Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96080
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor葛宇甯zh_TW
dc.contributor.advisorLouis Geen
dc.contributor.author若艾瑪zh_TW
dc.contributor.authorAMALI GITANJALI RAYAPPAN KENNEDYen
dc.date.accessioned2024-10-14T16:06:02Z-
dc.date.available2024-10-15-
dc.date.copyright2024-10-14-
dc.date.issued2024-
dc.date.submitted2024-09-27-
dc.identifier.citationAhenkorah, I., Rahman, M.M., Karim, M.R., and Beecham, S. (2021a): Enzyme induced calcium carbonate precipitation and its engineering application: A systematic review and meta-analysis, Constr. Build. Mater., 308, 125000. https://doi.org/10.1016/j.conbuildmat.2021.125000
Ahenkorah, I., Rahman, M.M., Karim, M.R., and Beecham, S. (2021b): Optimisation of chemical constituents on enzyme-induced carbonate precipitation in test-tube and soil, Geotechnical Research, 8(3), 66-84. http://doi.org/10.1680/jgere.21.00006
Ahenkorah, I., Rahman, M.M., Karim, M.R., Beecham, S., and Saint, C. (2021c): A Review of Enzyme Induced Carbonate Precipitation (EICP): The Role of Enzyme Kinetics, Sustainable Chemistry, 2(1), 92-114. https://www.mdpi.com/2673-4079/2/1/7
Ahenkorah, I., Rahman, M.M., Karim, M.R., Beecham, S., and Saint, C. (2021d): A Review of Enzyme Induced Carbonate Precipitation (EICP): The Role of Enzyme Kinetics, Sustain. Chem., 2(1), 92-114. http://doi.org/10.3390/suschem2010007
Al Qabany, A., Soga, K., and Santamarina, C. (2012): Factors Affecting Efficiency of Microbially Induced Calcite Precipitation, J. Geotech. Geoenviron. Eng., 138(8), 992-1001. http://doi.org/10.1061/(asce)gt.1943-5606.0000666
Almajed, A. (2019): Enzyme induced cementation of biochar-intercalated soil: fabrication and characterization, Arabian Journal of Geosciences, 12(13). http://doi.org/10.1007/s12517-019-4557-z
Almajed, A., Khodadadi Tirkolaei, H., and Kavazanjian, E. (2018): Baseline Investigation on Enzyme-Induced Calcium Carbonate Precipitation, J. Geotech. Geoenviron. Eng., 144(11). http://doi.org/10.1061/(asce)gt.1943-5606.0001973
Almajed, A., Lateef, M.A., Moghal, A.A., and Lemboye, K. (2021a): State-of-the-Art Review of the Applicability and Challenges of Microbial-Induced Calcite Precipitation (MICP) and Enzyme-Induced Calcite Precipitation (EICP) Techniques for Geotechnical and Geoenvironmental Applications, Crystals, 11(4). http://doi.org/10.3390/cryst11040370
Almajed, A., Lateef, M.A., Moghal, A.A.B., and Lemboye, K. (2021b): State-of-the-Art Review of the Applicability and Challenges of Microbial-Induced Calcite Precipitation (MICP) and Enzyme-Induced Calcite Precipitation (EICP) Techniques for Geotechnical and Geoenvironmental Applications, Crystals, 11(4), 370. https://www.mdpi.com/2073-4352/11/4/370
Almajed, A., Tirkolaei, H.K., Kavazanjian, E., Jr., and Hamdan, N. (2019): Enzyme Induced Biocementated Sand with High Strength at Low Carbonate Content, Sci. Rep., 9(1), 1135. http://doi.org/10.1038/s41598-018-38361-1
Amini, Y., and Hamidi, A. (2014): Triaxial shear behavior of a cement-treated sand–gravel mixture, J. Rock Mech. Geotech. Eng., 6(5), 455-465. https://doi.org/10.1016/j.jrmge.2014.07.006
Arab, M.G., Alsodi, R., Almajed, A., Yasuhara, H., Zeiada, W., and Shahin, M.A. (2021a): State-of-the-Art Review of Enzyme-Induced Calcite Precipitation (EICP) for Ground Improvement: Applications and Prospects, Geosciences, 11(12). http://doi.org/10.3390/geosciences11120492
Arab, M.G., Omar, M., Almajed, A., Elbaz, Y., and Ahmed, A.H. (2021b): Hybrid technique to produce bio-bricks using enzyme-induced carbonate precipitation (EICP) and sodium alginate biopolymer, Construction and Building Materials, 284. http://doi.org/10.1016/j.conbuildmat.2021.122846
Arab, M.G., Rohy, H., Zeiada, W., Almajed, A., and Omar, M. (2021c): One-Phase EICP Biotreatment of Sand Exposed to Various Environmental Conditions, Journal of Materials in Civil Engineering, 33(3). http://doi.org/10.1061/(asce)mt.1943-5533.0003596
ASTM_D2487−17 (2018): Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). http://doi.org/10.1520/d2487-17
ASTM_D5311-11 (2012): Standard Test Method for Load Controlled Cyclic Triaxial Strength of Soil. http://doi.org/10.1520/d5311-11
ASTM_D7181-11. (2011). Standard Test Method for Consolidated Drained Triaxial Compression Test for Soils. In. United States: ASTM.
ASTM_D7181-20 (2020): Standard Test Method for Consolidated Drained Triaxial Compression Test for Soils. http://doi.org/10.1520/d7181-20
Blakeley, R.L., and Zerner, B. (1984): Jack bean urease: the first nickel enzyme, Journal of Molecular Catalysis, 23(2), 263-292. https://doi.org/10.1016/0304-5102(84)80014-0
Carmona, J.P.S.F., Oliveira, P.J.V., and Lemos, L.J.L. (2016): Biostabilization of a Sandy Soil Using Enzymatic Calcium Carbonate Precipitation, Procedia Eng., 143, 1301-1308. http://doi.org/10.1016/j.proeng.2016.06.144
Chandra, A., and Ravi, K. (2020). Effect of Magnesium Incorporation in Enzyme-Induced Carbonate Precipitation (EICP) to Improve Shear Strength of Soil. In Advances in Computer Methods and Geomechanics (pp. 333-346). https://doi.org/10.1007/978-981-15-0890-5_28
Cheng, L., and Cord-Ruwisch, R. (2012): In situ soil cementation with ureolytic bacteria by surface percolation, Ecological Engineering, 42, 64-72. http://doi.org/10.1016/j.ecoleng.2012.01.013
Cheng, L., and Cord-Ruwisch, R. (2014): Upscaling Effects of Soil Improvement by Microbially Induced Calcite Precipitation by Surface Percolation, Geomicrobiology Journal, 31, 396-406. http://doi.org/10.1080/01490451.2013.836579
Cheng, L., Cord-Ruwisch, R., and Shahin, M.A. (2013): Cementation of sand soil by microbially induced calcite precipitation at various degrees of saturation, Canadian Geotechnical Journal, 50(1), 81-90. http://doi.org/10.1139/cgj-2012-0023
Cheng, L., Shahin, M.A., and Mujah, D. (2017): Influence of Key Environmental Conditions on Microbially Induced Cementation for Soil Stabilization, Journal of Geotechnical and Geoenvironmental Engineering, 143(1), 04016083. http://doi.org/10.1061/(ASCE)GT.1943-5606.0001586
Chiet, K.T.P., Kassim, K.A., Chen, K.B., Martula, U., Yah, C.S., and Arefnia, A. (2015). Effect of Reagents Concentration on Biocementation of Tropical Residual Soil Soft Soil Engineering International Conference,
Choi, S.-G., Hoang, T., and Park, S.-S. (2019): Undrained Behavior of Microbially Induced Calcite Precipitated Sand with Polyvinyl Alcohol Fiber, Applied Sciences, 9(6). http://doi.org/10.3390/app9061214
Cui, Zheng Jun jie, and Han-jiang, L. (2016): Experimental study of effect of particle size on strength of bio-cemented sand, Rock and Soil Mechanics, 37(S2), 397-402. http://doi.org/10.16285/j.rsm.2016.S2.051
Cui, M.-J., Lai, H.-J., Hoang, T., and Chu, J. (2020): One-phase-low-pH enzyme induced carbonate precipitation (EICP) method for soil improvement, Acta Geotechnica, 16(2), 481-489. http://doi.org/10.1007/s11440-020-01043-2
Cui, M.-J., Lai, H.-J., Hoang, T., and Chu, J. (2021a): Modified one-phase-low-pH method for bacteria or enzyme-induced carbonate precipitation for soil improvement, Acta Geotech. http://doi.org/10.1007/s11440-021-01384-6
Cui, M.-J., Zheng, J.-J., Chu, J., Wu, C.-C., and Lai, H.-J. (2021b): Bio-mediated calcium carbonate precipitation and its effect on the shear behaviour of calcareous sand, Acta Geotechnica, 16(5), 1377-1389. http://doi.org/10.1007/s11440-020-01099-0
Cui, M.-J., Zheng, J.-J., Zhang, R.-J., Lai, H.-J., and Zhang, J. (2017): Influence of cementation level on the strength behavior of bio-cemented sand, Acta Geotech., 12(5), 971-986. http://doi.org/10.1007/s11440-017-0574-9
DeJong, J.T., Mortensen, B.M., Martinez, B.C., and Nelson, D.C. (2010): Bio-mediated soil improvement, Ecol. Eng., 36(2), 197-210. http://doi.org/10.1016/j.ecoleng.2008.12.029
Feng, K., and Montoya, B.M. (2016): Influence of Confinement and Cementation Level on the Behavior of Microbial-Induced Calcite Precipitated Sands under Monotonic Drained Loading, J. Geotech. Geoenviron. Eng., 142(1). http://doi.org/10.1061/(asce)gt.1943-5606.0001379
Follmer, C., Barcellos, G.B.S., Zingali, R.B., Machado, O.L.T., Alves, E.W., Barja-Fidalgo, C., Guimaraes, J.A., and Carlini, C.R. (2001): Canatoxin, a toxic protein from jack beans (Canavalia ensiformis), is a variant form of urease (EC 3.5.1.5): biological effects of urease independent of its ureolytic activity, Biochemical Journal, 360(1), 217-224. http://doi.org/10.1042/bj3600217
Fouladi, A.S., Arulrajah, A., Chu, J., and Horpibulsuk, S. (2023): Application of Microbially Induced Calcite Precipitation (MICP) technology in construction materials: A comprehensive review of waste stream contributions, Construction and Building Materials, 388. http://doi.org/10.1016/j.conbuildmat.2023.131546
Gao, Y., Hang, L., He, J., and Chu, J. (2018): Mechanical behaviour of biocemented sands at various treatment levels and relative densities, Acta Geotechnica, 14(3), 697-707. http://doi.org/10.1007/s11440-018-0729-3
Gao, Y., Hang, L., He, J., and Chu, J. (2019a): Mechanical behavior of biocemented sands at various treatment levels and relative densities, Acta Geotech., 14(3), 697-707. http://doi.org/10.1007/s11440-018-0729-3
Gao, Y., He, J., Tang, X., and Chu, J. (2019b): Calcium carbonate precipitation catalyzed by soybean urease as an improvement method for fine-grained soil, Soils and Found., 59(5), 1631-1637. https://doi.org/10.1016/j.sandf.2019.03.014
Gao, Y., Wang, L., He, J., Ren, J., and Gao, Y. (2022): Denitrification-based MICP for cementation of soil: treatment process and mechanical performance, Acta Geotechnica, 17(9), 3799-3815. http://doi.org/10.1007/s11440-022-01489-6
Ghionna, V.N., and Porcino, D. (2006): Liquefaction Resistance of Undisturbed and Reconstituted Samples of a Natural Coarse Sand from Undrained Cyclic Triaxial Tests, J. Geotech. Geoenviron. Eng., 132(2), 194-202. http://doi.org/10.1061/(ASCE)1090-0241(2006)132:2(194)
Gitanjali, A., Jhuo, Y.-S., Yeh, F.-H., and Ge, L. (2024): Bio-cementation of sand using enzyme-induced calcite precipitation: Mechanical behavior and microstructural analysis, Construction and Building Materials, 417, 135360. http://doi.org/10.1016/j.conbuildmat.2024.135360
Gomez, M.G., Anderson, C.M., Graddy, C.M.R., DeJong, J.T., Nelson, D.C., and Ginn, T.R. (2017): Large-Scale Comparison of Bioaugmentation and Biostimulation Approaches for Biocementation of Sands, Journal of Geotechnical and Geoenvironmental Engineering, 143(5), 04016124. http://doi.org/10.1061/(ASCE)GT.1943-5606.0001640
Gomez, M.G., Graddy, C.M.R., DeJong, J.T., Nelson, D.C., and Tsesarsky, M. (2018): Stimulation of Native Microorganisms for Biocementation in Samples Recovered from Field-Scale Treatment Depths, Journal of Geotechnical and Geoenvironmental Engineering, 144(1), 04017098. http://doi.org/10.1061/(ASCE)GT.1943-5606.0001804
Gowthaman, S., Yamamoto, M., Chen, M., Nakashima, K., and Kawasaki, S. (2023): Baseline investigation on enzyme induced calcium phosphate precipitation for solidification of sand, Frontiers in Built Environment, 9. http://doi.org/10.3389/fbuil.2023.1307650
Hamdan, N., and Kavazanjian Jr, E. (2016): Enzyme-induced carbonate mineral precipitation for fugitive dust control, Géotechnique, 66(7), 546-555.
Han-Long, L., Peng, X., Yang, X., Jian-Ping, W., Yu-Min, C., and Jian, C. (2018): Dynamic behaviors of MICP-treated calcareous sand in cyclic tests, Chinese Journal of Geotechnical Engineering, 40(1), 38-45.
Han, C., Li, D., Rao, Y., and Wang, J. (2020): Study on hysteretic deformation characteristics and energy dissipation of granite under cyclic loading, China Rock 2020, 570, 032024.
Han, Z., Cheng, X., and Ma, Q. (2016): An experimental study on dynamic response for MICP strengthening liquefiable sands, Earthq. Eng. & Eng. Vib., 15(4), 673-679. http://doi.org/10.1007/s11803-016-0357-6
He, J., Fang, C., Mao, X., Qi, Y., Zhou, Y., Kou, H., and Xiao, L. (2022a): Enzyme-Induced Carbonate Precipitation for the Protection of Earthen Dikes and Embankments Under Surface Runoff: Laboratory Investigations, Journal of Ocean University of China, 21(2), 306-314. http://doi.org/10.1007/s11802-022-4821-9
He, J., Gao, Y., Gu, Z., Chu, J., and Wang, L. (2020): Characterization of Crude Bacterial Urease for CaCO3 Precipitation and Cementation of Silty Sand, Journal of Materials in Civil Engineering, 32(5), 04020071. http://doi.org/10.1061/(ASCE)MT.1943-5533.0003100
He, J., Mao, X., Zhou, Y., and Tang, Q. (2022b): Cementation of Sand With Enzyme-Induced Carbonate Precipitation (EICP) Using Concrete-Extracted Calcium, Frontiers in Physics, 9. http://doi.org/10.3389/fphy.2021.825356
He, J., Yang, F., Qi, Y.-S., Fang, C.-H., Yan, B.-Y., Zhang, Y., Hang, L., and Gao, Y.-F. (2021): Improvement in silty sand with enzyme-induced carbonate precipitation: laboratory model experiment, Acta Geotechnica. https://doi.org/10.1007/s11440-021-01361-z
He, J., Yang, F., Qi, Y.-S., Fang, C.-H., Yan, B.-Y., Zhang, Y., Hang, L., and Gao, Y.-F. (2022c): Improvement in silty sand with enzyme-induced carbonate precipitation: laboratory model experiment, Acta Geotech., 17(7), 2895-2905. http://doi.org/10.1007/s11440-021-01361-z
Hu, W., Cheng, W.C., Wen, S., and Yuan, K. (2021): Revealing the Enhancement and Degradation Mechanisms Affecting the Performance of Carbonate Precipitation in EICP Process, Front Bioeng Biotechnol, 9, 750258. http://doi.org/10.3389/fbioe.2021.750258
Huang, Y., and Wang, L. (2017): Reply to the discussion by Ochoa-Cornejo et al. on “Laboratory investigation of liquefaction mitigation in silty sand using nanoparticles” [Eng.Geol.204:23–32], Engineering Geology, 221, 202. https://doi.org/10.1016/j.enggeo.2017.02.024
Iamchaturapatr, J., Piriyakul, K., and Petcherdchoo, A. (2022): Characteristics of sandy soil treated using EICP-based urease enzymatic acceleration method and natural hemp fibers, Case Studies in Construction Materials, 16, e00871. https://doi.org/10.1016/j.cscm.2022.e00871
Javadi, N., Khodadadi, H., Hamdan, N., and Kavazanjian, E. (2018). EICP Treatment of Soil by Using Urease Enzyme Extracted from Watermelon Seeds. IFCEE, Orlando, Florida.
Jiang, M.J., Yan, H.B., Zhu, H.H., and Utili, S. (2011): Modeling shear behavior and strain localization in cemented sands by two-dimensional distinct element method analyses, Computers and Geotechnics, 38(1), 14-29. https://doi.org/10.1016/j.compgeo.2010.09.001
Jiang, N.-J., Yoshioka, H., Yamamoto, K., and Soga, K. (2016): Ureolytic activities of a urease-producing bacterium and purified urease enzyme in the anoxic condition: Implication for subseafloor sand production control by microbially induced carbonate precipitation (MICP), Ecological Engineering, 90, 96-104. https://doi.org/10.1016/j.ecoleng.2016.01.073
Karakan, E., Sezer, A., and Tanrinian, N. (2019a): Evaluation of effect of limited pore water pressure development on cyclic behavior of a nonplastic silt, Soils and Foundations, 59(5), 1302-1312. http://doi.org/10.1016/j.sandf.2019.05.009
Karakan, E., Tanrinian, N., and Sezer, A. (2019b): Cyclic undrained behavior and post liquefaction settlement of a nonplastic silt, Soil Dynamics and Earthquake Engineering, 120, 214-227. http://doi.org/10.1016/j.soildyn.2019.01.040
Kavazanjian, E., and Hamdan, N. (2015). Enzyme Induced Carbonate Precipitation (EICP) Columns for Ground Improvement Ifcee 2015,
Keykha, H.A., and Asadi, A. (2017): Solar Powered Electro-Bio-Stabilization of Soil with Ammonium Pollution Prevention System, Advances in Civil Engineering Materials, 6(1), 360-371. http://doi.org/10.1520/acem20170001
Lade, P.V., and Overton, D.D. (1989): Cementation Effects in Frictional Materials, J. Geotech. Eng., 115(10), 1373-1387. http://doi.org/10.1061/(ASCE)0733-9410(1989)115:10(1373)
Lee, M., Gomez, M.G., San Pablo, A.C.M., Kolbus, C.M., Graddy, C.M.R., DeJong, J.T., and Nelson, D.C. (2019): Investigating Ammonium By-product Removal for Ureolytic Bio-cementation Using Meter-scale Experiments, Scientific Reports, 9(1), 18313. http://doi.org/10.1038/s41598-019-54666-1
Li, Y., Guo, Z., Wang, L., Li, Y., and Liu, Z. (2020): Shear resistance of MICP cementing material at the interface between calcareous sand and steel, Materials Letters, 274. http://doi.org/10.1016/j.matlet.2020.128009
Likos, W.J., and Jaafar, R. (2014): Laboratory Fall Cone Testing of Unsaturated Sand, Journal of Geotechnical and Geoenvironmental Engineering, 140(8), 04014043. http://doi.org/10.1061/(ASCE)GT.1943-5606.0001143
Lin, H., O’Donnell, S.T., Suleiman, M.T., Kavazanjian, E., and Brown, D.G. (2021): Effects of Enzyme and Microbially Induced Carbonate Precipitation Treatments on the Response of Axially Loaded Pervious Concrete Piles, J. Geotech. Geoenviron. Eng., 147(8). http://doi.org/10.1061/(asce)gt.1943-5606.0002565
Lin, H., Suleiman, M.T., Brown, D.G., and Kavazanjian, E. (2016): Mechanical Behavior of Sands Treated by Microbially Induced Carbonate Precipitation, Journal of Geotechnical and Geoenvironmental Engineering, 142(2). http://doi.org/10.1061/(asce)gt.1943-5606.0001383
Liu, B., Zhu, C., Tang, C.-S., Xie, Y.-H., Yin, L.-Y., Cheng, Q., and Shi, B. (2020): Bio-remediation of desiccation cracking in clayey soils through microbially induced calcite precipitation (MICP), Engineering Geology, 264. http://doi.org/10.1016/j.enggeo.2019.105389
Liu, L., Liu, H., Stuedlein, A.W., Evans, T.M., and Xiao, Y. (2019a): Strength, stiffness, and microstructure characteristics of biocemented calcareous sand, Can. Geotech. J, 56(10), 1502-1513. http://doi.org/10.1139/cgj-2018-0007
Liu, S., Wen, K., Armwood, C., Bu, C., Li, C., Amini, F., and Li, L. (2019b): Enhancement of MICP-Treated Sandy Soils against Environmental Deterioration, Journal of Materials in Civil Engineering, 31(12). http://doi.org/10.1061/(asce)mt.1943-5533.0002959
Loh, C.-H., and Tsay, C.-Y. (2019): Responses of the Earthquake Engineering Research Community to the Chi-Chi (Taiwan) Earthquake, Earthquake Spectra, 17(4), 635-656. http://doi.org/10.1193/1.1430680
Luo, C., Yang, X., and Li, J. (2022): Mechanical Properties of Single-Crystal Calcite and Their Temperature and Strain-Rate Effects, Materials, 15, 4613. http://doi.org/10.3390/ma15134613
Marri, A., Wanatowski, D., and Yu, H. (2012): Drained behaviour of cemented sand in high pressure triaxial compression tests, Geomechanics and Geoengineering, 7(3), 159-174.
Martin, K., Tirkolaei, H.K., and Kavazanjian, E. (2021): Enhancing the strength of granular material with a modified enzyme-induced carbonate precipitation (EICP) treatment solution, Constr. Build. Mater., 271, 121529. http://doi.org/10.1016/j.conbuildmat.2020.121529
Martin, K.K., Tirkolaei, H.K., and Kavazanjian, E. (2024): Field-Scale EICP Biocemented Columns for Ground Improvement, Journal of Geotechnical and Geoenvironmental Engineering, 150(8), 05024006. http://doi.org/10.1061/JGGEFK.GTENG-11635
Marzadori, C., Miletti, S., Gessa, C., and Ciurli, S. (1998): Immobilization of jack bean urease on hydroxyapatite: urease immobilization in alkaline soils, Soil Biology and Biochemistry, 30(12), 1485-1490. https://doi.org/10.1016/S0038-0717(98)00051-0
Meng, H., Shu, S., Gao, Y., He, J., and Wan, Y. (2021a): Kitchen waste for Sporosarcina pasteurii cultivation and its application in wind erosion control of desert soil via microbially induced carbonate precipitation, Acta Geotech., 16(12), 4045-4059. http://doi.org/10.1007/s11440-021-01334-2
Meng, H., Shu, S., Gao, Y., Yan, B., and He, J. (2021b): Multiple-phase enzyme-induced carbonate precipitation (EICP) method for soil improvement, Eng. Geol., 294, 106374. https://doi.org/10.1016/j.enggeo.2021.106374
Miftah, A., Tirkolaei, H.K., and Bilsel, H. (2019). Strengthening Beach Sand By Enzyme Induced Calcium Carbonate Precipitation 8th Geotechnical Symposium, TÜ Süleyman Demirel Kültür Merkezi,Istanbul.
Mitchell, and Santamarina (2005): Biological considerations in geotechnical engineering, Journal of Geotechnical and Geoenvironmental Engineering, 131(10), 1222-1233. http://doi.org/10.1061/(ASCE)1090-0241(2005)131:10(1222)
Montoya, B.M., and DeJong, J.T. (2015): Stress-Strain Behavior of Sands Cemented by Microbially Induced Calcite Precipitation, J. Geotech. Geoenviron. Eng., 141(6), 04015019. http://doi.org/10.1061/(ASCE)GT.1943-5606.0001302
Montoya, B.M., Dejong, J.T., and Boulanger, R.W. (2013): Dynamic response of liquefiable sand improved by microbial-induced calcite precipitation, Géotechnique, 63(4), 302-312. http://doi.org/10.1680/geot.SIP13.P.019
Mortensen, B.M. (2011): Effects of environmental factors on microbial induced calcium carbonate precipitation, J. Appl. Microbiol., 111(2), 338-349. http://doi.org/10.1111/j.1365-2672.2011.05065.x
Muhammed, A.S., Kassim, K.A., Ahmad, K., Zango, M.U., Chong, C.S., and Makinda, J. (2021): Influence of multiple treatment cycles on the strength and microstructure of biocemented sandy soil, International Journal of Environmental Science and Technology, 18(11), 3427-3440. http://doi.org/10.1007/s13762-020-03073-5
Nafisi, A., Montoya, B.M., and Evans, T.M. (2020): Shear Strength Envelopes of Biocemented Sands with Varying Particle Size and Cementation Level, J. Geotech. Geoenviron. Eng., 146(3), 04020002. http://doi.org/10.1061/(ASCE)GT.1943-5606.0002201
Nafisi, A., Safavizadeh, S., and Montoya, B.M. (2019): Influence of Microbe and Enzyme-Induced Treatments on Cemented Sand Shear Response, J. Geotech. Geoenviron. Eng., 145(9), 06019008. http://doi.org/10.1061/(ASCE)GT.1943-5606.0002111
Neda Javadi, and Hamed Khodadadi, N.H., Edward Kavazanjian (2018). EICP Treatment of Soil by Using Urease Enzyme Extracted from Watermelon Seeds. IFCEE, Florida, United States.
Nemati, M., and Voordouw, G. (2003): Modification of porous media permeability, using calcium carbonate produced enzymatically in situ, Enzyme and Microbial Technology, 33(5), 635-642. http://doi.org/10.1016/s0141-0229(03)00191-1
Neupane, D., Yasuhara, H., Kinoshita, N., and Ando, Y. (2015): Distribution of mineralized carbonate and its quantification method in enzyme mediated calcite precipitation technique, Soils and Foundations, 55(2), 447-457. http://doi.org/10.1016/j.sandf.2015.02.018
Neupane, D., Yasuhara, H., Kinoshita, N., and Unno, T. (2013): Applicability of Enzymatic Calcium Carbonate Precipitation as a Soil-Strengthening Technique, Journal of Geotechnical and Geoenvironmental Engineering, 139(12), 2201-2211. http://doi.org/10.1061/(asce)gt.1943-5606.0000959
Ng, W.-S., Lee, M.-L., and Hii, S.-L. (2012): An overview of the factors affecting microbial induced calcite precipitation and its potential application in soil improvement, International Journal of Civil and Environmental Engineering, 6, 188-194.
Oliveira, P.J.V., Freitas, L.D., and Carmona, J.P.S.F. (2017): Effect of Soil Type on the Enzymatic Calcium Carbonate Precipitation Process Used for Soil Improvement, Journal of Materials in Civil Engineering, 29(4). http://doi.org/10.1061/(asce)mt.1943-5533.0001804
Paassen, L.A.v., Ghose, R., Linden, T.J.M.v.d., Star, W.R.L.v.d., and Loosdrecht, M.C.M.v. (2010): Quantifying Biomediated Ground Improvement by Ureolysis: Large-Scale Biogrout Experiment, Journal of Geotechnical and Geoenvironmental Engineering, 136(12), 1721-1728. http://doi.org/10.1061/(ASCE)GT.1943-5606.0000382
Pettit, N.M., Smith, A.R.J., Freedman, R.B., and Burns, R.G. (1976): Soil urease: Activity, stability and kinetic properties, Soil Biology and Biochemistry, 8(6), 479-484. https://doi.org/10.1016/0038-0717(76)90089-4
Piumetti, M., and Illanes, A. (2022). Enzymes and Their Function, Molecular Dynamics and Complexity in Catalysis and Biocatalysts. Springer.
Putra, H., Yasuhara, H., Erizal, Sutoyo, and Fauzan, M. (2020): Review of Enzyme-Induced Calcite Precipitation as a Ground-Improvement Technique, Infrastructures, 5(8). http://doi.org/10.3390/infrastructures5080066
Putra, H., Yasuhara, H., Kinoshita, N., Erizal, and Sudibyo, T. (2018): Improving Shear Strength Parameters of Sandy Soil using Enzyme-Mediated Calcite Precipitation Technique, Civil Engineering Dimension, 20(2), 91-95. http://doi.org/10.9744/ced.20.2.91-95
Putra, H., Yasuhara, H., Kinoshita, N., and Hirata, A. (2017): Optimization of Enzyme-Mediated Calcite Precipitation as a Soil-Improvement Technique: The Effect of Aragonite and Gypsum on the Mechanical Properties of Treated Sand, Crystals, 7(2). http://doi.org/10.3390/cryst7020059
Putra, H., Yasuhara, H., Kinoshita, N., Neupane, D., and Lu, C.W. (2016): Effect of Magnesium as Substitute Material in Enzyme-Mediated Calcite Precipitation for Soil-Improvement Technique, Front Bioeng Biotechnol, 4, 37. http://doi.org/10.3389/fbioe.2016.00037
Qabany, A.A., and Soga, K. (2013): Effect of chemical treatment used in MICP on engineering properties of cemented soils, Géotechnique, 63(4), 331-339. http://doi.org/10.1680/geot.SIP13.P.022
Qian, Z., Wei-min, Y., Zhang-rong, L., Qiong, W., and Yong-gui, C. (2022): Advances in soil cementation by biologically induced calcium carbonate precipitation, Rock and Soil Mechanics, 43, 345-357. http://doi.org/10.16285/j.rsm.2021.6249
Rajasekar, A., Moy, C.K.S., Wilkinson, S., and Sekar, R. (2021): Microbially induced calcite precipitation performance of multiple landfill indigenous bacteria compared to a commercially available bacteria in porous media, PLoS One, 16(7), e0254676. http://doi.org/10.1371/journal.pone.0254676
Rui, W., Xiao-hua, P., Chao-sheng, T., Chao, L., Dian-long, W., Zhi-hao, D., and Bin, S. (2022): Dynamic behaviors of MICP and fiber-treated calcareous sand under dynamic triaxial testing, Rock and Soil Mechanics, 43, 2643-2654. http://doi.org/10.16285/j.rsm.2021.2027
Sahrawat (1984): Effects of temperature and moisture on urease activity in semi-arid tropical soils, Plant and Soil, 78, 401-408.
Saif, A., Cuccurullo, A., Gallipoli, D., Perlot, C., and Bruno, A.W. (2022): Advances in Enzyme Induced Carbonate Precipitation and Application to Soil Improvement: A Review, Materials, 15(3), 950. http://doi.org/10.3390/ma15030950
Sasaki, T., and Kuwano, R. (2016): Undrained cyclic triaxial testing on sand with non-plastic fines content cemented with microbially induced CaCO3, Soils and Found., 56(3), 485-495. http://doi.org/10.1016/j.sandf.2016.04.014
Sherwood, P.T. (1993). Soil Stablization with Cement and lime.
Shu, S., Yan, B., Meng, H., and Bian, X. (2022): Comparative study of EICP treatment methods on the mechanical properties of sandy soil, Soils and Found., 62(6), 101246. https://doi.org/10.1016/j.sandf.2022.101246
Simatupang, M. (2020, 2020/11/01). Liquefaction Resistance of Sand Improved with Enzymatically Induced Calcite Precipitation based on Laboratory Investigation. IOP Conference Series: Earth and Environmental Science,
Simatupang, M., and Okamura, M. (2017): Liquefaction resistance of sand remediated with carbonate precipitation at different degrees of saturation during curing, Soils and Found., 57(4), 619-631. http://doi.org/10.1016/j.sandf.2017.04.003
Simatupang, M., Okamura, M., Hayashi, K., and Yasuhara, H. (2018): Small-strain shear modulus and liquefaction resistance of sand with carbonate precipitation, Soil Dyn. Earthquake Eng., 115, 710-718. http://doi.org/10.1016/j.soildyn.2018.09.027
Simatupang, M., Sukri, A.S., Nasrul, Sulha, and Putri, T.S. (2019, 2019/10/01). Effect of confining pressures on the shear modulus of sand treated with enzymatically induced calcite precipitation. IOP Conference Series: Materials Science and Engineering,
Singh, A., Paramkusam, B.R., and Maiti, P.R. (2021): Cyclic degradation and pore pressure dynamics of EICP treated hydrocarbon contaminated sands, Soil Dyn. Earthquake Eng., 140. http://doi.org/10.1016/j.soildyn.2020.106369
Song, J.Y., Ha, S.J., Jang, J.W., and Yun, T.S. (2020a): Analysis of improved shear stiffness and strength for sandy soils treated by EICP, Journal of the Korean Geotechnical Society, 36(1), 17-28.
Song, J.Y., Sim, Y., Jang, J., Hong, W.-T., and Yun, T.S. (2020b): Near-surface soil stabilization by enzyme-induced carbonate precipitation for fugitive dust suppression, Acta Geotechnica, 15(7), 1967-1980. http://doi.org/10.1007/s11440-019-00881-z
Stocks-Fischer, S., Galinat, J.K., and Bang, S.S. (1999): Microbiological precipitation of CaCO3, Soil Biology and Biochemistry, 31(11), 1563-1571. https://doi.org/10.1016/S0038-0717(99)00082-6
Sun, X., Miao, L., Chen, R., Wang, H., Wu, L., and Xia, J. (2021): Liquefaction Resistance of Biocemented Loess Soil, J. Geotech. Geoenviron. Eng., 147(11), 04021117. http://doi.org/10.1061/(ASCE)GT.1943-5606.0002638
Terzis, D., and Laloui, L. (2019): Cell-free soil bio-cementation with strength, dilatancy and fabric characterization, Acta Geotechnica, 14(3), 639-656. http://doi.org/10.1007/s11440-019-00764-3
Tirkolaei, H.K., Javadi, N., Krishnan, V., Hamdan, N., and Kavazanjian, E. (2020): Crude Urease Extract for Biocementation, J. Mater. Civ. Eng., 32(12), 04020374. http://doi.org/10.1061/(ASCE)MT.1943-5533.0003466
Tobler, D.J., Maclachlan, E., and Phoenix, V.R. (2012): Microbially mediated plugging of porous media and the impact of differing injection strategies, Ecological Engineering, 42, 270-278. http://doi.org/10.1016/j.ecoleng.2012.02.027
Torsten Wichtmann, and Theodor Triantafyllidis (2015): An experimental database for the development, calibration and verification of constitutive models for sand with focus to cyclic loading: part I—tests with monotonic loading and stress cycles, Acta Geotech., 11, 739-761.
Tsuchida, H. (1970): Prediction and countermeasure against the liquefaction in sand deposits, Abstract of the Seminar in the Port and Harbor Research Institute, 31-333.
Tuttle, Hartleb, Wolf, and Mayne (2019): Paleoliquefaction Studies and the Evaluation of Seismic Hazard, Geosciences, 9(7). http://doi.org/10.3390/geosciences9070311
Wei-zhong, W. (2005): Evolution Law of Hysteresis Curve of Rock under Cyclic Loading, Journal of Southwest Jiaotong University.
Wen, K., Li, Y., Amini, F., and Li, L. (2020): Impact of bacteria and urease concentration on precipitation kinetics and crystal morphology of calcium carbonate, Acta Geotechnica, 15(1), 17-27. http://doi.org/10.1007/s11440-019-00899-3
Whiffin, V.S. (2004). Microbial CaCO3 precipitation for the production of biocement Murdoch University]. Western Australia.
Whiffin, V.S., van Paassen, L.A., and Harkes, M.P. (2007): Microbial Carbonate Precipitation as a Soil Improvement Technique, Geomicrobiology Journal, 24(5), 417-423. http://doi.org/10.1080/01490450701436505
Wu, L., Miao, L., Kawasaki, S., and Wang, H. (2022): Effects of Reaction Conditions on EICP-Treated Desert Aeolian Sand, KSCE J. Civ. Eng., 26(6), 2662-2674. http://doi.org/10.1007/s12205-022-1585-0
Wu, S., Li, B., and Chu, J. (2021a): Stress-Dilatancy Behavior of MICP-Treated Sand, Int. J. Geomech., 21(3). http://doi.org/10.1061/(asce)gm.1943-5622.0001923
Wu, Y., Li, N., Wang, X., Cui, J., Chen, Y., Wu, Y., and Yamamoto, H. (2021b): Experimental investigation on mechanical behavior and particle crushing of calcareous sand retrieved from South China Sea, Engineering Geology, 280, 105932. https://doi.org/10.1016/j.enggeo.2020.105932
Xiang, J., Qiu, J., Wang, Y., and Gu, X. (2022): Calcium acetate as calcium source used to biocement for improving performance and reducing ammonia emission, Journal of Cleaner Production, 348, 131286. https://doi.org/10.1016/j.jclepro.2022.131286
Xiao, P., Liu, H., Stuedlein, A.W., Evans, T.M., and Xiao, Y. (2019a): Effect of relative density and biocementation on cyclic response of calcareous sand, Canadian Geotechnical Journal, 56(12), 1849-1862. http://doi.org/10.1139/cgj-2018-0573
Xiao, P., Liu, H., Stuedlein, A.W., Evans, T.M., and Xiao, Y. (2019b): Effect of relative density and biocementation on cyclic response of calcareous sand, Can. Geotech. J, 56(12), 1849-1862. http://doi.org/10.1139/cgj-2018-0573
Xiao, P., Liu, H., Xiao, Y., Stuedlein, A., and Evans, T. (2018a): Liquefaction resistance of bio-cemented calcareous sand, Soil Dyn. Earthquake Eng., 107, 9-19. http://doi.org/10.1016/j.soildyn.2018.01.008
Xiao, P., Liu, H., Xiao, Y., Stuedlein, A.W., and Evans, T.M. (2018b): Liquefaction resistance of bio-cemented calcareous sand, Soil Dyn. Earthquake Eng., 107, 9-19. http://doi.org/10.1016/j.soildyn.2018.01.008
Xiao, Y., He, X., Evans, T.M., Stuedlein, A.W., and Liu, H. (2019c): Unconfined Compressive and Splitting Tensile Strength of Basalt Fiber–Reinforced Biocemented Sand, Journal of Geotechnical and Geoenvironmental Engineering, 145(9). http://doi.org/10.1061/(asce)gt.1943-5606.0002108
Xiao, Y., He, X., Stuedlein, A.W., Chu, J., Evans, T.M., and Paassen, L.A.v. (2022): Crystal Growth of MICP through Microfluidic Chip Tests, Journal of Geotechnical and Geoenvironmental Engineering, 148(5), 06022002. http://doi.org/10.1061/(ASCE)GT.1943-5606.0002756
Xiao, Y., Stuedlein, A.W., Ran, J., Evans, T.M., Cheng, L., Liu, H., Paassen, L.A.v., and Chu, J. (2019d): Effect of Particle Shape on Strength and Stiffness of Biocemented Glass Beads, J. Geotech. Geoenviron. Eng., 145(11), 06019016. http://doi.org/10.1061/(ASCE)GT.1943-5606.0002165
Xie, D., Zhang, R., and Wang, J. (2023): The influence of environmental factors and precipitation precursors on enzyme-induced carbonate precipitation (EICP) process and its application on modification of recycled concrete aggregates, Journal of Cleaner Production, 395, 136444. https://doi.org/10.1016/j.jclepro.2023.136444
Yanli, W., and Yong, W. (2009): Experimental Study on Evolutionary Characteristics of Dynamic Pore water pressure of saturated sands, Journal of Tongji University, 37(12). http://doi.org/10.3969/j.issn.0253-374x.2009.12.008
Yasuhara, H., Neupane, D., Hayashi, K., and Okamura, M. (2012): Experiments and predictions of physical properties of sand cemented by enzymatically-induced carbonate precipitation, Soils and Found., 52(3), 539-549. http://doi.org/10.1016/j.sandf.2012.05.011
Yong, W. (2009): Experimental Study on Evolutionary Characteristics of Dynamic Pore Water Pressure of Saturated Sands, Journal of Tongji University.
Yu, X., Chu, J., Yang, Y., and Qian, C. (2021): Reduction of ammonia production in the biocementation process for sand using a new biocement, Journal of Cleaner Production, 286. http://doi.org/10.1016/j.jclepro.2020.124928
Yuan, H., Hui Yang, S., Andrus, R.D., and Hsein Juang, C. (2004): Liquefaction-induced ground failure: a study of the Chi-Chi earthquake cases, Engineering Geology, 71(1-2), 141-155. http://doi.org/10.1016/s0013-7952(03)00130-3
Yuan, H., Ren, G., Liu, K., Zheng, W., and Zhao, Z. (2020): Experimental Study of EICP Combined with Organic Materials for Silt Improvement in the Yellow River Flood Area, Applied Sciences, 10(21). http://doi.org/10.3390/app10217678
Zeng, C., Van Paassen, L.A., Zheng, J.-j., Stallings Young, E.G., Hall, C.A., Veenis, Y., Van der Star, W.R.L., Konstantinou, M., and Kavazanjian, E. (2022): Soil stabilization with microbially induced desaturation and precipitation (MIDP) by denitrification: a field study, Acta Geotechnica, 17(12), 5359-5374. http://doi.org/10.1007/s11440-022-01721-3
Zhang, J., Wang, X., Shi, L., and Yin, Y. (2022a): Enzyme-induced carbonate precipitation (EICP) combined with lignin to solidify silt in the Yellow River flood area, Construction and Building Materials, 339, 127792. https://doi.org/10.1016/j.conbuildmat.2022.127792
Zhang, J., Yin, Y., Shi, L., Bian, H., and Shi, W. (2022b): Experimental investigation on mechanical behavior of sands treated by enzyme-induced calcium carbonate precipitation with assistance of sisal-fiber nucleation, Front. Earth Sci., 10. http://doi.org/10.3389/feart.2022.992474
Zhang, J., Yin, Y., Shi, W., Bian, H., Shi, L., Wu, L., Han, Z., Zheng, J., and He, X. (2023): Strength and uniformity of EICP-treated sand under multi-factor coupling effects, Biogeotechnics, 1, 100007. http://doi.org/10.1016/j.bgtech.2023.100007
Zhang, Q., Ye, W., Su, W., Wang, Q., and Chen, Y. (2024): Mechanical behavior of EICP-treated calcareous sands under high confining pressures, Journal of Rock Mechanics and Geotechnical Engineering. http://doi.org/10.1016/j.jrmge.2024.04.017
Zhang, Y., Guo, H.X., and Cheng, X.H. (2014): Influences of calcium sources on microbially induced carbonate precipitation in porous media, Materials Research Innovations, 18(sup2), S2-79-S72-84. http://doi.org/10.1179/1432891714z.000000000384
Zhao, Q., Li, L., Li, C., Li, M., Amini, F., and Zhang, H. (2014): Factors Affecting Improvement of Engineering Properties of MICP-Treated Soil Catalyzed by Bacteria and Urease, Journal of Materials in Civil Engineering, 26(12), 04014094. http://doi.org/10.1061/(ASCE)MT.1943-5533.0001013
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96080-
dc.description.abstract近年來,酶誘導碳酸鹽沉澱(EICP)作為一種仿生工程技術,受到土木工程界的廣泛關注。透過EICP進行的生物膠結可通過堵塞空隙和利用碳酸鈣將土壤顆粒粘結來增加土壤的強度、剛度和抗液化性。該方法涉及使用脲酶與尿素和氯化鈣相結合以誘導碳酸鈣沉澱。EICP處理的有效性受化學成分濃度和脲酶影響。初步研究旨在確定尿素、氯化鈣與脲酶的最佳濃度及EICP處理樣品的抗滲深度。透過Falcon試管試驗,尿素濃度範圍為0.25M至1M,比例分別為(CaCl2:尿素)1:1、1:1.2、1:1.5和1:1.75,脲酶濃度分別為1 g/l、3 g/l、5 g/l和6g/l。研究使用Falcon試管測試顯示,當尿素濃度為1 M,氯化鈣濃度為0.67 M,脲酶濃度為3 g/l時,獲得了較為高的碳酸鈣和沉澱率。本研究採用了由1M尿素、0.67M氯化鈣二水合物和3g/l脲酶組成的最佳第一階段EICP膠結溶液配方。隨後,對四種不同組合進行了落錐試驗,測量了不同養護時間(3天和7天)下單次處理週期(N-1)和第7天的兩次處理週期(N-2)中的滲透深度。值得注意的是,兩次處理週期(N-2)中的滲透深度明顯低於第3天和第7天的數值。進行落錐試驗後,通過酸消化法測量碳酸鈣沉澱量以分析樣品的均勻性。酸消化試驗結果表明,較低濃度的尿素和氯化鈣產生的樣品更為均勻,而較高濃度則導致樣品頂部碳酸鈣含量增加,底部碳酸鈣含量減少。這種差異歸因於脲酶與膠結溶液的快速反應,使樣品底部不透水。隨後,使用已確定的最佳EICP配方來研究實驗測試前樣品中碳酸鈣沉澱的均勻分佈。在排水和不排水條件下,研究了三軸試樣中碳酸鈣的分佈。結果顯示,在不排水條件下進行的EICP處理獲得了更為均勻的碳酸鈣沉澱。EICP溶液滯留在紙模中,從而有助於產生更均勻的沉澱。該研究的目的是通過在兩種不同的脲酶條件下進行單調固結排水三軸試驗和不排水循環三軸試驗,來評估EICP處理砂的力學行為。對純砂和EICP處理砂進行了7天和14天養護下的單調三軸試驗,分別在50、100和200 kPa的圍壓下進行。EICP膠結顯著提高了單次處理週期內的偏應力、膨脹性和剪切強度參數。在所有養護期間,EICP處理砂均顯示出明顯的有效內聚力。生物膠結的增加提高了峰值和殘餘狀態下的有效內聚力,而有效摩擦角則保持不變。研究還對純砂和EICP處理樣品在7天養護下100 kPa圍壓的抗液化循環反應進行了研究。循環抗液化性通過減少壓縮應變和延長達到液化的週期數而得到改善。為進一步理解碳酸鈣沉澱引起的微觀結構變化,進行了顯微結構分析,包括場發射掃描電子顯微鏡 (FE-SEM) 分析、能量色散光譜 (EDS) 元素映射和X射線衍射 (XRD) 研究,其樣本來自Falcon試管試驗的純砂和EICP處理樣品。FE-SEM和EDS分析結果顯示,EICP處理增強了顆粒間接觸和顆粒與方解石沉澱的接觸強度。XRD結果則確認通過EICP處理形成的晶體主要由方解石組成。最後,三軸試驗後的酸消化顯示在飽和、固結和剪切過程中,處理樣品的碳酸鈣損失量較小。由於本研究討論了單次處理週期,更多的處理週期和較高的膠結濃度可以使樣品在飽和和剪切過程中更加耐受。zh_TW
dc.description.abstractIn recent years, Enzyme-induced carbonate precipitation (EICP) has emerged as a bio-inspired and innovative technique that has captured the attention of geotechnical engineers specializing in soil stabilization. Bio-cementation via EICP increases the strength, stiffness, and soil liquefaction resistance by clogging the voids and binding the soil particles with calcium carbonate. This method involves the utilization of urease enzymes combined with urea and calcium chloride to induce calcium carbonate precipitation. The effectiveness of the EICP treatment is influenced by the concentration of the chemical components and the urease enzyme. The preliminary research aimed to identify the optimal concentrations of urea and calcium chloride with the urease enzyme and penetration depth resistance in EICP-treated specimens. Falcon tube tests were conducted with urea concentration (0.25M to 1M) in various ratios (CaCl2: Urea) – 1:1, 1:1.2, 1:1.5, and 1:1.75 with different proportions of urease enzymes (1 g/l, 3 g/l, 5 g/l, and 6g/l). The research employed falcon tube tests, revealing that a combination of 1 M urea, 0.67 M CaCl2, and 3 g/l urease enzyme resulted in a higher CaCO3 and precipitation ratio. This study adopted an optimal formulation of a one-phase EICP cementation solution consisting of 1M Urea, 0.67M Calcium chloride dihydrate, and 3g/l urease enzyme. Subsequent fall cone tests were conducted on four different combinations, measuring penetration depth at various curing times (3 and 7 days) in a single treatment cycle (N-1) and two treatment cycles (N-2) on day 7. Notably, the penetration depth at two treatment cycles (N-2) significantly decreased compared to values observed on days 3 and 7. Following the fall cone tests, specimen uniformity was analyzed by assessing CaCO3 precipitation using the acid digestion. The acid digestion test results indicated that lower concentrations of urea and calcium chloride yielded more uniform specimens. In contrast, higher concentrations led to non-uniform specimens with elevated CaCO3 at the top and reduced CaCO3 at the bottom. This disparity was attributed to the rapid reactivity of the urease enzyme with the cementation solution, rendering the bottom portion of the specimen impermeable. The identified optimal EICP formulation was then employed to investigate the uniform distribution of calcium carbonate precipitation in the prepared specimens before subjecting them to experimental testing. The distribution of calcium carbonate in the triaxial specimen was studied in both drained and undrained conditions. The EICP treatment under undrained conditions obtained a more uniform calcium carbonate precipitation. The EICP solution gets retained in the paper mold, which helps produce a more uniform precipitation. The objective of the study involves assessing the mechanical behavior of the EICP-treated sand by performing monotonic consolidated drained triaxial and undrained cyclic triaxial tests in two different urease enzymes. The monotonic triaxial tests on pure sand and EICP-treated sand with 3,7 and 14 curing days were carried out at 50, 100, and 200 kPa confining pressures, respectively. Bio-cementation through EICP significantly enhanced the deviatoric stress, dilatancy, and shear strength parameters in one treatment cycle. A noticeable effective cohesion was observed for EICP-treated sand for all curing durations. The increase in bio-cementation increased the effective cohesion at both peak and residual state while the effective friction angle remained constant. The cyclic response under an effective confining pressure of 100 kPa in the pure sand and EICP-treated specimen was studied in 7 days of curing time. The cyclic resistance to liquefaction improved by reducing compression strain and prolonged cycles to attain liquefaction. Microscopic analyses were performed to comprehend further the microstructural transformations resulting from calcium carbonate precipitation. These include field-emission scanning electron microscopy (FE-SEM) analysis, Energy Dispersive Spectroscopy (EDS) elemental mapping, and X-ray Diffraction (XRD) studies on calcium carbonate precipitate from falcon tube test, pure sand, and EICP-treated sample. The FE-SEM and EDS analysis revealed augmented strength particle-to-particle contact and particle-to-calcite precipitation due to EICP treatment. Notably, XRD results confirm that the crystals formed through EICP treatment primarily comprise calcite. Finally, acid digestion after the triaxial test revealed a minor amount of loss of CaCO3 in the treated specimen during the saturation, consolidation, and shearing process. As the study discussed the one cycle of treatment, multiple treatment cycles with higher cementation makes the specimen resistant under saturation and shearing process.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-10-14T16:06:02Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-10-14T16:06:02Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsACKNOWLEDGEMENTS ii
DEDICATION iii
摘要 iv
ABSTRACT vi
LIST OF FIGURES xiv
LIST OF TABLES xxi
Chapter 1 INTRODUCTION 1
1.1 Motivation 1
1.2 Bio-cementation Techniques 3
1.3 Applications of EICP treatment 7
1.4 Advantages of EICP 8
1.5 Limitations of EICP 9
1.6 Field Applications in EICP Treatment 10
1.7 Cost Applications 12
1.8 Scope of Study 13
1.9 Novelty of the Study 15
1.10 Organization 16
Chapter 2 LITERATURE REVIEW 17
2.1 Introduction 17
2.2 Urea Hydrolysis in EICP treatment 18
2.3 Factors influencing the formation of CaCO3 precipitation 19
2.3.1 Electrical conductivity (EC) and pH 19
2.3.2 Temperature 24
2.3.3 Cementation Solution Concentration 26
2.4 Prior Studies 30
2.5 Bio-cementation Techniques using EICP with additives 31
2.6 Compressive Strength Tests 36
2.6.1 Single-phase Treatment Cycle 36
2.6.2 Multiple-phase Treatment Cycles 39
2.7 Static Triaxial Studies 41
2.8 Dynamic Response Studies 44
2.8.1 MICP Treatment 44
2.8.2 EICP Treatment 48
Chapter 3 EXPERIMENTAL PROGRAM 52
3.1 Materials 52
3.1.1 Sand 52
3.1.2 Characteristics of Urease Enzyme and Reagents 53
3.1.3 Paper Mould 55
3.1.4 Magnetic stirrer 55
3.1.5 Whatman Ashless Filter Papers 56
3.1.6 Hydrochloric Acid 58
3.1.7 Falcon Tubes 58
3.1.8 Monitoring of Urease activity in solution 60
3.1.9 Microscopic Examination 62
3.2 Specimen Preparation 65
3.2.1 Fall Cone Test 65
3.2.2 Triaxial Testing 67
3.3 Laboratory Tests 69
3.3.1 Falcon Tube Test 69
3.3.2 Fall Cone Test 71
3.3.3 Consolidated Drained Triaxial Testing 71
3.3.4 Undrained Cyclic Triaxial Testing 72
3.4 Acid Digestion 73
3.4.1 Determination of Calcium Carbonate Content (CCC) 73
3.4.2 Assessment of Uniformity in Triaxial Specimen 74
Chapter 4 RESULTS AND DISCUSSIONS 81
4.1 Falcon Tube Test Results from Sigma Urease 81
4.1.1 0.25 M Urea Concentration 81
4.1.2 0.5 M Urea Concentration 82
4.1.3 0.61 M Urea Concentration 83
4.1.4 1 M Urea Concentration 84
4.2 Fall Cone Test from Sigma Urease 87
4.2.1 Variation of Penetration Depth at One Treatment Cycle 87
4.2.2 Variation of Penetration Depth at Two Treatment Cycles 89
4.2.3 Analysis of Acid Digestion Outcomes from Fall Cone Testing 92
4.2.4 Analysis of Acid Digestion of Triaxial Specimen 95
4.3 Monitoring of Electrical Conductivity (EC) mS/cm and pH 96
4.3.1 Sigma Urease 96
4.3.2 CDH Urease 100
4.4 Isotropic Consolidated Drained (CID) Triaxial Tests 101
4.4.1 Stress-Strain Behavior 101
4.4.2 Peak and Residual Strength Parameters 107
4.4.3 Volumetric Behavior 112
4.5 Study of Liquefaction Resistance 115
4.5.1 Cyclic Triaxial Testing and Discussion with CDH-Treated Specimen 115
4.5.2 Cyclic Triaxial Testing and Discussion with Sigma-Treated Specimen 123
4.6 Microscopic Examination 129
4.6.1 Field Emission – Scanning Electron Microscopy (FE-SEM) analysis 129
4.6.2 Energy Dispersive Spectroscopy (EDS) Examination 140
4.6.3 X-ray Diffraction (XRD) analysis 144
4.7 Acid Digestion for Triaxial Specimens 147
Chapter 5 CONCLUSIONS 152
RECOMMENDATIONS 156
REFERENCES 158
-
dc.language.isoen-
dc.title從力學特性與微觀組構看EICP改良砂土成效zh_TW
dc.titleMechanical Enhancement of Sand through Enzyme-Induced Carbonate Precipitation: Experimental Insights and Microstructural Analysisen
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree博士-
dc.contributor.oralexamcommittee楊國鑫;邱俊翔;郭安妮;黃郁惟;卓雨璇zh_TW
dc.contributor.oralexamcommitteeKuo-Hsin Yang;Jiunn -Shyang Chiou;On-Lei Annie Kwok;Yu-Wei Hwang;Yu-Syuan Jhuoen
dc.subject.keyword酶誘導方解石沈澱法 (EICP),獵鷹管試驗,落錐試驗,液化,酸消化,排水三軸測試和微觀分析,zh_TW
dc.subject.keywordEnzyme-Induced Calcite Precipitation methods (EICP),Falcon Tube test,Fall cone test,Liquefaction,Acid Digestion,Drained Triaxial Testing,microscopic analysis,en
dc.relation.page181-
dc.identifier.doi10.6342/NTU202404421-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-09-30-
dc.contributor.author-college工學院-
dc.contributor.author-dept土木工程學系-
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf10.86 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved