Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9606
Title: 利用網路中的強連結單元計算個人化網頁排序
Computing Personalized PageRank Using Strongly Connected Components in Web
Authors: Rung-Guo Tzeng
曾榮國
Advisor: 陳銘憲(Ming-Syan Chen)
Co-Advisor: 鄭士康(Shyh-Kang Jeng)
Keyword: 演算法,搜尋引擎,鏈結分析,線性系統,網頁排序,
Algorithm,Search Engine,Linkage Analysis,Linear System,PageRank,
Publication Year : 2008
Degree: 碩士
Abstract: 網頁排序是搜尋引擎中一項重要的排序技術。藉由不同的個人化向量,搜尋引擎公司可以為不同群組的使用者計算出特殊及適合的網頁排序向量。然而,僅計算單一網頁排序向量便需花費許多時間。為了解決這個問題,我們提出了SCC (Strongly Connected Component)網頁排序演算法。SCC 網頁排序演算法的主要精神在於利用舊的網頁排序向量推導出新的網頁排序向量。我們將網頁排序模組中原先的線性系統拆解為線性子系統。利用這些線性子系統間的相依關係,我們將原本的計算轉變為階層式架構。在計算個人化網頁排序向量時,我們檢查重覆計算的必要性。因此,我們可以避免一些迭代的重覆計算並達到效能上的改進。根據我們的實驗成果顯示,在計算諸多個人化網頁排序向量時,SCC 網頁排序演算法的表現在許多情況下可優於已知的加速演算法。
PageRank is an important ranking technique used in search engines. By using different personalization vectors, search engine companies can compute specific and adaptive PageRank vectors for different classes of users. However, computing even one PageRank vector consumes a lot of time. To address this problem, we propose the SCC (Strongly Connected Component) PageRank algorithm. The main spirit of SCC PageRank is utilizing the old PageRank vector to deduce the new one. We decompose the original linear system of PageRank model into linear subsystems. By using the dependency relation between these linear subsystems, we translate the original computation into a hierarchical manner. While computing personalized PageRank vectors, we check the necessity of recomputation. Thus, we can prevent some iterative recomputations and achieve an improvement of efficiency. As shown by our experimental results, while computing several personalized PageRank vectors, SCC PageRank performs better than the known accelerating algorithms in most cases.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9606
Fulltext Rights: 同意授權(全球公開)
Appears in Collections:電機工程學系

Files in This Item:
File SizeFormat 
ntu-97-1.pdf1 MBAdobe PDFView/Open
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved