Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 資訊管理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96236
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李家岩zh_TW
dc.contributor.advisorChia-Yen Leeen
dc.contributor.author盧冠均zh_TW
dc.contributor.authorKuan-Chun Luen
dc.date.accessioned2024-11-28T16:20:14Z-
dc.date.available2024-11-29-
dc.date.copyright2024-11-28-
dc.date.issued2024-
dc.date.submitted2024-09-05-
dc.identifier.citationChen, J. C., Chen, T.-L., Pratama, B. R., & Tu, Q.-F. (2016). Capacity planning in thin film transistor – Liquid crystal display cell process. Journal of Manufacturing Systems, 39, 63-78. https://doi.org/https://doi.org/10.1016/j.jmsy.2016.03.003
Chou, C. W., Chien, C. F., & Gen, M. (2014). A Multiobjective Hybrid Genetic Algorithm for TFT-LCD Module Assembly Scheduling. IEEE Transactions on Automation Science and Engineering, 11(3), 692-705. https://doi.org/10.1109/TASE.2014.2316193
Chung, S. H., Tai, Y. T., & Pearn, W. L. (2009). Minimising makespan on parallel batch processing machines with non-identical ready time and arbitrary job sizes. International Journal of Production Research, 47(18), 5109-5128. https://doi.org/10.1080/00207540802010807
Defersha, F. M., & Rooyani, D. (2020). An efficient two-stage genetic algorithm for a flexible job-shop scheduling problem with sequence dependent attached/detached setup, machine release date and lag-time. Computers & Industrial Engineering, 147, 106605. https://doi.org/https://doi.org/10.1016/j.cie.2020.106605
Dulac-Arnold, G., Evans, R., van Hasselt, H., Sunehag, P., Lillicrap, T., Hunt, J., Mann, T., Weber, T., Degris, T., & Coppin, B. (2015). Deep reinforcement learning in large discrete action spaces. arXiv preprint arXiv:1512.07679.
Egon, A., & Potter, K. (2023). Deep Reinforcement Learning: Training Intelligent Agents to Make Complex Decisions. Journal of Advanced Computational Intelligence and Intelligent Informatics.
Fattahi, P., & Fallahi, A. (2010). Dynamic scheduling in flexible job shop systems by considering simultaneously efficiency and stability. CIRP Journal of Manufacturing Science and Technology, 2(2), 114-123. https://doi.org/https://doi.org/10.1016/j.cirpj.2009.10.001
Gao, Y., Yang, J., Yang, M., & Li, Z. (2020). Deep Reinforcement Learning Based Optimal Schedule for a Battery Swapping Station Considering Uncertainties. IEEE Transactions on Industry Applications, 56(5), 5775-5784. https://doi.org/10.1109/TIA.2020.2986412
Gorissen, B. L., Yanıkoğlu, İ., & den Hertog, D. (2015). A practical guide to robust optimization. Omega, 53, 124-137. https://doi.org/https://doi.org/10.1016/j.omega.2014.12.006
Gurobi Optimization, L. (2023). Gurobi Optimizer Reference Manual. https://www.gurobi.com
Herroelen, W., & Leus, R. (2005). Project scheduling under uncertainty: Survey and research potentials. European Journal of Operational Research, 165(2), 289-306. https://doi.org/https://doi.org/10.1016/j.ejor.2004.04.002
Hong, T.-Y., & Chien, C.-F. (2020). A simulation-based dynamic scheduling and dispatching system with multi-criteria performance evaluation for Industry 3.5 and an empirical study for sustainable TFT-LCD array manufacturing. International Journal of Production Research, 58(24), 7531-7547. https://doi.org/10.1080/00207543.2020.1777342
Hong, T.-Y., Chien, C.-F., Wang, H.-K., & Guo, H.-Z. (2018). A two-phase decoding genetic algorithm for TFT-LCD array photolithography stage scheduling problem with constrained waiting time. Computers & Industrial Engineering, 125, 200-211. https://doi.org/https://doi.org/10.1016/j.cie.2018.08.024
Hou, Y., Liang, X., Zhang, J., Yang, Q., Yang, A., & Wang, N. (2023). Exploring the Use of Invalid Action Masking in Reinforcement Learning: A Comparative Study of On-Policy and Off-Policy Algorithms in Real-Time Strategy Games. Applied Sciences, 13(14), 8283. https://www.mdpi.com/2076-3417/13/14/8283
Hu, Z., & Hu, G. (2016). A two-stage stochastic programming model for lot-sizing and scheduling under uncertainty. International Journal of Production Economics, 180, 198-207. https://doi.org/https://doi.org/10.1016/j.ijpe.2016.07.027
Hubbs, C. D., Li, C., Sahinidis, N. V., Grossmann, I. E., & Wassick, J. M. (2020). A deep reinforcement learning approach for chemical production scheduling. Computers & Chemical Engineering, 141, 106982. https://doi.org/https://doi.org/10.1016/j.compchemeng.2020.106982
Jamrus, T., Chien, C. F., Gen, M., & Sethanan, K. (2018). Hybrid Particle Swarm Optimization Combined With Genetic Operators for Flexible Job-Shop Scheduling Under Uncertain Processing Time for Semiconductor Manufacturing. IEEE Transactions on Semiconductor Manufacturing, 31(1), 32-41. https://doi.org/10.1109/TSM.2017.2758380
Kundakcı, N., & Kulak, O. (2016). Hybrid genetic algorithms for minimizing makespan in dynamic job shop scheduling problem. Computers & Industrial Engineering, 96, 31-51. https://doi.org/https://doi.org/10.1016/j.cie.2016.03.011
Lee, C.-Y., Ho, C.-Y., Hung, Y.-H., & Deng, Y.-W. (2024). Multi-objective genetic algorithm embedded with reinforcement learning for petrochemical melt-flow-index production scheduling. Applied Soft Computing, 159, 111630. https://doi.org/https://doi.org/10.1016/j.asoc.2024.111630
Lee, C.-Y., Huang, Y.-T., & Chen, P.-J. (2024). Robust-optimization-guiding deep reinforcement learning for chemical material production scheduling. Computers & Chemical Engineering, 187, 108745. https://doi.org/https://doi.org/10.1016/j.compchemeng.2024.108745
Lee, C.-Y., Wu, C.-M., Hsu, C.-Y., Xie, H.-H., & Fang, Y.-H. (2023). Lithography reticle scheduling in semiconductor manufacturing. Engineering Optimization, 1-19. https://doi.org/10.1080/0305215X.2023.2285416
Lee, C. Y., & Chen, Y. W. (2024). Reinforcement Learning With Data Envelopment Analysis and Conditional Value-At-Risk for the Capacity Expansion Problem. IEEE Transactions on Engineering Management, 71, 6469-6480. https://doi.org/10.1109/TEM.2023.3264566
Lei, K., Guo, P., Wang, Y., Zhang, J., Meng, X., & Qian, L. (2024). Large-Scale Dynamic Scheduling for Flexible Job-Shop With Random Arrivals of New Jobs by Hierarchical Reinforcement Learning. IEEE Transactions on Industrial Informatics, 20(1), 1007-1018. https://doi.org/10.1109/TII.2023.3272661
Li, H., & Muskulus, M. (2007). Analysis and modeling of job arrivals in a production grid. SIGMETRICS Perform. Eval. Rev., 34(4), 59–70. https://doi.org/10.1145/1243401.1243402
Li, Y., Gu, W., Yuan, M., & Tang, Y. (2022). Real-time data-driven dynamic scheduling for flexible job shop with insufficient transportation resources using hybrid deep Q network. Robotics and Computer-Integrated Manufacturing, 74, 102283. https://doi.org/https://doi.org/10.1016/j.rcim.2021.102283
Lin, J. T., Chen, T.-L., & Chu, H.-C. (2014). A stochastic dynamic programming approach for multi-site capacity planning in TFT-LCD manufacturing under demand uncertainty. International Journal of Production Economics, 148, 21-36. https://doi.org/https://doi.org/10.1016/j.ijpe.2013.11.003
Lin, J. T., Wang, F. K., & Peng, C. C. (2008). Lot release times and dispatching rule for a TFT-LCD cell process. Robotics and Computer-Integrated Manufacturing, 24(2), 228-238. https://doi.org/https://doi.org/10.1016/j.rcim.2006.10.006
Lin, X., Janak, S. L., & Floudas, C. A. (2004). A new robust optimization approach for scheduling under uncertainty:: I. Bounded uncertainty. Computers & Chemical Engineering, 28(6), 1069-1085. https://doi.org/https://doi.org/10.1016/j.compchemeng.2003.09.020
Liu, J., Qiao, F., Zou, M., Zinn, J., Ma, Y., & Vogel-Heuser, B. (2022). Dynamic scheduling for semiconductor manufacturing systems with uncertainties using convolutional neural networks and reinforcement learning. Complex & Intelligent Systems, 8(6), 4641-4662. https://doi.org/10.1007/s40747-022-00844-0
Liu, R., Piplani, R., & Toro, C. (2022). Deep reinforcement learning for dynamic scheduling of a flexible job shop. International Journal of Production Research, 60(13), 4049-4069. https://doi.org/10.1080/00207543.2022.2058432
Luo, S. (2020). Dynamic scheduling for flexible job shop with new job insertions by deep reinforcement learning. Applied Soft Computing, 91, 106208. https://doi.org/https://doi.org/10.1016/j.asoc.2020.106208
Ren, W., Yan, Y., Hu, Y., & Guan, Y. (2022). Joint optimisation for dynamic flexible job-shop scheduling problem with transportation time and resource constraints. International Journal of Production Research, 60(18), 5675-5696. https://doi.org/10.1080/00207543.2021.1968526
Sadeeq, H. T., & Abdulazeez, A. M. (2023). Metaheuristics: A Review of Algorithms. International Journal of Online & Biomedical Engineering, 19(9).
Shahgholi Zadeh, M., Katebi, Y., & Doniavi, A. (2019). A heuristic model for dynamic flexible job shop scheduling problem considering variable processing times. International Journal of Production Research, 57(10), 3020-3035. https://doi.org/10.1080/00207543.2018.1524165
Shin, H. J., & Leon, V. J. (2004). Scheduling with product family set-up times: an application in TFT LCD manufacturing. International Journal of Production Research, 42(20), 4235-4248. https://doi.org/10.1080/00207540410001708461
Tang, D., Dai, M., Salido, M. A., & Giret, A. (2016). Energy-efficient dynamic scheduling for a flexible flow shop using an improved particle swarm optimization. Computers in Industry, 81, 82-95. https://doi.org/https://doi.org/10.1016/j.compind.2015.10.001
Wu, C.-H., Lin, J. T., & Wu, H.-H. (2010). Robust production and transportation planning in thin film transistor-liquid crystal display (TFT-LCD) industry under demand and price uncertainties. International Journal of Production Research, 48(20), 6037-6060. https://doi.org/10.1080/00207540903176697
Yue, X., Mu, D., Wang, C., Ren, H., & Ghadimi, P. (2023). Topological structure and COVID-19 related risk propagation in TFT-LCD supply networks. International Journal of Production Research, 61(8), 2758-2778. https://doi.org/10.1080/00207543.2022.2027039
Zhang, F., Mei, Y., Nguyen, S., & Zhang, M. (2021). Correlation Coefficient-Based Recombinative Guidance for Genetic Programming Hyperheuristics in Dynamic Flexible Job Shop Scheduling. IEEE Transactions on Evolutionary Computation, 25(3), 552-566. https://doi.org/10.1109/TEVC.2021.3056143
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96236-
dc.description.abstract隨著薄膜電晶體液晶顯示器(TFT-LCD)需求量的增加,對於生產排程的效率要求也隨之提升。本研究聚焦於TFT-LCD 組立製程,並將此製程歸納成為動態彈性零工式排程問題(DFJSS)。此排程問題主要解決薄膜電晶體(TFT)陣列基板與彩色濾光片(CF)基板之間的生產平衡,稱為T/C平衡。為了貼近真實生產環境,我們考慮了工作插單與生產時間之不確定性。本研究提出一個深度強化學習(DRL)框架以同時處理多個生產排程目標,包含總加權延遲時間、總完工時間、過度等候時間和T/C平衡。我們基於實證資料進行數值實驗,以評估本研究所提出的深度強化學習框架,並將其排程表現與傳統的最佳化模型和基因演算法進行比較。實驗結果顯示,相較於基準模型,本研究的方法在目標值上提升了約30%,並且每次處理工作插單只需約莫5秒鐘。這證實了在動態的生產情境下,此框架具有優良的效力與適用性,同時在面對生產環境的不確定性時,也能夠保持一定程度的穩健性。zh_TW
dc.description.abstractThe rising demand for Thin-Film Transistor Liquid Crystal Display (TFT-LCD) has amplified the need for efficient manufacturing process. In this study, we focus on TFT-LCD cell process, generalized as a dynamic flexible job shop scheduling problem (DFJSS). The scheduling problem tackles the production balance between Thin-Film Transistor (TFT) array substrate and Color Filter (CF) substrate, known as T/C balance. To align with real-world manufacturing environment, new job arrival and uncertain processing time are considered. A deep reinforcement learning (DRL) framework is proposed to address multiple objectives simultaneously, including total weighted tardiness, makespan, over-queued time and T/C balance. To validate the proposed DRL framework, numerical experiments based on empirical data are conducted to compare its performance with traditional optimization-based models and genetic algorithm. The result shows proposed framework achieves about 30% improvement in objective value compared to benchmark models, while handling each new job arrival around 5 seconds. This demonstrates the effectiveness and applicability in dynamic manufacturing scenario, while maintaining a certain degree of robustness against uncertainty.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-11-28T16:20:13Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-11-28T16:20:14Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
摘要 iii
Abstract iv
Table of Contents v
List of Figures viii
List of Tables x
Chapter 1 Introduction 1
1.1 Background and Motivation 1
1.2 Research Objective 6
1.3 Thesis Architecture 8
Chapter 2 Literature Review 9
2.1 Dynamic Flexible Job Shop Scheduling Problem 9
2.2 Scheduling with Uncertainty 13
2.3 TFT-LCD Scheduling 16
Chapter 3 Methodology 20
3.1 Research Framework 20
3.2 Problem Description 21
3.3 Mathematical Model 27
3.4 Deep Reinforcement Learning 34
3.4.1 Algorithm 35
3.4.2 Network Structure 38
3.4.3 Definition of State Features 39
3.4.4 Definition of Action 41
3.4.5 Definition of Reward 45
3.4.6 Training Workflow 50
3.4.7 Scheduling Procedure 52
Chapter 4 Numerical Study 57
4.1 Data Simulation 58
4.2 Benchmark Model 61
4.2.1 Optimization-Based Model 61
4.2.2 Genetic Algorithm 64
4.3 Training Process of DRL 66
4.4 Sensitivity Analysis 70
4.5 Solution Value Analysis 72
4.5.1 Overall Performance 72
4.5.2 Objective Performance 75
4.6 Execution Time Analysis 77
4.6.1 Solving and Training Time Efficiency 77
4.6.2 Reschedule Efficiency 80
Chapter 5 Conclusion and Future Work 82
5.1 Conclusion 82
5.2 Future Work 84
Bibliography 86
-
dc.language.isoen-
dc.subjectT/C 平衡zh_TW
dc.subject深度強化學習zh_TW
dc.subject生產時間之不確定性zh_TW
dc.subject工作插單zh_TW
dc.subject動態彈性零工式排程問題zh_TW
dc.subjectTFT-LCD 組立製程zh_TW
dc.subjectNew job arrivalen
dc.subjectDynamic flexible job shop scheduling problemen
dc.subjectT/C balanceen
dc.subjectTFT-LCD cell processen
dc.subjectDeep reinforcement learningen
dc.subjectUncertain processing timeen
dc.title深度強化學習處理 T/C 平衡生產排程於面板製造商組立製程zh_TW
dc.titleDeep Reinforcement Learning for T/C Balance of TFT-LCD Cell Process Scheduling in TFT-LCD Manufactureren
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee洪子晏;孔令傑;黃奎隆zh_TW
dc.contributor.oralexamcommitteeTzu-Yen Hong;Ling-Chieh Kung;Kwei-Long Huangen
dc.subject.keywordTFT-LCD 組立製程,T/C 平衡,動態彈性零工式排程問題,工作插單,生產時間之不確定性,深度強化學習,zh_TW
dc.subject.keywordTFT-LCD cell process,T/C balance,Dynamic flexible job shop scheduling problem,New job arrival,Uncertain processing time,Deep reinforcement learning,en
dc.relation.page90-
dc.identifier.doi10.6342/NTU202404333-
dc.rights.note未授權-
dc.date.accepted2024-09-05-
dc.contributor.author-college管理學院-
dc.contributor.author-dept資訊管理學系-
顯示於系所單位:資訊管理學系

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf
  未授權公開取用
10.25 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved