not outperform on S&P 500 and DJIA. Qi and Wu (2006) examine trading rules across
seven exchange rates and find that superior trading rules exist in five markets. Chen,
Huang and Lai (2011) and Metghalchi et al. (2012) find that the 14-day MFI strategy

outperform in Taiwan stock market.

2.4 Ek-FWER

In fact, researchers are not only concerned about false rejections but also about the
ability to reject the null hypothesis when the null is false (i.e., the power of the test).
When the number of hypotheses M is large, the FWER criterion becomes too stringent,
making it difficult to reject hypotheses when they are false. Therefore, researchers relax
the control of the FWER and propose the k-FWER, which allows for more false rejections.

The k-FWER is defined as the probability of rejecting at least £ true null hypotheses:

k-FWER = P{FP > k}. (2.12)

By allowing up to £ — 1 false rejections, the k-FWER is more powerful than the FWER

and can reject more hypotheses.

Moreover, in many financial applications, such as identifying outperforming mutual
funds and superior trading rules, researchers are not only interested in determining whether
the best mutual fund (or trading rule) beats the benchmark but also in identifying all mutual
funds (or trading rules) with superior performance. To address this problem, researchers

use the stepwise procedure. The stepwise procedure is similar to the Holm procedure.

10 doi:10.6342/NTU202404642


http://dx.doi.org/10.6342/NTU202404642

It begins with a single-step approach and then continues by adjusting the critical values
based on the remaining hypotheses in subsequent steps. This sequential adjustment allows
the stepwise procedure to reject more hypotheses than the single-step approach while con-

trolling the same error rate, thereby enhancing the power of the test.

Romano and Wolf (2007) propose the £-StepM, which modifies White’s reality check
by controlling the £.-FWER and applying the stepwise procedure. With these modifi-
cations, the k-StepM can identify as many superior strategies as possible. The sum-
mary of k-StepM is as follows. Let R be a real number set and |R| denote the number
of elements in set R. For any subset & C {1,..., M}, ¢x(7, k) is the ~-th quantile of
k-max{¢? | j € k}, where k-max{R} is the k-th largest value in R and {¢} | j € k}
are the simulated distributions that can be constructed by the bootstrap procedure. The
bootstrap procedure is similar to the Equation (2.8) (further details can be found in White

(2000) and Romano and Wolf (2007)). The algorithm of the £-StepM is as follows:

1. Let By = {1,..., M} be the initial set of hypotheses. For each hypothesis H with
s € By, reject Hj if

VT, > max{¢g, (v, k), 0}, (2.13)

where Ts = g—s is the studentized test statistic. Then, let R; be the set of indices of
the rejected hypotheses. If |R;| < k, stop the algorithm; otherwise, proceed to the

next step.

2. Let B, be the set of the indices of the hypotheses that are not rejected in previous

step, i.e., By = By \R;y. For H§ with s € By, reject Hj if

VT, > max  {ép,ui(v,k),0}. (2.14)

ICRy, |I|=k—1
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3. Repeat step 2 by substituting R, and B, with R,;_; and B; for j > 3 until there are

no further rejections.

It is important to note that the k£-StepM reassesses k — 1 strategies that have already
been rejected when evaluating the critical value at each step. This is because the k-StepM
allows for up to £ — 1 false rejections. Since we cannot determine which rejected hy-
potheses are true alternatives, it is necessary to reconsider all possible subsets of rejected

hypotheses to ensure that this method controls the k-FWER at every step.

Although the £-StepM enhances the power of White’s reality check by applying the
stepwise procedure and controlling the £-FWER, it still suffers from the drawback of
the least favorable configuration. Therefore, Hsu, Kuan, and Yen (2014) propose the
k-StepSPA, which improves the k-StepM by incorporating ideas from the SPA test. For

each test s, define 4, as

Us = TAS]l\/ETAsgfak , Where a; = +/2loglogn. (2.15)

Note that @, is used to re-center the simulated distribution if the sample average perfor-
mance \/ﬁTs is much too low, specifically less than —/2loglogn. Consequently, the
simulated distribution becomes k-max{v? + \/ni; | j € K}. The simulation results of

Hsu, Kuan, and Yen (2014) show that the k-StepSPA has greater power than the k-StepM.

2.5 False Discovery Rate (FDR)

Although £-FWER relaxes the constraint of the FWER by allowing up to & — 1 false

rejections, when there are thousands of tests and lots of them are true alternatives, limiting
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the number of false rejections to a fixed k£ may still be too stringent. Moreover, for some
multiple hypothesis testing problems, the goal is to identify as many true alternatives as
possible, and false discoveries are relatively less harmful. For example, in the mutual
fund performance problem, the primary goal is to find outperforming mutual funds. Even
if there are some false discoveries, they are usually zero-alpha funds, which do not cause
significant losses to investors. To address such problems, researchers find it more appeal-

ing to control the FDR. The FDR is defined as the expected value of the FDP:
FP
FDR = E(FDP) = E(E | R > 0)P(R > 0). (2.16)

Since the FDR is used to control the rate of false discoveries, it is more tolerant of false

discoveries. Therefore, it can identify more true alternatives compared to the FWER.

Benjamini and Hochberg (1995; BH) propose the first FDR-controlling method that
utilizes the stepwise procedure. Let p1) < p2y < ... < pr) denote the ordered sequence
of p-values corresponding to hypotheses H i), Hs)..., H(y). To control the FDR at the
level of 7, the BH procedure begins by testing the least significant hypothesis (i.e. £ = M)

with the inequality:

k x ~
M

Py < (2.17)

If p(1y does not satisfy the inequality, the procedure continues to test subsequent hypotheses
until the first £* satisfies the inequality. Finally, we can reject the hypotheses H ;) for all

1 < k™.

In Equation (2.17), the critical value of the BH procedure depends on the number of
hypotheses M, leading to a potential lack of power if many hypotheses have extremely

high p-values (i.e., M becomes larger, but the order of p-values likely to be rejected
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remains almost the same). To address this issue, Giglio, Liao, and Xiu (2021) suggest
screening the hypotheses that are obviously true nulls first to reduce the total number of
hypotheses, thereby improving the power of the procedure. The screening threshold is

defined as follows:

t; > —c - log(logT)+/logh for: < M, (2.18)

where ¢; is the test statistic for ¢-th hypothesis, M is the number of tests, 7" is the time
dimension, and c is a constant. Unlike the threshold in Giglio, Liao, and Xiu (2021), we
add a constant c since we find they do so while implementing their screening method. Al-
though ¢ does not affect this method’s asymptotic properties, it can improve the empirical
results, and they set ¢ = 1/3 in their implementation (see the Python code provided by

Giglio, Liao, and Xiu, 2021).

Another way to improve the BH procedure is to estimate 1m,. Note that under the as-
sumption that the p-values corresponding to true nulls are independent, the BH procedure
controls the FDR at the level -y by satisfying the following inequality (details in BH, 1995,

Theorem 1):

FP mo
E(—= | < —7<1. 2.1
( >_M7_’Y (2.19)

This inequality indicates that the FDR is controlled by the number of true nulls (m).
However, the threshold in the BH procedure only uses M and does not include information
about my, potentially reducing the procedure’s power. Therefore, Storey (2002) proposes

an estimator for the proportion of true nulls 7q (i.e., mqo/M):

o
fo(N) = %, (2.20)

where A\ € (0, 1) is the threshold that defines the boundary of true nulls (hypotheses with
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p-values greater than \ are considered true nulls). This estimator relies on two assump-
tions: first, p-values under true alternatives are close to zero; and second, p-values cor-
responding to true nulls are independent and uniformly distributed on the interval [0,1].
Under these assumptions, approximately mo(1 — A) p-values lie in the interval (A, 1] if A
is sufficiently large. Storey (2002) suggests using #{p; > A} to estimate my(1 — A) and
hence estimate mg by #{p; > A}/(1 — \). This leads to the estimator of 7y(\). It is im-
portant to note that the null hypothesis in Storey’s method must be an equality; otherwise,

the true nulls do not follow a uniform distribution.

To select A that satisfies the assumptions mentioned above, we can plot the p-values
on a histogram (see Figure 2.1) and choose A for which the histogram of p-values be-
comes flat (i.e., satisfies uniform distribution). An alternative approach for choosing A is
to minimize the estimated mean square error (MSE) of 7y by using the bootstrap procedure

(Storey, 2002). In practice, these two methods result in similar values of \.

Once we have 7y, we can estimate the FDR with the pre-specified threshold of the

rejection region « by using the following estimator:

(2.21)

Here, 7o(A) - k- M is used to estimate the number of false rejections by assuming true
nulls are uniformly distributed, and #{p; < r} is used to estimate the number of significant
funds. Therefore, we obtain the estimator of the FDR and can select x with an acceptable

FDR.

To compare the power of Storey’s method with the BH procedure, we rewrite Storey’s

method in a form similar to the BH procedure. Let p(1) < p2) < ... < p(ar) be the ordered

15 doi:10.6342/NTU202404642


http://dx.doi.org/10.6342/NTU202404642

300 A |
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— funds (funds with non-zero alpha). I Ais (1 — A)m, and can be estimated
| by #{p; > 4}.
250 A I
200 Area below this line is the proportion
of zero alpha funds (7t,), and can be I
a estimated by 2224
c Y M@1-2)’ I
g
= 150 - I
& |
100 A
50 -
0 -

0.0 0.2 0.4 0.6 0.8 1.0

Figure 2.1: Histogram of mutual funds p-values. This figure uses 1483 Japanese mutual funds dur-
ing 2002 — 2023 and shows the histogram of p-values of the ¢-statistic of alpha from the Carhart’s
four-factor model.

sequence of p-values. Storey’s method aims to find the largest rejected index { while

controlling the FDR at the significance level v:
¢ = max{/ : FDR(p()) < 7}, (2.22)
where Fﬁ(p(g)) = 7to(A) - p(ey - M /€. Therefore, Equation (2.22) can be written as:

. 14 1
¢ =max{l:py < w7 ﬁ_o} (2.23)

Comparing this equation to the Equation (2.17), we have that ¢ > k since 1 /7o > 1.
This indicates that the threshold of the rejection region in Storey’s method is larger than
the one in the BH procedure. Therefore, Storey’s method is more powerful than the BH

procedure.
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Notably, unlike other approaches, Storey (2002) first fixes the rejection region and
then estimates the FDR. Although this method may seem counterintuitive, it allows for
leveraging prior knowledge to choose the rejection region appropriately, leading to better

testing results.

FDR-based methods have been widely used across various fields of research. In
medicine, Benussi et al. (2020) utilize the BH procedure to investigate the relationship be-
tween COVID-19 and neurologic diseases. They conclude that patients with both COVID-
19 and neurological conditions have significantly higher in-hospital mortality compared
to those without COVID-19. In ecology, Betts et al. (2017) study the threat to forest-
exclusive species while controlling the FDR by applying the BH procedure. They find
that the threat is associated with the interaction between forest loss and the proportions of
initial forest cover. In finance, Barras et al. (2010) use Storey’s method and find that only
0.6% of U.S. funds outperform the benchmark. Moreover, they observe a rapid decline in
the proportion of funds with true positive alphas, which dropped from 14.4% in 1993 to
0.6% in 2006, while the proportion of funds with true negative alphas increased from 9.2%
to 24.0% over the same period. Cuthbertson et al. (2012) also apply Storey’s method to
analyze UK equity mutual funds, finding that only 3.7% of mutual funds outperform the
benchmark. Furthermore, they show that these outperformances are not persistent, while

poor performances are persistent.

2.6 Bootstrap Approach

Another series of studies, including those by Kosowski et al. (2006; KTWW) and

Fama and French (2010; FF), investigate whether outperforming mutual funds exist and
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address the multiple testing problem by employing different bootstrap approaches. The
bootstrap approach is applied because KTWW find that the finite sample distribution of the
t-statistics for individual fund alphas exhibits non-normality and dependence structures
under the null hypothesis (where the true alpha is less than or equal to zero). Consequently,

the bootstrap method is more appropriate for evaluating the p-values of the ¢-statistics.

Before applying the bootstrap procedure, we need to first measure the mutual fund
performance. Both KTWW and FF do this by estimating alpha for each fund using the
Carhart four-factor model and then recording the estimated alphas, factor loadings, and
residuals. In each bootstrap iteration of KTWW’s method, they independently resample
the residuals for each fund and generate pseudo-time series return data of each fund by
adding the resampled residuals to the original order of factor values and their correspond-
ing factor loadings. Note that to generate the zero-alpha pseudo-time series data, KTWW

set alpha equal to zero.

After generating the zero-alpha pseudo-time series data, KTWW re-estimate the Carhart
four-factor model using these pseudo-time series data to evaluate the ¢-statistic under the
null hypothesis (i.e., alpha is less than or equal to zero). They then infer the existence
of outperforming mutual funds by comparing the ¢-statistics of alpha from the original
data with those from the resampled zero-alpha data across different percentiles. If the
t-statistics from the original data are large relative to the null distribution, we can con-
clude that some of the mutual funds outperform the benchmark. The reason for using the
t-statistic of alpha rather than alpha itself is that the ¢-statistic is standardized by the mu-
tual fund’s standard deviation and the number of observations, providing better properties

than alpha.
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However, since KTWW resamples each fund’s residuals independently, this boot-
strap procedure fails to preserve the cross-sectional dependency of residuals among mu-
tual funds. To address this issue, FF modify KTWW?’s bootstrap procedure by resampling
cross-sectionally. Specifically, at each bootstrap iteration, FF resample the time indexes
and use the entire cross-sectional returns for that time period to construct pseudo-time se-
ries data. Similarly, FF set alpha to zero to generate zero-alpha pseudo-time series data
and compare the ¢-statistics of alpha from the original data with those from the resampled

zero-alpha data to infer the existence of outperforming mutual funds.

Since FF’s bootstrap procedure resamples all mutual fund data simultaneously, it
successfully preserves the dependency structure among mutual fund residuals. However,
since mutual fund data often contain missing values, FF’s bootstrap procedure may result
in a different number of observations for each fund between the resampled data and the
real-world data, potentially making the bootstrap distribution different from the real-world

distribution.

Although both KTWW and FF apply their bootstrap methods to the same data, they
reach opposite conclusions. KTWW find that outperforming mutual funds exist, while FF
conclude that no mutual funds outperform the benchmark. To determine which method
is more appropriate for real-world data, Harvey and Liu (2022) designed a simulation
to test the Type I error and the power of these two bootstrap methods. The simulation
results of Harvey and Liu (2022) show that KTWW?’s bootstrap procedure overrejects
the null hypothesis because it fails to capture the dependency of residuals. In contrast,
FF’s bootstrap procedure lacks power due to discrepancies in the number of observations

between the resampled and real-world data.
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To provide a more powerful method, Harvey and Liu (2022) modify FF’s method

using the idea of the interquartile range:

m(i) = [Qui— & % (Qss — Q1), Qs + & x (@35 — Qu)] (2.24)

where ¢ is the scale parameter that determines the width of bandwidth, Ql,i and @&i are
the first and the third quantiles of the bootstrapped ¢-statistic distribution for mutual fund
1, respectively. Harvey and Liu (2022) only consider the bootstrap ¢-statistics that fall
within this bandwidth and remove the extreme values from the bootstrapped ¢-statistics,

thereby enhancing the power of the test.
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Chapter 3 Methodology

Our objective is to evaluate the performance of Japanese mutual funds and iden-
tify outperforming funds. To achieve this, we begin by estimating alpha with a specified
benchmark model and use alpha as the performance measure for each mutual fund. How-
ever, since these theoretical benchmark models may be stylized, they often fail to capture
the full dependence structure of excess returns. This raises the problem of omitted vari-

ables (i.e., the existence of latent factors), which can potentially bias the alpha estimator.

To address this issue, we apply the asset pricing model proposed by Giglio, Liao, and
Xiu (2021) to identify these latent factors. Their method utilizes the concepts of matrix
completion and Principal Component Analysis (PCA) to handle the problem of missing
data and omitted variables. Once these latent factors are identified, we can accurately

estimate the alpha for each mutual fund.

Since some of our factors may be nontradable, we apply cross-sectional regression
to estimate the risk premiums of the factors and alphas for each mutual fund. Then, to im-
prove the performance of finite sample inference, we employ the wild bootstrap to evaluate
the p-values for the ¢-statistics. Finally, we control the FDR and identify outperforming
funds by applying the adjusted BH procedure. In the following sections, we will illustrate

these methods in more detail.
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3.1 Mutual Fund Performance Measurement

To evaluate the performance of each mutual fund, we assume that the excess returns

ry follow the linear asset pricing model:

re = a+ A+ B(fr = E(fy)) + e, (3.1

where \ is a K x 1 vector denoting the risk premium of the factors, f; isa K x 1 vector
denoting the factor values at time ¢, €, is a M x 1 vector denoting the idiosyncratic factor,
and 3 isa M x K matrix where the (4, j) -th element is the factor loading of the i-th mutual

fund with respect to the j-th factor. Note that A is identical to E( f;) if f; is tradable.

One well-known benchmark model for evaluating mutual fund performance is the

Carhart (1997) four-factor model, defined as follows:

Tit = QG + Biyn, * ¥mt + Bismp - SMBy + Bi mar, - HMLy + 55 piors - MOM, + €54, (3.2)

where 7; ; is the excess return of fund 7 at time ¢ over the monthly risk-free rate (defined by
the monthly U.S. T-bill rate). 7, 1s the excess return of the Japan value-weighted market
portfolio over the monthly risk-free rate at time t. SMB;, HML,;, and MOM, denote the
size, book-to-market ratio, and momentum factors for Japan, respectively. All these data

can be found on Kenneth French’s website.

However, after applying the Carhart four-factor model, we find that the cross-sectional
alphas are still correlated with each other. This suggests that the four-factor model does
not capture all the dependency structures among excess returns. To prevent the estimator

of alpha from being biased, we extend the four-factor model by including latent factors.
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The extended benchmark model that includes both observed factor f,,; and latent factor

for is as follows:

re=a+ Boho + Bede + 5, (for —E(for)] + By (for —E(for)] + € (3.3)

where f,, is a K, x 1 vector denoting the observed factors, and f,; is a K, x 1 vector
denoting the latent factors, with K, and K, being the numbers of observed and latent

factors, respectively.

Before explaining the estimation procedure for alpha, we first introduce some nota-
tions used in this paper. Matrices are denoted by uppercase italic letters, and their column
vectors are denoted by lowercase italic letters (e.g., X = (x4, xo, ..., zr), where x; rep-
resents a vector of data at time ¢). Let 1), be the M x 1 vector of ones. For any m x n
matrix X, we use Hy = X (X’X)~'X’ to denote its hat matrix and Mx = I,,, — Hy to
denote its annihilator matrix. Since some return data contain missing values, we define
T; as the set of observed time periods with T; elements for mutual fund ¢, and M, as the
set of observed mutual funds with M, elements at time ¢. Let F,,; be the K, x T; matrix
of {fo: : t € T}, denoting the observed factors for mutual fund i. Similarly, we define
the matrix of latent factors for mutual fund i as F};, representing { f,; : t € T;}. Let R;
be the T; x 1 vector of {r;; : t € 7T;}, denoting the excess returns for mutual fund i, and
7 = EteTi ri/T; denotes the average excess return for mutual fund ¢ over its observed

time periods.

To estimate alpha using the benchmark model with latent factors as shown in Equa-

tion (3.3), we first need to estimate the factor loadings for both the observed and latent
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factors, f3,; and [3;;, for each mutual fund through a time-series regression:
R; = a; + Fé,iﬁo,i + Fé,iﬁe,i + €, (3:4)

where q; is the intercept of the time-series regression. However, since the latent factor F} ;
is unobservable, we can only estimate f3, ; first. The effect of Fo’Z on R; in this time-series
regression can be obtained by regressing the residual from the regression of R; on 17,
(denoted as M;,, R;) on the residual from regression of /7 ; on 17, (denoted as My, 7).

The estimator of /3, ; is then given by:
Bos = (FoiMig, Fy ;)7 (Fo Mg, Ry). (3.5)

It is important to note that Boﬂ- SN Bo,i only if F,; is uncorrelated with F;;. However,
since we do not impose this assumption here, the estimator of 3, ; might be biased, which
could potentially lead to bias in the alpha estimator. Therefore, we will de-bias the esti-

mator of alpha in Section 3.3.

Subsequently, to estimate the factor loadings of the latent factors, we begin by ex-
tracting their effect from excess returns by subtracting the effects of alpha, risk premium,

and observed factors from Equation (3.3):

Zit = Tit — T — B(/)z(fot — Joi)s (3.6)

where 7; is the estimator of E(r;), representing the effects of alpha and risk premium'.

The term f,; denotes the average observed factors for mutual fund i over its observed

time periods, defined as f,; = Zteﬂ_ fo1/Ti. Consequently, the matrix Zyrxr = (2it)

"We can derive this by taking the expectation on both sides of Equation (3.3) and have E(r;) = a; +
52,1')\0,7: + By

24 doi:10.6342/NTU202404642


http://dx.doi.org/10.6342/NTU202404642

contains only the effect of latent factors and is referred to as the residual matrix. Note that

z;+ 1s defined only when 7;; is observable; otherwise, it is treated as missing.

Once we obtain the residual matrix Z, we can decompose it by applying PCA toiden-
tify the latent factors F}; and estimate their corresponding factor loadings 5,. However, in
practice, mutual fund data often contain missing values since some funds only have short
lifespans while new funds frequently enter the market, making it difficult to apply PCA
directly. To address this problem, in the next section, we apply the matrix completion
used in Giglio, Liao, and Xiu (2021) to identify the latent factors and estimate their factor

loadings.

3.2 Matrix Completion

Matrix completion is a technique for filling in missing values within observed data.
The main assumption in the matrix completion approach used in this paper is that the
observed residual matrix Z can be decomposed into a lower-rank matrix X, which captures

the underlying structures of Z, and a matrix N, which contains only noise:
zi; = Xi; + Ny if 25 is observable. (3.7)

Under this assumption, the goal of matrix completion is to find a simplified matrix X that
preserves the essential information from the residual matrix Z. Therefore, the objective

function can be written as:

min [|(Z — X) o Q|% 4 rank(X), (3.8)
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where 2 is a M x T binary matrix that indicates the observed data, with the (7,4)<th
element equals to 1 if z;; is defined, o denotes the Hadamard product, used for element-
wise multiplication between two matrices, and ||.X || . is the Frobenius norm of the matrix
X where || X||» = (Tr(X’X))"2. Therefore, the first term of the objective function aims

to minimize the noise while the second term is used for constraining the rank of X.

However, the rank minimization problem is NP-hard, and all known algorithms for
solving it are exponential-time algorithms, which become inefficient for high-dimension
inputs. Therefore, an alternative approach is to replace the rank with the nuclear norm.
The intuition behind using the nuclear norm is that rank is the count of non-zero singular
values, while the nuclear norm is the sum of these singular values, much like using their
magnitude as an approximation of rank. Importantly, the nuclear norm is a convex function
and can be solved efficiently. Therefore, we reformulate the objective function in Equation

(3.8) by substituting the rank with the nuclear norm and have:
min [(Z — X) 0 Q5 + Ay | X, (3.9)
where Ay;r > 0 is a regularization parameter, and || X/, denotes the nuclear norm of

matrix X.

We can then solve this objective function by using the optimal solution that proved
by Ma et al. (2011). For any 7 > 0, the optimal solution X should satisfy the following
equation:

X=D,(X-1Q0(X —=2)), v=r1lur/2, (3.10)
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where D, is a singular value thresholding operator defined as:

D,(Y)=UX, V' %,=diag(max{o; —v,0}), (3.11)

where Y = UXV" is the result of singular value decomposition (SVD) of matrix Y and
its singular value o;; are all positive. Finally, we can use the iterative algorithm proposed

by Ma et al. (2011) to find X. The algorithm is as follows:

1. Let v = 7Ayr/2, k = 0, and set the initial state Xy = Z o €.
2. Update Xy11 =D, (X —7Qo (X — Z)) and letk = k + 1.

3. Repeat the second step until X, converges.

Note that this algorithm has two hyperparameters, 7 and A\y;7. As mentioned previously,
Anr 1 the regularization parameter controlling the balance between reducing the noise
and enforcing the low-rank structure of X. The hyperparameter 7 serves as a threshold for
D, acting as a cutoff for singular values, replacing low singular values with zero to help
identify a low-rank matrix while minimizing noise. Following the suggestion of Giglio,
Liao, and Xiu (2021), we choose 7 = 0.9 and Ay = 2.2 - ||Q o W]|,, where W is a
noise matrix with W ~ N(0, X.). The (4, j) -th element of ¥. is the estimated covariance
between mutual fund ¢ and j. We follow the estimation procedure with the Python code

provided by Giglio, Liao, and Xiu (2021) to estimate >.. through SVD.

Once we obtain the lower-rank matrix X, we apply PCA to X to estimate the de-

meaned latent factors, v, where vg; = fr — ZtT:l fet/T, and their corresponding load-
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ings, ;. The estimators for the latent factors and their loadings are as follows:

-1
Doy = (Z m;) > bz, t=1...T, (3.12)

1EM;y iEM;¢

-1
Bﬁ,i = (Z ﬁ@,t@27t> Z @E,t'zih 1= 17' . '9M7 (313)

i€T; i€T;
where b; = vV Mp, fori < Ky, and (p1, ..., pk,) are the left singular vectors of X corre-

sponding to the largest K, eigenvalues. Finally, we combine the observed factor loadings

with latent factor loadings as B = <BO, Bg), and also combine the demeaned factors as

(IS ((fO,t - fO)la @é,t)la where fo = ZtT:1 fo,t/T-

3.3 Estimate alpha and the test statistics

With the estimated factor loadings 3, we can estimate the risk premiums of the fac-

tors, A = (X, \})’, by taking the expectation on both sides of Equation (3.3):
E(ry) = a+ B'A (3.14)

We then estimate \ by regressing ©* on & using the cross-sectional regression:
A= (5'Mu,, /)" (B M, ), (3.15)

where 7 = (71, ..., Tar)'. Finally, we can estimate alpha by subtracting the product of the

risk premiums and factor loadings from the excess return for each mutual fund.

However, due to the bias in the 3 discussed in Section 3.1 and the unbalanced panel

effect, the alpha estimator is biased. To address this problem, Giglio, Liao, and Xiu (2021)
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propose a de-biasing estimator of alpha, denoted as A;. The unbiased estimator of alpha

is as follows:
Gy =Ti— BN+ A, i=1,..., M, (3.16)
where A; = BQZ(I:IM H) A — €9, (3.17)
R 1 N 5105 A1 A
gi = T ng (2 7{ - eg - 62(5,M1MB) lﬂlMlMa 6; - (07 717 70)7
v teT;
F(F,My, F))™

H,; = Vz,iMlTi Fyi(FoiMa,, F,;)~", and H, = V;M,,

Here, V, is the K, x T matrix of {0y, : t < T}, and sz is the Ky x T; matrix of {0y, : t €

7:}. For further details on this derivation, refer to Giglio, Liao, and Xiu (2021), Appendix,

Proof of Theorem A.2.
Finally, Giglio, Liao, and Xiu (2021) propose an estimator for the variance of alpha

to construct the ¢-statistic for evaluating the mutual performance. The variance estimator,

, for mutual fund i, is as follows:
(3.18)

. 1 . e
62 = 7 Zu?t(l - U;Zfl)\)z
teT;

where w;; = iy — T; — B;@t is the residual of Equation (3.3), )y = Zle 040, /T, and

denoted by 62

S 5= /M, MB /M. The first component in Equation (3.18) is the variance from time-

series estimation (Equation (3.5) and (3.13)), while the second component is the variance

from cross-sectional estimation (Equation (3.15)). Further details can be found in Giglio,

Liao, and Xiu (2021), Appendix, Theorem A.1. The t-statistic of alpha is then calculated
(3.19)

as:
s - \/]Tz a'_i"

ta,
doi:10.6342/NTU202404642
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Giglio, Liao, and Xiu (2021) show that #, is asymptotically normal so that its p-values
can be computed directly. However, due to the missing values in mutual fund data, the
performance of asymptotically inference in finite sample may be a concern. Therefore,
we follow the suggestion of KTWW (2006) but apply the wild bootstrap procedure to

evaluate the p-values.

3.4 Wild Bootstrap procedure

To improve the finite sample performance, the bootstrap procedure is an appealing
approach for evaluating the critical value of test statistics. Therefore, we apply the wild
bootstrap proposed by Liu (1988) to evaluate the p-values since it can avoid the problem
of discrepancies in the number of observations, making it suitable for assessing mutual
fund performance. Moreover, as shown by Mammen (1993), the wild bootstrap can ac-
commodate heteroskedasticity, reducing the false rejections of the null hypothesis. Let
it =Ty — T — Bﬁ;t be the residual of our asset pricing model. The wild-bootstrap proce-

dure is as follows:

1. Generate a sequence of weighted residuals {w; : i < M, t < T} that satisfy
E(wy) = 0 and Var(w;) = 1. Mammen (1993) suggest using the following equa-
tion to generate w;;:

1 1

L= 4+ (42— 1 2
Wit ﬁnlt—I_ 2(71t )a (3 O)

where 7;; and ;; are independent standard normal random variables. Then, we can

generate the bootstrap return by:

N

i = BN+ Bl + &5, &L = Eqwy, fort e T, (3.21)

30 doi:10.6342/NTU202404642


http://dx.doi.org/10.6342/NTU202404642

2. For each bootstrap iteration, estimate its factor loading and risk premium by:
Bz* = (‘A/iMlTi ‘A/il)il (‘A/iMlTi RD? (322)

where R} is a T; x 1 vector, denoting the bootstrap return for mutual fund ¢, and 1%
is a ' x T; matrix, denoting the factor values when mutual fund 7 exists. Then, we
estimate the risk premium \* by substituting B and 7 in Equation (3.15) with B *and

Ak

r.

3. For each mutual fund, estimate its alpha by the de-biased estimator:
GF =T BN =g, i=1,..., M, (3.23)

where £ = ¢, — 37 (5" My,,3*) ' 3* My,,, and §; = > oteT /3% /T;. Then, com-
pute the bootstrap t-statistic of alpha, fgi,b, by substituting B, \, @ and @ in Equation

(3.18) and (3.19) with 3*, \*, &* and &*.

4. Repeat steps 1 to 3 B times to obtain the bootstrapped distribution of fjgi’b when the
true ¢-statistic is zero. Finally, we evaluate the p-value of the test that ¢, > 0 for

each fund by
1B
b= E b=1 ﬂ{tgi,b > ttfw,}a i=1,..., M, (324)

where 1 is a (1, 0) indicator variable, and 74, is obtained from Equation (3.19).

Note that since we use the estimated latent factors as the observed factors in the bootstrap
procedure, the estimator to correct the bias of alpha in Equation (3.23) is different from

the estimator in Equation (3.16) and (3.17).

It important to note that unlike the bootstrap procedure in Giglio, Liao, and Xiu
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(2021), we do not bootstrap on alpha; instead, we bootstrap on the ¢-statistic'of alpha. It is
because the ¢-statistic is standardized by the standard deviation and the number of obset-
vations, which provides better properties (KTWW, 2006). Finally, we apply the screening
BH procedure (Equations (2.17) and (2.18)) to these p-values and infer the existence of

ouperforming mutual funds.
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Chapter 4 Empirical Results

4.1 Mutual Fund Data

To analyze the performance of Japanese mutual funds, we use the adjusted closing
price at the end of each month from January 2002 to December 2023, sourced from the
Bloomberg database, to evaluate monthly returns. Since the returns are based on ad-
justed closing prices, they already account for stock dividends, splits, management fees,
taxes, etc. Our analysis focuses on open-ended mutual funds that primarily invest in the
Japanese equity market. We exclude funds with names containing “index”, “idx”, “ETF”,
or “tracker fund” to focus on active mutual funds. Furthermore, we select funds with
a minimum of 60 months of return data to ensure precise alpha estimation. Our final

database contains a total of 1483 mutual funds.

Table 4.1 presents the number of funds, descriptive statistics of their average monthly
excess returns, and the proportion of missing values (denoted as “Missing Proportion”)
over the sample period (2002—2023) and overlapping ten-year subperiods. For each sub-
period, only funds with at least 60 observations are included. The descriptive statistics
include the mean, standard deviation, and key percentiles of the distribution of average

return for each time period.
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Table 4.1: Summary Statistic.

Standard 50th 90th Missing
Time Periods N  Mean Deviation Percentile Percentile Max Proportion
Full Sample 1483  0.47 0.0045 0.48 0.98 4.51 46.85
2002 — 2011 629 —0.22 0.0045 —0.20 0.26 1.47 15.91
2003 — 2012 678 —0.01 0.0043 0.06 0.48 2.21 17.31
2004 — 2013 700  0.18 0.0039 0.25 0.61 1.55 17.26
2005 — 2014 715  0.32 0.0050 0.31 0.92 3.04 16.88
2006 — 2015 743 0.25 0.0059 0.16 1.05 4.51 16.29
2007 — 2016 783  0.36 0.0056 0.26 1.12 4.51 16.13
2008 — 2017 803 0.63 0.0047 0.55 1.22 4.51 15.49
2009 — 2018 860  0.78 0.0040 0.76 1.16 4.51 16.27
2010 — 2019 924  0.77 0.0039 0.78 1.17 4.51 16.38
2011 — 2020 1017 0.74 0.0045 0.77 1.23 3.11 17.41
2012 — 2021 1065 0.93 0.0046 0.98 1.46 3.46 17.01
2013 — 2022 1073 0.74 0.0041 0.77 1.18 2.99 15.42
2014 — 2023 1069 0.60 0.0034 0.62 0.98 2.83 13.66

Notes: N represents the number of funds in each time period. The value of Mean, 50th
percentile, 90th percentile, Max, and Missing Proportion are reported in percentage (%).

As shown in Table 4.1, the full sample contains 46.85% missing values, while each
subperiod has approximately 16% missing values, showing the necessity of employing
matrix completion to identify latent factors in the benchmark model. The lower propor-
tion of missing values in each subperiod is because we only include funds with at least five
years of data, which reduces the missing value proportion compared to the full sample. Ta-
ble 4.1 also shows that the maximum average excess returns among these mutual funds are
notably high, particularly from 2006—2015 to 2010—2019, with returns averaging 4.51%.
However, we still need to control the risk factors and the FDR to determine whether these
funds truly outperform the benchmark. Lastly, we observe that the mean, 50th percentile,
90th percentile, and maximum excess returns are low in the first few subperiods. They
then slightly increase to 2012—2021 and decline in the last two subperiods. This suggests

that the proportion of outperforming mutual funds may vary across different subperiods.

To estimate the alpha of each mutual fund, we use the Carhart four-factor as the ob-
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served factors and follow the methodology described in Sections 3.1 to 3:3. Figure 4:1
displays the scree plot of the top 15 eigenvalues from the residual covariance matrices for
both the Carhart four-factor model and its extended model, which incorporates-additional
latent factors. The solid line represents the eigenvalues of the residual matrix from the
Carhart four-factor model. The relatively high values of the first two eigenvalues, com-
pared to the others, indicate that certain common patterns remain in the residuals even after
applying the Carhart four-factor model. To address this, we apply the elbow method' and
incorporate four additional latent factors. The dashed line, representing the eigenvalues
of the residual matrix from the extended model, shows a significant drop in the first three
eigenvalues, indicating that the latent factors effectively capture these common patterns.
Furthermore, the flattening of the dashed line across all values suggests that no significant
common patterns remain among the mutual funds after applying the model with latent

factors.
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Figure 4.1: Scree plots of eigenvalues

Figure 4.2 displays the histogram of alpha and the ¢-statistic of alpha for Japanese mu-

'The elbow method is a heuristic technique used to determine the optimal number of principal com-
ponents in PCA. This method involves plotting the ordered eigenvalues and identifying the ”elbow” point
in the curve, which represents a significant change in the rate of decline. The number of principal compo-
nents corresponding to this point is then selected, as it typically captures most of the data’s variance without
including too many components that contribute little additional information.
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tual funds. Among the 1483 mutual funds, the average alpha is -0.644 basis points (bps),
with 49.8% of them showing a positive alpha (and a positive ¢-statistic). Compared to the
mean of average excess return shown in Table 4.1 (0.47%), the mean of positive alpha
decreases significantly, indicating that some of these excess returns are due to risk-taking.
Additionally, 6.47% of the mutual funds have a t-statistic greater than 1.96, suggesting
that some of these funds have a statistically significant alpha. However, due to the multiple
testing problems, some funds may outperform the benchmark purely by luck. Therefore,
in the next section, we will control the FDR to identify the truly outperforming mutual

funds.

200 4

175

—0.005 0.000 0.005 -8 —6 -4 -2 0 2 4 6
alpha t-statistic

(a) Histogram of alpha (b) Histogram of ¢-statistic of alpha

Figure 4.2: Histograms of mutual funds alpha and the ¢-statistic of alpha

4.2 Long-Term Mutual Fund Performance

In our empirical analysis, we begin by identifying outperforming mutual funds based
on long-term performance during the period from 2002 to 2023. We use the ¢-statistic
of alpha as the test statistic and implement 1000 wild bootstrap replications outlined in
Section 3.4 to construct the null distribution and evaluate the p-values for each fund. Fi-
nally, we apply the screening BH procedures, as described in equations (2.17) and (2.18),

to identify outperforming mutual funds. Following Barras et al. (2010) and Cuthbertson
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et al. (2012), we control the FDR at 10%, 15%, 20%. Table 4.2 presents the proportion of

the outperforming funds, along with their average alphas.

Table 4.2: Long-Term Performance: Proportion of funds and average c.

FDR (7)
10% 15%  20%

Proportion of the outperforming funds (%) 0.47 0.74 0.94
Average alpha (bps/month) 56.75 57.49 51.83

Among the 1483 mutual funds, we find that although 10.99% have a p-value lower
than 0.1 in individual tests (not reported in the table), only 0.47% are identified as outper-
forming funds (i.e., having a significant positive ¢-statistic for alpha) after controlling the
FDR at 10%. This suggests that most Japanese mutual funds outperform the benchmark

purely by luck and are filtered out by the screening BH procedure.

We also observe that as  increases from 10% to 20%, the proportion of outperform-
ing funds rises because more false discoveries are tolerated. For example, the proportion
of outperforming funds grows from 0.47% to 0.94% as ~y increases from 10% to 20%. In-
terestingly, the average alpha of outperforming funds reaches its peak at 57.49 bps when
v =15%. This suggests that the additional outperforming funds identified by raising v to
15% generate higher alpha compared to those identified when v =10%. However, when
v =20%, the average alpha declines to 51.83 bps, potentially due to the inclusion of funds

with weaker performance.

Lastly, when comparing the screening BH procedure to the BH procedure, we find
that the screening BH procedure identifies four more outperforming mutual funds when
v = 20% (not reported here). Although the increase is just a few, it indeed enhances the
power of the test. Therefore, for the remainder of this paper, we use the screening BH

procedure to control the FDR.
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Overall, the long-term performance analysis shows that only 0.47% mutual funds:in
Japan truly outperform the benchmark, with a relatively high average alpha of 56.75 bps
per month (6.81% per year). Even when allowing for more false discoveries by increasing
v to 20%, still only 0.94% of the funds are identified as outperforming. However, it is
possible that these mutual funds have the ability to outperform the benchmark over shorter
periods, but their superior performance tend to vanish and fail to sustain over the long
term. To further explore this probability, we will analyze their short-term performance

across different time periods in the next section.

4.3 Short-Term Performance

To examine mutual fund performance in the short-term, we divide the data into thir-
teen overlapping 10-year groups, beginning with the period from 2002 to 2011 and ending
with 2014 to 2023. For each group, we include only mutual funds with at least 60 months
of data. We then apply the same methodology used in the long-term performance anal-
ysis to estimate each group’s alpha independently. Table 4.3 presents the results of the
short-term performance analysis. For each row of Table 4.3, we report the average alpha
for each subperiod (denoted as “Full Avg o), the proportion of outperforming funds (de-
noted as “Prop”) and the average alpha of these outperforming funds (denoted as “Avg

«””) while controlling the FDR at 10%, 15%, and 20% using the screening BH procedure.

From Table 4.3, we first observe that in the beginning four time periods, the pro-
portion of outperforming funds is lower than the long-term proportion (0.47%). How-
ever, during the subperiods 2010—2019 and 2012—2021, the proportion of outperforming

funds increases to 3.14% and 9.30%, respectively, and suddenly decreases to 0.28% and
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Table 4.3: Short-Term Performance: Proportion of funds and average:a

Full v =10% v = 15% v =20%
Time Periods Avga Prop Avga Prop Avga Prop- Avga

2002 — 2011 —22.00 0.00 0.00 0.00 0.00 0.00 - 0.00
2003 — 2012 —15.20 029 80.32 0.29 80.32 0.29 80.32
2004 — 2013 —7.73 0.29 86.80 0.29 86.80 0.29 86.80
2005 — 2014 —5.38 0.00 0.00 0.00 0.00 042 76.07
2006 — 2015 4.87 094 6498 094 6498 1.08 70.00
2007 — 2016 4.69 0.26 7249 026 7249 0.26 7249
2008 — 2017 8.93 0.25 6742 025 6742 050 71.15
2009 — 2018  12.22 093 6691 128 6531 1.86 62.09
2010 — 2019  20.51 3.14 59.56 584 56.31 6.39 55.45
2011 — 2020 18.24 1.18 66.66 4.03 59.01 8.16 52.10
2012 — 2021  25.88 9.30 57.13 15.87 52.19 25.63 47.96
2013 — 2022 11.61 0.28 48.41  0.28 4841 149 55.63
2014 — 2023 8.85 1.40 4936 196 50.57 3.55 47.31

Note: The proportion of mutual funds (denoted as “Prop”) is reported in per-
centage (%), while the average alpha of all mutual funds in each subperiod
(denoted as “Full Avg ) and the average alpha of outperforming funds in
each subperiod (denoted as “Avg a”) are reported in bps/month.

1.40% in the subsequent subperiods. This suggests that Japanese mutual funds may out-
perform the benchmark in the short term, but their superior performances vanish quickly.
Additionally, when the full sample average alpha is high, more outperforming funds are
identified in those subperiods, particularly when ~ is 15% and 20%. For example, in the
subperiods 2010—2019 through 2012—2021, their average alpha is 20.51 bps, 18.24 bps,
and 25.88 bps per month, with corresponding proportions of outperforming funds being
5.84%, 4.03%, and 15.87% when v is 15% (6.39%, 8.16%, and 25.63% when ~ is 20%).
This may be because a higher full sample average alpha reflects more favorable market

conditions for funds, leading to a higher proportion of outperforming funds.

Moreover, Table 4.3 also shows that the average alpha of outperforming funds is
much higher than the full sample average alpha, indicating that our procedure indeed se-

lects those with superior performance. It is also interesting to find that there is a dramatic
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drop in the proportion of outperforming funds between the subperiods 2012-2021 and
2013—2022. This decline also reflects the decrease in average excess returns reported in

Table 4.1.

Overall, although only 0.47% of mutual funds outperform the benchmark in the long
term, we find that more mutual funds demonstrate superior performance in the short term,
particularly in the subperiods 2010—2019 and 2012—2021. This raises the question of
whether these outperforming funds with short-term superior performance consistently out-
perform others but fail to sustain sufficiently strong performance to outperform the bench-
mark over the long term or whether they perform well only in specific subperiods and un-
derperform in others. To determine which explanation is more reliable, we will examine

the rank persistence of these mutual funds in the next section.

4.4 Rank Persistence Analysis

To examine the persistence of rank among these mutual funds, we rank mutual fund
performance in each subperiod defined in the previous section and analyze how these ranks
evolve over time. Specifically, we divide the data into thirteen overlapping 10-year groups
and apply a method similar to the one used in the short-term performance analysis to
evaluate the p-values of the ¢-statistic of alpha. For each period, we rank the mutual funds
into ten groups based on their p-values and evaluate the probability P(Current rank = j |
Previous rank =i), where 1 < i, 57 < 10, to determine how these ranks change over time.
Finally, we present the results using a 3D bar plot in Figure 4.3, which compares the ranks
from one and five years prior to the current rank. The value of the bar at position (i, )

represents P(Current rank = j | Previous rank = ¢).
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Figure 4.3: 3D bar plot comparing the performance rank from one year and five years prior to the
current rank.

Panel (a) of Figure 4.3 shows that most mutual funds tend to remain in the same rank,
especially for those with the best and worst performance. Specifically, 71.67% of the top-
performing mutual funds remain in the top rank, while 70.54% of the worst-performing
funds stay in the bottom rank. Moreover, almost no mutual funds experience dramatic rank
changes, indicating that these mutual funds exhibit persistence over a one-year period. To
examine the persistence over a longer period, Panel (b) of Figure 4.3 compares the ranks
from five years ago to their current ranks. The results show that mutual funds with the
best and worst performance continue to exhibit persistence, while funds in the middle

ranks tend to have more random ranking over the five-year period.

The results above indicate that, although these short-term outperforming mutual funds
do not consistently exhibit superior performance across all periods, they tend to remain in
the top ranks over time. Furthermore, we are also interested in whether these in-sample
superior performances can generate economic value out-of-sample. To investigate this,
we will examine the out-of-sample performance of portfolios composed of these outper-
forming funds in the next section.
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4.5 Out-of-Sample Performance

In this section, we use the outperforming mutual funds identified in Section 4.3 to
construct portfolios of outperforming funds, while controlling the FDR () at levels of
10%, 15%, and 20% to examine their out-of-sample performance and determine whether
these outperforming funds provide economic value to investors. Specifically, at each re-
balancing date, we evaluate the p-values of the ¢-statistic of alpha using data from the
previous ten years for each mutual fund. We then apply the screening BH procedure to
these p-values to identify outperforming funds and use these funds to construct equally
weighted portfolios. If no outperforming mutual funds are identified, the portfolio will be
empty in the subsequent year. Finally, we evaluate their out-of-sample performance by
examining their raw returns in the subsequent year. Each portfolio is held for one year
and rebalanced annually at the end of each year. Only funds with at least 60 months of
return data within the in-sample period are considered. The first portfolio is constructed
at the end of 2011, using 2002 to 2011 as the in-sample period and testing performance in
2012, while the final portfolio is constructed at the end of 2022, using 2013 to 2022 as the

in-sample period and testing performance in 2023.

We present the cumulative wealth of the FDR-controlled portfolios at various levels
and the portfolio information in Figure 4.4 and Table 4.4, respectively. All portfolios start
with an initial wealth value of 1. To evaluate the cumulative wealth, we multiply the raw
return for each year by the portfolio’s wealth at the beginning of that year, covering the
period from 2012 through 2023. Since the analysis focuses on the performance of Japanese
mutual funds, the Nikkei 225 index is used as the benchmark portfolio for comparison. It

1s important to note that during periods when no outperforming funds are identified and
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Figure 4.4: Cumulative wealth of different portfolios.

Table 4.4: Portfolio information

Out-of-Sample Number of funds in each portfolio
Periods vy=10% ~v=15% ~v=20%

2012 0 0 0
2013 2 2 2
2014 2 2 2
2015 0 0 3
2016 7 7 8
2017 2 2 2
2018 2 2 4
2019 8 11 16
2020 29 o4 29
2021 12 41 83
2022 99 169 273
2023 3 3 16
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included in the portfolio, the cumulative wealth remains constant (flat) for that year.

From Figure 4.4, we first observe that over the out-of-sample periods, the cumula-
tive wealth of these three FDR-controlled portfolios increases steadily, with only slight
declines in 2018 and 2022. Moreover, these FDR-controlled portfolios generally gener-
ate higher returns than the Nikkei 225, indicating that the in-sample alphas successfully

translate into out-of-sample economic value.

We also evaluate the Sortino ratios (Sortino and Price, 1994) to take risk into account,
which are 1.90, 2.11, 1.38, and 1.90 for the portfolios with FDR controlled at 10%, 15%,
20%, and the Nikkei 225, respectively. This shows that FDR-controlled portfolios may
still outperform the Nikkei 225 when risk is considered. However, this does not hold for all
portfolios; for instance, the portfolio with FDR controlled at 20% performs worse than the
Nikkei 225. This may be due to the higher tolerance for false discoveries, which increases

the downside standard deviation and thereby affects its risk-adjusted performance.

It is interesting to note that, although a portfolio with a lower y is expected to perform
better due to a smaller proportion of false discoveries, Figure 4.4 shows that portfolios
controlling the FDR at 15% and 20% consistently outperform the portfolio controlling
the FDR at 10%. One possible explanation is that the in-sample alphas do not imply the
out-of-sample returns; hence, the out-of-sample performance of the outperforming funds
identified when v = 10% does not always perform better compared to those only identified
by increasing « further. Another explanation is that while false discoveries have non-
positive alphas, they may still generate positive returns out-of-sample (albeit with lower

probability), leading to portfolios with higher + generating more returns.

Finally, as shown in Table 4.4, while the portfolios constructed in 2022 includes a
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large number of outperforming mutual funds, their out-of-sample performance are nega-
tive. This suggests that a greater number of outperforming funds does not necessarily lead

to superior out-of-sample performance in the Japanese FDR-controlled portfolios.
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Chapter S Conclusion

In this paper, we aim to examine mutual fund performance within a multiple testing
framework. We begin by using alpha from a benchmark model as the performance mea-
sure for these mutual funds. To estimate these alphas accurately, we adopt the approach of
Giglio and Xiu (2017), extending the Carhart four-factor model with latent factors to mit-
igate omitted variable bias. We then apply the matrix completion method used in Giglio,
Liao, and Xiu (2021) to handle missing values in mutual fund return data and employ
PCA to identify these latent factors. Finally, we implement the screening BH procedure

to control luck and identify mutual funds with truly superior performance.

Our results indicate that Japanese mutual funds tend to outperform the benchmark
in the short term, but their superior performance diminishes quickly, leaving only a small
number of funds that maintain superior performance over the long term. Moreover, mu-
tual funds with short-term superior performance tend to outperform others across all sub-
periods, though their performance is not strong enough to be classified as outperforming
funds in the long term. Finally, we find that portfolios of outperforming mutual funds
generate economic value and outperform the Nikkei 225, providing a profitable strategy

for investors.

Interestingly, contrary to our expectations, our long-term and out-of-sample analyses
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indicate that when the FDR is 15%, the identified outperforming funds may achieve the
highest long-term in-sample alpha and out-of-sample returns. This outcome may be due
to mutual funds with non-positive alphas randomly generating positive out-of-sample re-
turns or because the funds with best performance are not always identified when using a
lower ~. Therefore, a possible direction for future research is to investigate whether these
results arise from data noise or if there is an underlying pattern that can be captured by

econometric methods, ultimately determining the optimal FDR threshold for control.
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