Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 資訊管理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96236
標題: 深度強化學習處理 T/C 平衡生產排程於面板製造商組立製程
Deep Reinforcement Learning for T/C Balance of TFT-LCD Cell Process Scheduling in TFT-LCD Manufacturer
作者: 盧冠均
Kuan-Chun Lu
指導教授: 李家岩
Chia-Yen Lee
關鍵字: TFT-LCD 組立製程,T/C 平衡,動態彈性零工式排程問題,工作插單,生產時間之不確定性,深度強化學習,
TFT-LCD cell process,T/C balance,Dynamic flexible job shop scheduling problem,New job arrival,Uncertain processing time,Deep reinforcement learning,
出版年 : 2024
學位: 碩士
摘要: 隨著薄膜電晶體液晶顯示器(TFT-LCD)需求量的增加,對於生產排程的效率要求也隨之提升。本研究聚焦於TFT-LCD 組立製程,並將此製程歸納成為動態彈性零工式排程問題(DFJSS)。此排程問題主要解決薄膜電晶體(TFT)陣列基板與彩色濾光片(CF)基板之間的生產平衡,稱為T/C平衡。為了貼近真實生產環境,我們考慮了工作插單與生產時間之不確定性。本研究提出一個深度強化學習(DRL)框架以同時處理多個生產排程目標,包含總加權延遲時間、總完工時間、過度等候時間和T/C平衡。我們基於實證資料進行數值實驗,以評估本研究所提出的深度強化學習框架,並將其排程表現與傳統的最佳化模型和基因演算法進行比較。實驗結果顯示,相較於基準模型,本研究的方法在目標值上提升了約30%,並且每次處理工作插單只需約莫5秒鐘。這證實了在動態的生產情境下,此框架具有優良的效力與適用性,同時在面對生產環境的不確定性時,也能夠保持一定程度的穩健性。
The rising demand for Thin-Film Transistor Liquid Crystal Display (TFT-LCD) has amplified the need for efficient manufacturing process. In this study, we focus on TFT-LCD cell process, generalized as a dynamic flexible job shop scheduling problem (DFJSS). The scheduling problem tackles the production balance between Thin-Film Transistor (TFT) array substrate and Color Filter (CF) substrate, known as T/C balance. To align with real-world manufacturing environment, new job arrival and uncertain processing time are considered. A deep reinforcement learning (DRL) framework is proposed to address multiple objectives simultaneously, including total weighted tardiness, makespan, over-queued time and T/C balance. To validate the proposed DRL framework, numerical experiments based on empirical data are conducted to compare its performance with traditional optimization-based models and genetic algorithm. The result shows proposed framework achieves about 30% improvement in objective value compared to benchmark models, while handling each new job arrival around 5 seconds. This demonstrates the effectiveness and applicability in dynamic manufacturing scenario, while maintaining a certain degree of robustness against uncertainty.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96236
DOI: 10.6342/NTU202404333
全文授權: 未授權
顯示於系所單位:資訊管理學系

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf
  未授權公開取用
10.25 MBAdobe PDF
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved