Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96066
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor宋家驥zh_TW
dc.contributor.advisorChia-Chi Sungen
dc.contributor.author鄒華丰zh_TW
dc.contributor.authorHua-Feng Tsouen
dc.date.accessioned2024-10-11T16:04:14Z-
dc.date.available2024-10-12-
dc.date.copyright2024-10-11-
dc.date.issued2024-
dc.date.submitted2024-10-08-
dc.identifier.citation[1]M. Redwood. Transient performance of a piezoelectric transducer. Journal of the Acoustical Society of America, 33:527–536, 1961.
[2]C. S. Desilets, J. D. Fraser, and G. S. Kino. The design of efficient broad-band piezoelectric transducers. IEEE Transactions on Sonics and Ultrasonics, 25(3):115– 125, May 1978.
[3]C. M. Sayers. On the propagation of ultrasound in highly concentrated mixtures and suspensions. Journal of Physics D: Applied Physics, 13(2):179–184, 1980.
[4]Y. Bar-Cohen, D. A. Stubbs, and W. C. Hoppe. Multiphase backing materials for piezoelectric broadband transducers. The Journal of the Acoustical Society of America, 75(5):1629–1633, 1984.
[5]C. M. Sayers and C. E. Tait. Ultrasonic properties of transducer backings.Ultrasonics, 22(2):57–60, March 1984.
[6]H. W. Persson and C. H. Hertz. Acoustic impedance matching of medical ultrasound transducers. Ultrasonics, 23(2):83–89, Mar 1985.
[7]H. A. Kunkel, S. Locke, and B. Pikeroen.Finite-element analysis of vibra- tional modes in piezoelectric ceramic disks.IEEE Transactions on Ultrasonics,Ferroelectrics, and Frequency Control, 37(4):316–326, 1990.
[8]N. Guo, P. Cawley, and D. Hitchings. The finite element analysis of the vibration characteristics of piezoelectric discs. Journal of Sound and Vibration, 159(1):115– 138, 1992.
[9]L. F. Brown. Design considerations for piezoelectric polymer ultrasound trans- ducers. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 47(6):1377–1387, 2000.
[10]Panametrics-NDT. Ultrasonic Transducers for Nondestructive Testing. Waltham, MA, USA, April 2005. Olympus NDT.
[11]E. E. Franco, M. A. B. Andrade, J. E. San Miguel, F. Buiochi, and J. C. Adamowski. Determination of the acoustic properties of tungsten/ epoxy and tungsten/ polyurethane composites using ultrasonic transmission technique. In Proceedings of COBEM 2005, Ouro Preto, MG, November 2005. 18th International Congress of Mechanical Engineering.
[12]V. K. Chillara, C. Pantea, and D. N. Sinha. Coupled electromechanical modeling of piezoelectric disc transducers for low-frequency ultrasonic collimated beam gen- eration. In Health Monitoring of Structural and Biological Systems 2017, volume 10170, pages 446–452. SPIE, 2017.
[13]D. Hidayat, N. S. Syafei, S. Setianto, and Y. Rosandi. Controllable acoustic proper- ties of tungsten-epoxy composites prepared using a shaker-type ball milling process.Results in Materials, 21:100503, 2024.
[14]L. E. Kinsler, A. R. Frey, A. B. Coppens, and J. V. Sanders. Fundamentals of Acoustics. John Wiley & Sons, New York, 4th edition, 2000.
[15]W. D. Barber, J. W. Eberhard, and S. G. Karr. A new time domain technique for velocity measurements using doppler ultrasound. IEEE Transactions on Biomedical Engineering, BME-32(3):213–229, March 1985.
[16]J. Zawala and K. Malysa. Influence of the impact velocity and size of the film formed on bubble coalescence time at water surface. Langmuir, 27(6):2075–3212, 2011.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96066-
dc.description.abstract在工業感測控制系統的測量和驗證中,流量計是最關鍵的技術,而非侵入式超音波流量計是不可或缺的應用工具。目前常見的超音波流量計多為時間差超音波流量計,缺點是不太容易設定,準確性受測量距離的影響,需要手動找到特定的距離來發射和接收訊號,且只適用於乾淨的流體。本研究主要設計一種流量計,利用都普勒原理測量懸浮在流體中的運動顆粒或氣泡反射回感測器的訊號,並根據聲波的頻移差計算出流速和流量。所使用的超音波換能器是利用壓電片、波導、背膠層製成的,材料的選用、尺寸關係到聲阻抗匹配、訊號的乾淨程度以及良好的頻寬。以FEA模擬為基礎,研究方面包括換能器角度的變化、波導長度的調整以及換能器的架設位置,背膠層的部分參考文獻,實驗不同配比的背膠層,設計出測量結果更準確穩定的都普勒流量計。zh_TW
dc.description.abstractIn the measurement and verification of industrial sensor control systems, flow meters are the most critical technology, and non-invasive ultrasonic flow meters are indispensable tools in this application. Currently, the most common ultrasonic flow meters are transit-time ultrasonic flow meters, which have the drawbacks of being difficult to set up, with accuracy affected by the measurement distance. They require manual adjustment to find a specific distance for signal transmission and reception and are only suitable for clean fluids. This research mainly focuses on designing a flow meter that uses the Doppler principle to measure signals reflected by particles or bubbles moving in the fluid, and calculates the flow velocity and flow rate based on the Doppler frequency shift. The ultrasonic transducer used is made of piezoelectric sheets, waveguides, and backing layers. The choice of materials and dimensions is crucial for acoustic impedance matching, signal clarity, and achieving a good bandwidth. Based on FEA simulations, the research includes studying the effects of transducer angle variation, waveguide length adjustment, and transducer installation position. The backing layer references literature, and experiments with different ratios of backing material are conducted to design a Doppler flow meter that provides more accurate and stable measurement results.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-10-11T16:04:14Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-10-11T16:04:14Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 i
致謝 ii
摘要 iii
Abstract iv
目次 vi
圖次 ix
表次 xiii
第一章 緒論 1
1.1 研究動機與目的 1
1.2 文獻回顧 2
1.3 論文架構 5
第二章 背景理論 6
2.1 壓電效應 6
2.2 換能器基礎構造 7
2.2.1 壓電陶瓷 8
2.2.2 匹配層 8
2.2.3 背膠層 10
2.2.4 黏著劑 15
2.3 近聲場距離計算 16
2.4 流量計原理 17
2.4.1 都普勒效應公式 18
2.4.2 頻率差計算 19
2.4.3 流速計算 20
2.4.4 體積流量計算 20
2.5 利用 I/Q 演算法計算主頻 21
第三章 研究方法與實驗架構 24
3.1 實驗流程 24
3.1.1 理論設計與軟體模擬 24
3.1.2 自製換能器與實驗設計 24
3.2 實驗儀器 25
3.2.1 實驗架構 27
3.2.2 氣泡上升速度估算 29
第四章 換能器模擬分析與驗證 36
4.1 壓電片模態分析及聲學特性模擬 36
4.1.1 壓電片模態分析模擬與文獻比較 36
4.1.2 壓電片阻抗分析及輻射聲場分析 42
4.1.3 壓電片一發一收模擬 46
4.2 自製換能器聲學特性模擬 51
4.2.1 自製換能器阻抗分析及輻射聲場分析模擬 51
4.2.2 自製換能器一發一收模擬 60
第五章 結果與討論 63
5.1 換能器設計改良 63
5.1.1 換能器角度影響 63
5.1.2 波傳路徑計算 69
5.1.3 換能器波導長度影響 69
5.1.4 換能器背膠層鎢粉混膠比例之影響 71
5.1.5 換能器黏著劑受溫度變化後性能影響 77
5.2 市售換能器與自製換能器聲學特性比較 81
5.3 市售換能器與自製換能器對氣泡上升速度之計算 90
5.3.1 不同深度測得的氣泡速度 90
5.3.2 比較市售換能器及自製換能器測速之誤差值 94
第六章 結論與未來展望 98
6.1 結論 98
6.2 未來展望 99
參考文獻 101
-
dc.language.isozh_TW-
dc.title頻移式都普勒換能器研析zh_TW
dc.titleResearch and Analysis on Frequency Shift Doppler Transduceren
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee王昭男;林益煌;黃翊鈞zh_TW
dc.contributor.oralexamcommitteeChao-Nan Wang;Yih-Hwang Lin;Yi-Jun Huangen
dc.subject.keyword都普勒流量計,超音波換能器,壓電片,波導,背膠層,zh_TW
dc.subject.keywordDoppler flowmeters,Ultrasonic transducer,Piezoelectric sheet,Waveguides,Backing layers,en
dc.relation.page103-
dc.identifier.doi10.6342/NTU202404452-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-10-08-
dc.contributor.author-college工學院-
dc.contributor.author-dept工程科學及海洋工程學系-
顯示於系所單位:工程科學及海洋工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf5.6 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved