Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 食品科技研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96001
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor呂廷璋zh_TW
dc.contributor.advisorTing-Jang Luen
dc.contributor.author曹以霖zh_TW
dc.contributor.authorYi-Lin Tsaoen
dc.date.accessioned2024-09-25T16:33:23Z-
dc.date.available2024-09-26-
dc.date.copyright2024-09-25-
dc.date.issued2024-
dc.date.submitted2024-08-29-
dc.identifier.citationAli, N. M.; Mohd Yusof, H.; Yeap, S.-K.; Ho, W.-Y.; Beh, B.-K.; Long, K.; Koh, S.-P.; Abdullah, M. P.; Alitheen, N. B., Anti-Inflammatory and Antinociceptive Activities of Untreated, Germinated, and Fermented Mung Bean Aqueous Extract. Evidence-Based Complementary and Alternative Medicine 2014, 2014, 350507.
Bonnin, E.; Goff, A.; Körner, R.; Vigouroux, J.; Roepstorff, P.; Thibault, J. F., Hydrolysis of pectins with different degrees and patterns of methylation by the endopolygalacturonase of Fusarium moniliforme. Biochimica et biophysica acta 2002, 1596, 83-94.
Burton, R. A.; Gidley, M. J.; Fincher, G. B., Heterogeneity in the chemistry, structure and function of plant cell walls. Nature Chemical Biology 2010, 6, 724-732.
Bush, M. S.; Marry, M.; Huxham, M. I.; Jarvis, M. C.; McCann, M. C., Developmental regulation of pectic epitopes during potato tuberisation. Planta 2001, 213, 869-880.
Cassab, G. I., Arabinogalactan proteins during the development of soybean root nodules. Planta 1986, 168, 441-6.
Cataldi, T. R. I.; Margiotta, G.; Zambonin, C. G., Determination of sugars and alditols in food samples by HPAEC with integrated pulsed amperometric detection using alkaline eluents containing barium or strontium ions. Food Chemistry 1998, 62, 109-115.
Chen, Y. M.; Chang, S. K. C., Macronutrients, Phytochemicals, and Antioxidant Activity of Soybean Sprout Germinated with or without Light Exposure. J. Food Science 2015, 80, S1391-S1398.
Cipriani, T. R.; Mellinger, C. G.; Bertolini, M. L. C.; Baggio, C. H.; Freitas, C. S.; Marques, M. C. A.; Gorin, P. A. J.; Sassaki, G. L.; Iacomini, M., Gastroprotective effect of a type I arabinogalactan from soybean meal. Food Chemistry 2009, 115, 687-690.
Coen, E.; Cosgrove, D. J., The mechanics of plant morphogenesis. Science 2023, 379, eade8055.
Cosgrove, D. J., Structure and growth of plant cell walls. Nature Reviews Molecular Cell Biology 2024, 25, 340-358.
Dhingra, D.; Michael, M.; Rajput, H.; Patil, R. T., Dietary fibre in foods: a review. Journal of Food Science and Technology 2012, 49, 255-66.
Ding, H. H.; Cui, S. W.; Goff, H. D.; Chen, J.; Wang, Q.; Han, N. F., Arabinan-rich rhamnogalacturonan-I from flaxseed kernel cell wall. Food Hydrocolloids 2015, 47, 158-167.
Dion, C.; Chappuis, E.; Ripoll, C., Does larch arabinogalactan enhance immune function? A review of mechanistic and clinical trials. Journal of Nutrition and Metabolism 2016, 13, 28.
Eun-Mi Choi, A.-J. K., Yeon-O Kim, and Jae-Kwan Hwang, Immunomodulating Activity of Arabinogalactan and Fucoidan In Vitro. Journal of Medicinal Food 2005, 8, 446-453.
Guadalupe, Z.; Ayestarán, B.; Williams, P.; Doco, T., Determination of Must and Wine Polysaccharides by Gas Chromatography-Mass Spectrometry (GC-MS) and Size-Exclusion Chromatography (SEC). In Polysaccharides: Bioactivity and Biotechnology, Ramawat, K. G.; Mérillon, J.-M., Eds. Springer International Publishing:, 2015; pp 1265-1297.
Guillon, F.; Moïse, A.; Quemener, B.; Bouchet, B.; Devaux, M.-F.; Alvarado, C.; Lahaye, M., Remodeling of pectin and hemicelluloses in tomato pericarp during fruit growth. Plant Science 2017, 257, 48-62.
Ho, G. T. T.; Ahmed, A.; Zou, Y.-F.; Aslaksen, T.; Wangensteen, H.; Barsett, H., Structure–activity relationship of immunomodulating pectins from elderberries. Carbohydrate Polymers 2015, 125, 314-322.
Hoffmann, N.; King, S.; Samuels, A. L.; McFarlane, H. E., Subcellular coordination of plant cell wall synthesis. Developmental Cell 2021, 56, 933-948.
Hromadova, D.; Soukup, A.; Tylova, E., Arabinogalactan Proteins in Plant Roots - An Update on Possible Functions. Frontiers in Plant Science 2021, 12.
Ishii, T.; Konishi, T.; Ito, Y.; Ono, H.; Ohnishi-Kameyama, M.; Maeda, I., A β-(1→3)-arabinopyranosyltransferase that transfers a single arabinopyranose onto arabino-oligosaccharides in mung bean (Vigna radiate) hypocotyls. Phytochemistry 2005, 66, 2418-2425.
Ito, K.; Fukuoka, K.; Nishigaki, N.; Hara, K.; Yoshimi, Y.; Kuki, H.; Takahashi, D.; Tsumuraya, Y.; Kotake, T., Structural features conserved in subclass of type II arabinogalactan. Plant Biotechnol. 2020, 37, 459-463.
Kaczmarska, A.; Pieczywek, P. M.; Cybulska, J.; Zdunek, A., Structure and functionality of Rhamnogalacturonan I in the cell wall and in solution: A review. Carbohydrate Polymers 2022, 278, 118909.
Kitazawa, K.; Tryfona, T.; Yoshimi, Y.; Hayashi, Y.; Kawauchi, S.; Antonov, L.; Tanaka, H.; Takahashi, T.; Kaneko, S.; Dupree, P.; Tsumuraya, Y.; Kotake, T., β-galactosyl Yariv reagent binds to the β-1,3-galactan of arabinogalactan proteins. Plant physiology 2013, 161, 1117-1126.
López-Franco, Y. L.; Higuera-Ciapara, I.; Lizardi-Mendoza, J.; Wang, W.; Goycoolea, F. M., Chapter 23 - Other exudates: Tragacanth, karaya, mesquite gum, and larchwood arabinogalactan. In Handbook of Hydrocolloids (Third Edition), Phillips, G. O.; Williams, P. A., Eds. Woodhead Publishing: 2021; pp 673-727.
Li, J.; Ai, L.; Yang, Q.; Liu, Y.; Shan, L., Isolation and structural characterization of a polysaccharide from fruits of Zizyphus jujuba cv. Junzao. International Journal of Biological Macromolecules 2013, 55, 83-87.
Li, N.; Yang, F.; Su, J.; Shi, S.; Ordaz-Ortiz, J. J.; Cheng, X.; Xiong, S.; Xu, Y.; Wu, J.; Wang, H.; Wang, S., Structure characterization of an arabinogalactan from Cynanchum atratum and its immune stimulatory activity on RAW264.7 cells. International Journal of Biological Macromolecules 2022, 194, 163-171.
Megat, R. M. R.; Azrina, A.; Norhaizan, M. E., Effect of germination on total dietary fibre and total sugar in selected legumes. International Food Research Journal 2016, 23, 257-261.
Mohd Ali, N.; Mohd Yusof, H.; Long, K.; Yeap, S. K.; Ho, W. Y.; Beh, B. K.; Koh, S. P.; Abdullah, M. P.; Alitheen, N. B., Antioxidant and Hepatoprotective Effect of Aqueous Extract of Germinated and Fermented Mung Bean on Ethanol-Mediated Liver Damage. BioMed Research International 2013, 2013, 693613.
Mohnen, D., Pectin structure and biosynthesis. Current Opinion in Plant Biology 2008, 11, 266-277.
Mort, A.; Zheng, Y.; Qiu, F.; Nimtz, M.; Bell-Eunice, G., Structure of xylogalacturonan fragments from watermelon cell-wall pectin. Endopolygalacturonase can accommodate a xylosyl residue on the galacturonic acid just following the hydrolysis site. Carbohydr. Res. 2008, 343, 1212-1221.
Ochoa-Villarreal, M.; Aispuro, E.; Vargas-Arispuro, I.; Martínez-Téllez, M., Plant Cell Wall Polymers: Function, Structure and Biological Activity of Their Derivatives. In 2012.
Pedersen, G. B.; Blaschek, L.; Frandsen, K. E. H.; Noack, L. C.; Persson, S., Cellulose synthesis in land plants. Molecular Plant 2023, 16, 206-231.
Peng, Q.; Liu, H.; Lei, H.; Wang, X., Relationship between structure and immunological activity of an arabinogalactan from Lycium ruthenicum. Food Chemistry 2016, 194, 595-600.
Pettolino, F. A.; Walsh, C.; Fincher, G. B.; Bacic, A., Determining the polysaccharide composition of plant cell walls. Nature Protocols 2012, 7, 1590-1607.
Přerovská, T.; Pavlů, A.; Hancharyk, D.; Rodionova, A.; Vavříková, A.; Spiwok, V., Structural Basis of the Function of Yariv Reagent—An Important Tool to Study Arabinogalactan Proteins. Frontiers in Molecular Biosciences 2021, 8.
Sanchez, A. M. H.; Tafur, J. C.; Rodriguez-Monroy, M.; Sepulveda-Jimenez, G., Arabiongalactan protein in cell culture. Interciencia 2009, 34, 170-176.
Sato, K.; Hara, K.; Yoshimi, Y.; Kitazawa, K.; Ito, H.; Tsumuraya, Y.; Kotake, T., Yariv reactivity of type II arabinogalactan from larch wood. Carbohydrate Research 2018, 467, 8-13.
Showalter, A. M., Structure and function of plant cell wall proteins. The Plant Cell 1993, 5, 9-23.
Silva, J.; Ferraz, R.; Dupree, P.; Showalter, A. M.; Coimbra, S., Three Decades of Advances in Arabinogalactan-Protein Biosynthesis. Frontiers in Plant Science 2020, 11.
Smestad Paulsen, B.; Barsett, H., Bioactive Pectic Polysaccharides. In Polysaccharides I: Structure, Characterization and Use, Heinze, T., Ed. Springer Berlin Heidelberg: Berlin, Heidelberg, Germany, 2005; pp 69-101.
Su, S. H.; Higashiyama, T., Arabinogalactan proteins and their sugar chains: functions in plant reproduction, research methods, and biosynthesis. Plant Reproduction 2018, 31, 67-75.
Świeca, M.; Gawlik-Dziki, U., Effects of sprouting and postharvest storage under cool temperature conditions on starch content and antioxidant capacity of green pea, lentil and young mung bean sprouts. Food Chemistry 2015, 185, 99-105.
Tryfona, T.; Bourdon, M.; Delgado Marques, R.; Busse-Wicher, M.; Vilaplana, F.; Stott, K.; Dupree, P., Grass xylan structural variation suggests functional specialization and distinctive interaction with cellulose and lignin. Plant Journal 2023, 113, 1004-1020.
Turner, D. C.; Schäfer, M.; Lancaster, S.; Janmohamed, I.; Gachanja, A.; Creasey, J., Gas Chromatography-Mass Spectrometry: How Do I Get the Best Results? The Royal Society of Chemistry: 2019.
Volpi, C.; Janni, M.; Lionetti, V.; Bellincampi, D.; Favaron, F.; D'Ovidio, R., The ectopic expression of a pectin methyl esterase inhibitor increases pectin methyl esterification and limits fungal diseases in wheat. Molecular Plant Microbe Interaction 2011, 24, 1012-9.
Voragen, A. G. J.; Coenen, G.-J.; Verhoef, R. P.; Schols, H. A., Pectin, a versatile polysaccharide present in plant cell walls. Structural Chemistry 2009, 20, 263-275.
Wisniewska, E.; Majewska-Sawka, A., Arabinogalactan-proteins stimulate the organogenesis of guard cell protoplasts-derived callus in sugar beet. Plant Cell Reports 2007, 26, 1457-1467.
Wu, J. J.; Xu, Y. B.; Zhu, B.; Liu, K. H.; Wang, S. Q.; Sheng, Y. J.; Wang, H. J.; Shi, S. S.; Zhang, Q. Y.; Wang, S. C.; Qin, L. P., Characterization of an arabinogalactan from the fruit hulls of Ficus pumila Linn. and its immunomodulatory effect. Journal of Functional Food. 2020, 73.
Yang, L.-C.; Lu, T.-J.; Lin, W.-C., The prebiotic arabinogalactan of Anoectochilus formosanus prevents ovariectomy-induced osteoporosis in mice. Journal of Functional Food. 2013, 5, 1642-1653.
Yapo, B. M., Rhamnogalacturonan-I: A Structurally Puzzling and Functionally Versatile Polysaccharide from Plant Cell Walls and Mucilages. Polymer Reviews 2011, 51, 391-413.
Zdunek, A.; Pieczywek, P. M.; Cybulska, J., The primary, secondary, and structures of higher levels of pectin polysaccharides. Comprehensive Reviews in Food Science and Food Safety 2021, 20, 1101-1117.
Zhao, T.; Liu, S.; Ma, X.; Shuai, Y.; He, H.; Guo, T.; Huang, W.; Wang, Q.; Liu, S.; Wang, Z.; Gong, G.; Huang, L., Lycium barbarum arabinogalactan alleviates intestinal mucosal damage in mice by restoring intestinal microbes and mucin O-glycans. Carbohydrate Polymer 2024, 330, 121882.
姚穎君 (2020), 部分甲基化醣醛醋酸酯醣衍生物 (PMAA) 各式鍵結分析, 呂廷璋教授實驗室,國立台灣大學食品科技研究所。
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96001-
dc.description.abstract果膠為植物細胞壁中可溶性的酸性多醣,在不同部位具有不同的化學結構,在纖維素微纖維間形成可以水合的膠狀基,其為細胞壁厚度、水合程度、孔洞性、離子交換能力與靜電性質的重要決定因子。綠豆芽與黃豆芽為廣泛食用的芽菜類蔬菜,其熱水萃取物與水溶性多醣被證明具有生物活性,因此本論文選擇此兩種芽菜解析其多醣的分子結構特徵。本研究以酸水解、化學衍生化結合層析法、質譜法、以及對於阿拉伯半乳聚醣親和專一性之Yariv 試劑對於綠豆芽以及黃豆芽之非消化水溶性多醣進行結構解析。結果發現綠豆芽與黃豆芽皆主要以半乳醣、阿拉伯醣與半乳醣醛酸所構成,且兩者主要之醣鍵結形式皆為3,6-半乳呋喃醣、6-半乳呋喃醣與還原端阿拉伯醣,並同時具有3-阿拉伯醣與5-阿拉伯醣之鍵結形式,且結合β-Gal Yariv reagent 對於綠豆芽水溶性多醣與黃豆芽非消化水溶性多糖之結果及免疫調節活性測試證明,兩者上述主要之共同分子特徵為典型之具免疫調節活性之多分支之阿拉伯半乳聚醣二型結構,且黃豆芽非消化水溶性多醣具有促進Bifidobacterium longum 生長趨勢之特性,而兩者所展現出之生理活性反應仍存在差異,而相關生理活性與其阿拉伯半乳聚醣鍵結區塊間的關係仍有待進一步探討,以瞭解植物細胞壁生長初期的多醣分子特徵。zh_TW
dc.description.abstractPectin is a soluble acidic polysaccharide found in plant cell walls, with varying chemical structures in different plant parts. It forms a hydrated gel-like matrix between cellulose microfibrils and is a crucial determinant of cell wall thickness, hydration, porosity, ion exchange capacity, and electrostatic properties. Mung bean sprouts and soybean sprouts are widely consumed sprout vegetables, and their hot water extracts and water-soluble polysaccharides have been shown to possess bioactivity. Therefore, this thesis focuses on analyzing the molecular structural characteristics of the polysaccharides in these two types of sprouts. The study used acid hydrolysis, chemical derivatization combined with chromatography, mass spectrometry, and Yariv reagent, which is specific for arabinogalactan affinity, to analyze the structure of indigestible water-soluble polysaccharides in mung bean sprouts and soybean sprouts. The results showed that both mung bean sprouts and soybean sprouts mainly consist of galactose, arabinose, and galacturonic acid, with the primary glycosidic linkages being 3,6-galactofuranose, 6-galactofuranose, and reducing-end arabinose. Additionally, they both exhibit linkages at 3-arabinose and 5-arabinose. The combination of β-Gal Yariv reagent results for mung bean sprout water-soluble polysaccharides and soybean sprout non-digestible water-soluble polysaccharides, along with immunomodulatory activity tests, indicated that the shared molecular feature of these polysaccharides is a typical highly branched arabinogalactan type II structure with immunomodulatory activity. Moreover, soybean sprout indigestible water-soluble polysaccharides tend to promote the growth of Bifidobacterium longum. However, differences in the physiological activity responses between the two types of sprouts were observed, and the relationship between these physiological activities and the arabinogalactan linkages still requires further investigation to better understand the molecular characteristics of polysaccharides during the early stages of plant cell wall development.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-25T16:33:23Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-09-25T16:33:23Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents謝誌 i
摘要 ii
Abstract iii
目次 v
一、前言 1
二、文獻回顧 2
2.1. 植物細胞壁的基礎構造 2
2.2. 植物細胞壁之化學組成與合成 2
2.2.1 纖維素 2
2.2.2 半纖維素 2
2.2.3果膠多醣 3
2.3 細胞壁多醣的合成機制 10
2.4 植物膳食纖維之定義 11
2.5 豆芽 11
2.5.1 綠豆芽 11
2.5.2 黃豆芽 11
2.6. 豆芽中的醣組成 12
2.6.1. 綠豆發芽前與發芽後的整體醣組成 12
2.6.1.2 綠豆芽中的水溶性多醣 12
2.6.1.3 綠豆芽胚軸中的醣合成酵素 12
2.6.2 黃豆發芽前與發芽後的整體醣組成 12
2.7. 多醣分子特徵分析方法 13
2.7.1. 氣相層析質譜法 13
2.7.2. 甲基化與乙醯化衍生法結合氣相層析質譜法 14
2.7.3. β-Gal Yariv reagent 對 Arabinogalactan-II 產生共聚沉澱之親和性 15
三、研究目的與實驗架構 16
3.1 研究目的 16
3.2 研究架構 16
四、材料與方法 17
4.1. 實驗材料 17
4.2 試劑、化學品與儀器 17
4.2.1. 化學藥劑 17
4.2.2. 標準品 18
4.2.3. 儀器設備 18
4.2.4. 酵素 19
4.2.5. 菌株與細胞 19
4.3豆芽多醣製備 20
4.3.1豆芽粗多醣製備 20
4.3.2豆芽非消化水溶性多醣製備 20
4.3.3豆芽以polygalacturonanase水解之非消化水溶性多醣製備 21
4.4 呈色定量法 21
4.4.1總醣含量測定 (酚-硫酸法) 21
4.4.2 醣醛酸含量測定 21
4.4.3. 蛋白質含量測定 21
4.4. 陰離子交換層析法劃分非消化水溶性多醣之流洗條件 22
4.5. 以高效陰離子交換層析法結合脈衝式安培偵測儀檢測醣類之單醣組成分布 22
4.5.1.樣品前處理 23
4.5.2.甲醇解 23
4.5.3.酸水解 23
4.5.4. 高效液相層析系統與脈衝安培偵測器分析條件 23
4.6 醣類鍵結分析 24
4.6.1樣品乾燥 24
4.6.2具醣醛酸之多醣先還原其羧酸基 25
4.6.3甲基化 (Methylation) 25
4.6.4甲醇解 (Methylation) 26
4.6.5酸水解 (Acid hydrolysis) 26
4.6.6還原反應 26
4.6.7乙醯化 (acetylation) 26
4.6.8 氣相層析質譜系統分析條件 27
4.7. 以Yariv reagent檢測樣品中arabinogalactan含量 27
4.8 測定多醣在Bifidobacterium longum 與 Lactobacillus acidophilus 下之發酵情況與對生長的影響。 28
4.9 小鼠巨噬細胞測試 (本實驗由中國醫藥大學藥學系 楊麗嬋老師實驗室協助進行) 28
五、結果與討論 30
5.1. 綠豆芽與黃豆芽之水溶性多醣含量 30
5.2. 綠豆芽水溶性多醣與黃豆芽水溶性多醣的單醣組成分布。 30
5.3. 黃豆芽與綠豆芽非消化水溶性多醣的醣苷鍵結組成 31
5.4. 綠豆芽及黃豆芽非消化水溶性多醣Arabinogalactan-II 特徵結構之含量相對比率 32
5.5. 綠豆芽非消化水溶性多醣與綠豆芽非消化水溶性多醣之表面電荷差異分布比較 33
5.6 綠豆芽水溶性多醣及黃豆芽水溶性多醣對於RAW.264.7 小鼠巨噬細胞的 Nitric oxide 的分泌調節效果 (此部分由中國醫藥大學藥學系楊麗嬋教授實驗室協助檢測) 34
5.7. 測定綠豆芽非消化水溶性多醣 (IDPS-VR) 與黃豆芽非消化水溶性多醣 (IDPS-GM) 在Bifidobacterium longum 與 Lactobacillus acidophilus 下之發酵 35
六、結論與展望 37
七、圖、表 38
表一、綠豆芽水溶性多糖 (CP-VR)、非消化水溶性多醣 (IDPS-VR)、半乳醣醛酸酶處理之非消化水溶性多醣(PG-VR) 之單醣組成 38
表二、黃豆芽水溶性多糖 (CP-GM)、非消化水溶性多醣 (IDPS-GM)、半乳醛酸酶處理之非消化水溶性多醣(PG-GM)之單醣組成 39
表三、經半乳醣醛酸酶水解之綠豆芽非消化水溶性多醣(PG-GM)、經半乳醣醛酸酶水解之黃豆芽非消化水溶性多醣 (PG-VR) 之醣苷鍵結分布 40
表四、綠豆芽 (VR) 與黃豆芽(GM) 水溶性多糖 (CPs)、非消化水溶性多醣 (IDPS)、半乳醛酸酶處理之非消化水溶性多醣(PG) 之阿拉伯半乳聚醣二型結構含量 40
表五、綠豆芽與黃豆芽非消化水溶性多醣經 Bifidobacterium longum 與 Lactobacillus acidophilus 發酵前與發酵後之可滴定酸度含量變化 41
圖一、綠豆芽非消化水溶性多醣經DEAE-650M 陰離子交換層析管柱 (26 mm ╳ 300 mm) 之層析圖 42
圖二、黃豆芽非消化水溶性多醣經DEAE-650M 陰離子交換層析管柱 (26 mm ╳ 300 mm) 之層析圖 43
圖三、綠豆芽水溶性多醣對於RAW 264.7 小鼠巨噬細胞之NO刺激活性 44
圖四、黃豆芽水溶性多醣對於RAW 264.7 小鼠巨噬細胞之NO刺激活性 45
圖五、綠豆芽水溶性多醣對於受LPS刺激之RAW 264.7 小鼠巨噬細胞之NO分泌調節活性 46
圖六、黃豆芽水溶性多醣對於受LPS刺激之RAW 264.7 小鼠巨噬細胞之NO分泌調節活性 47
圖七、黃豆芽非消化水溶性多醣對於Lb. acidophilus 與 Bl. longum於0、2、4、8、12、24、48小時測量之生長曲線影響情況 48
圖八、酚-硫酸總醣含量比色法品管圖,使用1 mg/ml Gum Arabic 水溶液作為品管樣品 49
圖九、醛醣酸比色法品管圖,使用 1 mg/ml pectin from apple 水溶液作為品管樣品 49
圖十、β-Gal Yariv reagent 結合沉澱呈色法品管圖,使用50 μg/ml Gum Arabic 水溶液作為品管 50
圖十一、T-Araf 鍵結部分甲基化醣醇醋酸酯衍生物之質譜圖 (上) 及與CCRC database並列之圖譜對照圖 (下) 51
圖十二、T-Arap 鍵結部分甲基化醣醇醋酸酯衍生物之質譜圖與CCRC database並列之圖譜對照圖 52
圖十三、2-Araf 鍵結部分甲基化醣醇醋酸酯衍生物之質譜圖與CCRC database並列之圖譜對照圖 53
圖十四、2,5-Araf 鍵結部分甲基化醣醇醋酸酯衍生物之質譜圖與CCRC database並列之圖譜對照圖 54
圖十五、3-Araf 鍵結部分甲基化醣醇醋酸酯衍生物之質譜圖與CCRC database並列之圖譜對照圖 55
圖十六、3,5-Araf 鍵結部分甲基化醣醇醋酸酯衍生物之質譜圖與CCRC database並列之圖譜對照圖 56
圖十七、5-Araf 鍵結部分甲基化醣醇醋酸酯衍生物之質譜圖與CCRC database CCRC database並列之圖譜對照圖 57
圖十八、T-Glcp/GlcpA 鍵結部分甲基化醣醇醋酸酯衍生物之質譜圖與CCRC database並列之圖譜對照圖 58
圖十九、3-Glcp 鍵結部分甲基化醣醇醋酸酯衍生物之質譜圖與CCRC database並列之圖譜對照圖 59
圖二十、4-Glcp 鍵結部分甲基化醣醇醋酸酯衍生物之質譜圖與CCRC database並列之圖譜對照圖 60
圖二十一、2,4-Rhap 鍵結部分甲基化醣醇醋酸酯衍生物之質譜圖與CCRC database並列之圖譜對照圖 61
圖二十二、T-Galp 鍵結部分甲基化醣醇醋酸酯衍生物之質譜圖與CCRC database並列之圖譜對照圖 62
圖二十三、3-Galp 鍵結部分甲基化醣醇醋酸酯衍生物之質譜圖與CCRC database並列之圖譜對照圖 63
圖二十四、4-Galp /4-GalpA鍵結部分甲基化醣醇醋酸酯衍生物之質譜圖與CCRC database並列之圖譜對照圖 64
圖二十五、6-Galp鍵結部分甲基化醣醇醋酸酯衍生物之質譜圖與CCRC database並列之圖譜對照圖 65
圖二十六、3,6-Galp鍵結部分甲基化醣醇醋酸酯衍生物之質譜圖與本實驗室資料庫 (姚穎君, 2020) 並列之圖譜對照圖 66
圖二十七、3,4-Galp鍵結部分甲基化醣醇醋酸酯衍生物之質譜圖與CCRC database並列之圖譜對照圖 67
圖二十八、4,6-Galp鍵結部分甲基化醣醇醋酸酯衍生物之質譜圖與CCRC database並列之圖譜對照圖 68
圖二十九、3,4,6-Galp鍵結部分甲基化醣醇醋酸酯衍生物之質譜圖與CCRC database並列之圖譜對照圖 69
八、參考文獻 70
-
dc.language.isozh_TW-
dc.title綠豆芽與黃豆芽中非消化水溶性多醣之分子結構特徵探討zh_TW
dc.titleStructural characteristics of indigestible water-soluble polysaccharides in mung bean and soybean sproutsen
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree碩士-
dc.contributor.coadvisor羅翊禎zh_TW
dc.contributor.coadvisorYi-Chen Loen
dc.contributor.oralexamcommittee陳宏彰;謝淑貞;張永和zh_TW
dc.contributor.oralexamcommitteeHong-Jhang Chen;Shu-Chen Hsieh;Yung-Ho Changen
dc.subject.keyword黃豆芽,綠豆芽,果膠,阿拉伯半乳聚醣,zh_TW
dc.subject.keywordmung bean sprout,soybean sprout,pectin,arabinogalactan,en
dc.relation.page78-
dc.identifier.doi10.6342/NTU202404053-
dc.rights.note未授權-
dc.date.accepted2024-08-29-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept食品科技研究所-
顯示於系所單位:食品科技研究所

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf
  未授權公開取用
3.17 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved