Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95974
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor鄭原忠zh_TW
dc.contributor.advisorYuan-Chung Chengen
dc.contributor.author黃品澤zh_TW
dc.contributor.authorPin-Tse Huangen
dc.date.accessioned2024-09-25T16:25:11Z-
dc.date.available2024-09-26-
dc.date.copyright2024-09-25-
dc.date.issued2024-
dc.date.submitted2024-09-19-
dc.identifier.citation[1] Gregory D Scholes and Garry Rumbles. Excitons in nanoscale systems. Nat. Mater., 5:683–696, 2006.
[2] Richard John Cogdell, Alastair Thomas Gardiner, Hideki Hashimoto, and Tatas Hardo Panintingjati Brotosudarmo. A comparative look at the first few milliseconds of the light reactions of photosynthesis. Photochem. Photobiol. Sci., 7:1150–1158, 2008.
[3] Yuan-Chung Cheng and Graham R Fleming. Dynamics of light harvesting in photosynthesis. Annu. Rev. Phys. Chem., 60:241–262, 2009.
[4] Gregory D Scholes, Graham R Fleming, Alexandra Olaya-Castro, and Rienk Van Grondelle. Lessons from nature about solar light harvesting. Nat. Chem., 3:763–774, 2011.
[5] Neill Lambert, Yueh-Nan Chen, Yuan-Chung Cheng, Che-Ming Li, Guang-Yin Chen, and Franco Nori. Quantum biology. Nat. Phys., 9:10–18, 2013.
[6] Th Förster. Zwischenmolekulare energiewanderung und fluoreszenz. Ann. Phys., 437:55–75, 1948.
[7] Hitoshi Sumi. Theory on rates of excitation-energy transfer between molecular aggregates through distributed transition dipoles with application to the antenna system in bacterial photosynthesis. J. Phys. Chem. B, 103:252–260, 1999.
[8] Seogjoo Jang, Marshall D Newton, and Robert J Silbey. Multichromophoric Förster resonance energy transfer. Phys. Rev. Lett., 92:218301, 2004.
[9] Wei Min Zhang, Torsten Meier, Vladimir Chernyak, and Shaul Mukamel. Excitonmigration and three-pulse femtosecond optical spectroscopies of photosynthetic antenna complexes. J. Chem. Phys., 108:7763–7774, 1998.
[10] Mino Yang and Graham R Fleming. Influence of phonons on exciton transfer dynamics: comparison of the Redfield, Förster, and modified Redfield equations. Chem. Phys., 282:163–180, 2002.
[11] Yu Chang and Yuan-Chung Cheng. On the accuracy of coherent modified Redfield theory in simulating excitation energy transfer dynamics. J. Chem. Phys., 142, 2015.
[12] Y. Chang and Y. C. Cheng. On the accuracy of coherent modified Redfield theory in simulating excitation energy transfer dynamics. J. Chem. Phys., 142, 2015.
[13] Anton Trushechkin. Calculation of coherences in Förster and modified Redfield theories of excitation energy transfer. J. Chem. Phys., 151, 2019.
[14] Vladimir Novoderezhkin, Alessandro Marin, and Rienk van Grondelle. Intra- and inter-monomeric transfers in the light harvesting lhcii complex: the Redfield–Förster picture. Phys. Chem. Chem. Phys., 13:17093–17103, 2011.
[15] Vladimir Novoderezhkin and Rienk van Grondelle. Spectra and dynamics in the b800 antenna: Comparing hierarchical equations, Redfield and Förster theories. J. Phys. Chem. B, 117:11076–11090, 2013.
[16] Vladimir I Novoderezhkin and Rienk Van Grondelle. Modeling of excitation dynamics in photosynthetic light-harvesting complexes: exact versus perturbative approaches. J. Phys. B: At. Mol. Opt. Phys., 50:124003, 2017.
[17] Thomas Renger, Mohamed E Madjet, A Knorr, and Frank Müh. How the molecular structure determines the flow of excitation energy in plant light-harvesting complex ii. J. Plant Physiol., 168:1497–1509, 2011.
[18] Thanh Nhut Do, Hoang Long Nguyen, Parveen Akhtar, Kai Zhong, Thomas LC Jansen, Jasper Knoester, Stefano Caffarri, Petar H Lambrev, and Howe-Siang Tan. Ultrafast excitation energy transfer dynamics in the lhcii–cp29–cp24 subdomain of plant photosystem ii. J. Phys. Chem. Lett., 13:4263–4271, 2022.
[19] Andrei A Golosov and David R Reichman. Reference system master equation approaches to condensed phase charge transfer processes. i. general formulation. J. Chem. Phys., 115:9848–9861, 2001.
[20] Andrei A Golosov and David R Reichman. Reference system master equation approaches to condensed phase charge transfer processes. ii. numerical tests and applications to the study of photoinduced charge transfer reactions. J. Chem. Phys., 115:9862–9870, 2001.
[21] Yuan-Chung Cheng and Robert J Silbey. A unified theory for charge-carrier transport in organic crystals. J. Chem. Phys., 128, 2008.
[22] Hung-Tzu Chang and Yuan-Chung Cheng. Coherent versus incoherent excitation energy transfer in molecular systems. J. Chem. Phys., 137, 2012.
[23] Hung-Tzu Chang, Pan-Pan Zhang, and Yuan-Chung Cheng. Criteria for the accuracy of small polaron quantum master equation in simulating excitation energy transfer dynamics. J. Chem. Phys., 139, 2013.
[24] Hung-Hsuan Teh, Bih-Yaw Jin, and Yuan-Chung Cheng. Frozen-mode small polaron quantum master equation with variational bound for excitation energy transfer in molecular aggregates. J. Chem. Phys., 150, 2019.
[25] Seogjoo J Jang. Partially polaron-transformed quantum master equation for exciton and charge transport dynamics. J. Chem. Phys., 157, 2022.
[26] JL Skinner and D Hsu. Pure dephasing of a two-level system. J. Phys. Chem., 90:4931–4938, 1986.
[27] David W Brown, Katja Lindenberg, and Yang Zhao. Variational energy band theory for polarons: Mapping polaron structure with the global-local method. J. Chem. Phys., 107:3179–3195, 1997.
[28] Vladimir I Novoderezhkin and Rienk van Grondelle. Physical origins and models of energy transfer in photosynthetic light-harvesting. Phys. Chem. Chem. Phys., 12:7352–7365, 2010.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95974-
dc.description.abstract激發能量轉移在光合作用系統中發揮關鍵作用。這個過程的效率和根本重要性使激發能量轉移研究成為科學探究的一個重要領域。激發能量轉移動力學建模的傳統方法,例如用於非相干能量轉移的福斯特理論(FT) 和用於相干轉移的修正雷德菲爾德理論 (CMRT),在各種系統中都面臨著限制。本研究引入了一個統一的量子主方程式框架,稱為純相移變分極化子參考系統量子主方程式(PDVPRS-QME),它融合了FT和CMRT的特點,彌補了這些傳統範式之間的差距。 PDVPRS-QME考慮了獨特的交叉項,這對於準確捕捉中間狀態的動態至關重要,同時提供跨不同系統浴耦合強度的更廣泛的適用性。透過針對準絕熱傳播器路徑積分結果的數值基準以及與FT和CMRT的比較,PDVPRS-QME被證明可以透過確定最佳參考系統來改進傳統的微擾方法。這項研究強調了選擇適當基礎的重要性,並為推導量子主方程式提供了新的視角。zh_TW
dc.description.abstractExcitation energy transfer (EET) plays a pivotal role within photosynthetic systems. The efficiency and fundamental importance of this process elevate the study of EET as a vital area of scientific inquiry. Traditional methodologies for modeling EET dynamics, such as Förster Theory (FT) for incoherent energy transfer and the modified Redfield Theory (mRT) for coherent transfer, face limitations across various parameter regimes. This study introduces a unified quantum master equation framework, referred to as pure dephasing variational polaron reference system quantum master equation (PDVPRS-QME), which melds the characteristics of both FT and CMRT to bridge the gap between these traditional paradigms. The PDVPRS-QME accounts for unique cross-terms essential for accurately capturing the dynamics in intermediate system-bath coupling regimes alongside providing broader applicability across a broad range of system-bath coupling strengths. Through numerical benchmarks against quasiadiabatic propagator path integral (QUAPI) results and comparison with FT and CMRT, PDVPRS-QME is demonstrated to improve upon conventional perturbative approaches by determining an optimal reference system. This study underscores the significance of selecting an appropriate basis and provides a novel perspective for deriving QME.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-25T16:25:11Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-09-25T16:25:11Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsAcknowledgements i
摘要 iii
Abstract v
Contents vii
List of Figures xi
Denotation xv
Chapter 1 Introduction 1
1.1 Excitation energy transfer in photosynthetic systems . . . . . . . . . 1
1.2 Conventional Theories . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Pure-Dephasing Reference System Approach . . . . . . . . . . . . . 4
1.4 Content in This Work . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Chapter 2 Generalized Pure Dephasing Reference System Quantum Mater Equation 7
2.1 Model Dimer System . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.1 Frenkel Exciton Hamiltonian . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 Electronic Reference System . . . . . . . . . . . . . . . . . . . . . 8
2.1.3 Zeroth Order Hamiltonian and Perturbation . . . . . . . . . . . . . 9
2.2 Generalized PDRS Quantum Master Equation . . . . . . . . . . . . . 10
2.2.1 General Time Local Quantum Master Equation . . . . . . . . . . . 10
2.2.2 Coherent Part of QME . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.3 Incoherent Part of QME . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.4 Intrinsically Secular Form . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.5 Total Equation of Motion . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Population Transfer Rate in the PDRS . . . . . . . . . . . . . . . . . 16
Chapter 3 Variational Polaron Eletronic reference states 19
3.1 Partial Polaron Transformation . . . . . . . . . . . . . . . . . . . . . 19
3.1.1 System Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1.2 Bath and System-Bath Hamiltonian . . . . . . . . . . . . . . . . . . 21
3.2 Bogoliubov Variational approximation . . . . . . . . . . . . . . . . . 21
3.2.1 Variational Method to Determine Dressing Coefficient . . . . . . . 21
3.2.2 Discussion of Energy Surfaces . . . . . . . . . . . . . . . . . . . . 22
3.2.3 Abrupt Transition . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3 Variational polaron reference system . . . . . . . . . . . . . . . . . . 26
3.3.1 Effects of System-Bath Coupling and Temperature . . . . . . . . . 27
3.3.2 Quantifying the Deviation of PDVPRS from Conventional Approaches 29
Chapter 4 PDVPRS-QME Dynamics 31
4.1 Benchmarking of PDVPRS-QME Dynamics . . . . . . . . . . . . . 31
4.1.1 Comparison with Conventional Theories . . . . . . . . . . . . . . . 31
4.1.2 Analysis of Downhill Decay Rates . . . . . . . . . . . . . . . . . . 37
4.2 Unified Results for PDVPRS-QME with CMRT and FT: Localized Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Chapter 5 Intermediate Regime Analysis 43
5.1 Intermediate Regime Dynamics . . . . . . . . . . . . . . . . . . . . 43
5.2 Behavior of the PDVPRS-QME transfer rates . . . . . . . . . . . . . 45
Chapter 6 Detailed Balance in the PDVPRS-QME 47
6.1 Detailed Balance Problem for FT and PDVPRS-QME . . . . . . . . 47
6.2 Detailed balance problem for CMRT and FT . . . . . . . . . . . . . 49
Chapter 7 Conclusion 51
References 53
-
dc.language.isoen-
dc.title統一福斯特以及修正瑞德菲爾動力學的新理論: 純相移變分極化子參考系統量子主方程zh_TW
dc.titleUnified Theory for Förster and Redfield Dynamics: a Pure Dephasing Variational Polaron Reference System Quantum Master Equationen
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee金必耀;許良彥zh_TW
dc.contributor.oralexamcommitteeBih-Yaw Jin;Liang-Yan Hsuen
dc.subject.keyword激發能傳遞,量子主方程式,zh_TW
dc.subject.keywordExcitation energy transfer,Quantum master equation,en
dc.relation.page56-
dc.identifier.doi10.6342/NTU202404389-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-09-20-
dc.contributor.author-college理學院-
dc.contributor.author-dept化學系-
Appears in Collections:化學系

Files in This Item:
File SizeFormat 
ntu-113-1.pdf9.84 MBAdobe PDFView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved