Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 食品科技研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95944
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor潘敏雄zh_TW
dc.contributor.advisorMin-Hsiung Panen
dc.contributor.author蕭文虎zh_TW
dc.contributor.authorChristian Huberten
dc.date.accessioned2024-09-25T16:15:50Z-
dc.date.available2024-09-26-
dc.date.copyright2024-09-25-
dc.date.issued2024-
dc.date.submitted2024-08-06-
dc.identifier.citationAbels, E. R., & Breakefield, X. O. Introduction to Extracellular Vesicles: Biogenesis, RNA Cargo Selection, Content, Release, and Uptake. Cellular and Molecular Neurobiology 2016, 36(3), 301-312. https://doi.org/10.1007/s10571-016-0366-z
Agrawal, S. P., Kumar Sinha, M., & Kumar, R. Identification of human genes and its genomics functions via miRNAs of C. elegans on bioinformatics platforms. Journal of Next Generation Sequencing & Applications 2017, 04(02). https://doi.org/10.4172/2469-9853.1000150
Aheget, H., Tristán-Manzano, M., Mazini, L., Cortijo-Gutierrez, M., Galindo-Moreno, P., Herrera, C., Martin, F., Marchal, J. A., & Benabdellah, K. Exosome: A New Player in Translational Nanomedicine. Journal of Clinical Medicine 2020, 9(8), 2380. https://doi.org/10.3390/jcm9082380
Aljohani, N., Fletcher, J., El Shafey, H., Ghanem, S., Kabli, S. A., Morsi, M., & Aljohani, R. Overview of Heat Shock Proteins (HSPs) in Prokaryotes. Advances in Environmental Biology 2022, 16(6), 1-11. https://doi.org/10.22587/aeb.2022.16.6.1
Andrews, D. G. H. A new method for measuring the size of nematodes using image processing. Biol Methods Protoc 2020, 5(1), bpz020. https://doi.org/10.1093/biomethods/bpz020
Aranda-Rivera, A. K., Cruz-Gregorio, A., Arancibia-Hernández, Y. L., Hernández-Cruz, E. Y., & Pedraza-Chaverri, J. RONS and Oxidative Stress: An Overview of Basic Concepts. Oxygen 2022, 2(4), 437-478. https://doi.org/10.3390/oxygen2040030
Baietti, M. F., Zhang, Z., Mortier, E., Melchior, A., Degeest, G., Geeraerts, A., Ivarsson, Y., Depoortere, F., Coomans, C., Vermeiren, E., Zimmermann, P., & David, G. Syndecan–syntenin–ALIX regulates the biogenesis of exosomes. Nature Cell Biology 2012, 14(7), 677-685. https://doi.org/10.1038/ncb2502
Baumeister, R., & Ge, L. The worm in us – Caenorhabditis elegans as a model of human disease. Trends in Biotechnology 2002, 20(4), 147-148. https://doi.org/https://doi.org/10.1016/S0167-7799(01)01925-4
Benayoun, B. A., Pollina, E. A., & Brunet, A. Epigenetic regulation of ageing: linking environmental inputs to genomic stability. Nature Reviews Molecular Cell Biology 2015, 16(10), 593-610. https://doi.org/10.1038/nrm4048
Biagiotti, S., Abbas, F., Montanari, M., Barattini, C., Rossi, L., Magnani, M., Papa, S., & Canonico, B. Extracellular Vesicles as New Players in Drug Delivery: A Focus on Red Blood Cells-Derived EVs. Pharmaceutics 2023, 15(2), 365. https://doi.org/10.3390/pharmaceutics15020365
Bolanowski, M. A., Russell, R. L., & Jacobson, L. A. Quantitative measures of aging in the nematode Caenorhabditis elegans. I. Population and longitudinal studies of two behavioral parameters. Mechanisms of Ageing and Development 1981, 15(3), 279-295. https://doi.org/https://doi.org/10.1016/0047-6374(81)90136-6
Brunk, U. T., & Terman, A. Lipofuscin: mechanisms of age-related accumulation and influence on cell function. Free Radical Biology and Medicine 2002, 33(5), 611-619. https://doi.org/https://doi.org/10.1016/S0891-5849(02)00959-0
Bunggulawa, E. J., Wang, W., Yin, T., Wang, N., Durkan, C., Wang, Y., & Wang, G. Recent advancements in the use of exosomes as drug delivery systems. J Nanobiotechnology 2018, 16(1), 81. https://doi.org/10.1186/s12951-018-0403-9
Burnaevskiy, N., Sands, B., Yun, S., Tedesco, P. M., Johnson, T. E., Kaeberlein, M., Brent, R., & Mendenhall, A. (2018). hsp-16.2 chaperone biomarkers track physiological states of proteome dosage. Cold Spring Harbor Laboratory. https://dx.doi.org/10.1101/431643
Busatto, S., Vilanilam, G., Ticer, T., Lin, W. L., Dickson, D. W., Shapiro, S., Bergese, P., & Wolfram, J. Tangential Flow Filtration for Highly Efficient Concentration of Extracellular Vesicles from Large Volumes of Fluid. Cells 2018, 7(12). https://doi.org/10.3390/cells7120273
Chang, C. H., Ho, C. T., & Liao, V. H. N-gamma-(L-Glutamyl)-L-selenomethionine enhances stress resistance and ameliorates aging indicators via the selenoprotein TRXR-1 in Caenorhabditis elegans. Mol Nutr Food Res 2017, 61(8). https://doi.org/10.1002/mnfr.201600954
Chen, L., Vogelstein, J. T., Lyzinski, V., & Priebe, C. E. A joint graph inference case study: the C. elegans chemical and electrical connectomes. Worm 2016, 5(2), e1142041. https://doi.org/10.1080/21624054.2016.1142041
Colombo, M., Raposo, G., & Thery, C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol 2014, 30, 255-289. https://doi.org/10.1146/annurev-cellbio-101512-122326
Corsi, A. K., Wightman, B., & Chalfie, M. A Transparent Window into Biology: A Primer on Caenorhabditis elegans . Genetics 2015, 200(2), 387-407. https://doi.org/10.1534/genetics.115.176099
Crimmins, E. M. Lifespan and Healthspan: Past, Present, and Promise. The Gerontologist 2015, 55(6), 901-911. https://doi.org/10.1093/geront/gnv130
Croll, N. A., Smith, J. M., & Zuckerman, B. M. The aging process of the nematode Caenorhabditis elegans in bacterial and axenic culture. Exp Aging Res 1977, 3(3), 175-189. https://doi.org/10.1080/03610737708257101
Cutter, A. D., Morran, L. T., & Phillips, P. C. Males, Outcrossing, and Sexual Selection in Caenorhabditis Nematodes. Genetics 2019, 213(1), 27-57. https://doi.org/10.1534/genetics.119.300244
Dad, H. A., Gu, T. W., Zhu, A. Q., Huang, L. Q., & Peng, L. H. Plant Exosome-like Nanovesicles: Emerging Therapeutics and Drug Delivery Nanoplatforms. Mol Ther 2021, 29(1), 13-31. https://doi.org/10.1016/j.ymthe.2020.11.030
De Felice, F. G., & Lourenco, M. V. Brain metabolic stress and neuroinflammation at the basis of cognitive impairment in Alzheimer’s disease. Frontiers in Aging Neuroscience 2015, 7. https://doi.org/10.3389/fnagi.2015.00094
Deng, J., Dai, Y., Tang, H., & Pang, S. SKN-1 Is a Negative Regulator of DAF-16 and Somatic Stress Resistance in Caenorhabditis elegans . G3 Genes|Genomes|Genetics 2020, 10(5), 1707-1712. https://doi.org/10.1534/g3.120.401203
Deng, Z., Rong, Y., Teng, Y., Mu, J., Zhuang, X., Tseng, M., Samykutty, A., Zhang, L., Yan, J., Miller, D., Suttles, J., & Zhang, H.-G. Broccoli-Derived Nanoparticle Inhibits Mouse Colitis by Activating Dendritic Cell AMP-Activated Protein Kinase. Molecular Therapy 2017, 25(7), 1641-1654. https://doi.org/10.1016/j.ymthe.2017.01.025
Ding, A.-J., Zheng, S.-Q., Huang, X.-B., Xing, T.-K., Wu, G.-S., Sun, H.-Y., Qi, S.-H., & Luo, H.-R. Current Perspective in the Discovery of Anti-aging Agents from Natural Products. Natural Products and Bioprospecting 2017, 7(5), 335-404. https://doi.org/10.1007/s13659-017-0135-9
Dixson, A. C., Dawson, T. R., Di Vizio, D., & Weaver, A. M. Context-specific regulation of extracellular vesicle biogenesis and cargo selection. Nature Reviews Molecular Cell Biology 2023, 24(7), 454-476. https://doi.org/10.1038/s41580-023-00576-0
Drobny, A., Meloh, H., Wachtershauser, E., Hellmann, B., Mueller, A. S., van der Klis, J. D., Fitzenberger, E., & Wenzel, U. Betaine-rich sugar beet molasses protects from homocysteine-induced reduction of survival in Caenorhabditis elegans. Eur J Nutr 2020, 59(2), 779-786. https://doi.org/10.1007/s00394-019-01944-3
Du, S., & Zheng, H. Role of FoxO transcription factors in aging and age-related metabolic and neurodegenerative diseases. Cell Biosci 2021, 11(1), 188. https://doi.org/10.1186/s13578-021-00700-7
El-Kenawy, A. E. L. M., Hassan, S. M. A., Mohamed, A. M. M., & Mohammed, H. M. A. 2019. Tumeric or Curcuma longa Linn. Nonvitamin and Nonmineral Nutritional Supplements: 447-453. https://doi.org/10.1016/b978-0-12-812491-8.00059-x
El-Saadony, M. T., Yang, T., Korma, S. A., Sitohy, M., Abd El-Mageed, T. A., Selim, S., Al Jaouni, S. K., Salem, H. M., Mahmmod, Y., Soliman, S. M., Mo'men, S. A. A., Mosa, W. F. A., El-Wafai, N. A., Abou-Aly, H. E., Sitohy, B., Abd El-Hack, M. E., El-Tarabily, K. A., & Saad, A. M. Impacts of turmeric and its principal bioactive curcumin on human health: Pharmaceutical, medicinal, and food applications: A comprehensive review. Front Nutr 2022, 9, 1040259. https://doi.org/10.3389/fnut.2022.1040259
Faggionato, D. 2010. Suppressors of developmental myogenesis defects resulting in Duchenne muscular dystrophy, genes and mechanisms
Fan, S. J., Chen, J. Y., Tang, C. H., Zhao, Q. Y., Zhang, J. M., & Qin, Y. C. Edible plant extracellular vesicles: An emerging tool for bioactives delivery. Front Immunol 2022, 13, 1028418. https://doi.org/10.3389/fimmu.2022.1028418
Farrar, M. B., Wallace, H. M., Brooks, P., Yule, C. M., Tahmasbian, I., Dunn, P. K., & Hosseini Bai, S. A Performance Evaluation of Vis/NIR Hyperspectral Imaging to Predict Curcumin Concentration in Fresh Turmeric Rhizomes. Remote Sensing 2021, 13(9). https://doi.org/10.3390/rs13091807
Félix, M.-A., & Braendle, C. The natural history of Caenorhabditis elegans. Current Biology 2010, 20(22), R965-R969. https://doi.org/10.1016/j.cub.2010.09.050
Feng, S., Zhang, C., Chen, T., Zhou, L., Huang, Y., Yuan, M., Li, T., & Ding, C. Oleuropein Enhances Stress Resistance and Extends Lifespan via Insulin/IGF-1 and SKN-1/Nrf2 Signaling Pathway in Caenorhabditis elegans. Antioxidants (Basel) 2021, 10(11). https://doi.org/10.3390/antiox10111697
Fernandes, D. C., Gonçalves, R. C., & Laurindo, F. R. M. 2017. Measurement of Superoxide Production and NADPH Oxidase Activity by HPLC Analysis of Dihydroethidium Oxidation. R. M. Touyz & E. L. Schiffrin (Eds.), Hypertension: Methods and Protocols: 233-249. Springer New York. https://doi.org/10.1007/978-1-4939-6625-7_19
Fernández-Rhodes, M., Adlou, B., Williams, S., Lees, R., Peacock, B., Aubert, D., Jalal, A. R., Lewis, M. P., & Davies, O. G. Defining the influence of size-exclusion chromatography fraction window and ultrafiltration column choice on extracellular vesicle recovery in a skeletal muscle model. J Extracell Biol 2023, 2(4), e85. https://doi.org/10.1002/jex2.85
Foers, A. D., Chatfield, S., Dagley, L. F., Scicluna, B. J., Webb, A. I., Cheng, L., Hill, A. F., Wicks, I. P., & Pang, K. C. Enrichment of extracellular vesicles from human synovial fluid using size exclusion chromatography. Journal of Extracellular Vesicles 2018, 7(1), 1490145. https://doi.org/10.1080/20013078.2018.1490145
Garsin, D. A., Villanueva, J. M., Begun, J., Kim, D. H., Sifri, C. D., Calderwood, S. B., Ruvkun, G., & Ausubel, F. M. Long-Lived C. elegans daf-2 Mutants Are Resistant to Bacterial Pathogens. Science 2003, 300(5627), 1921-1921. https://doi.org/10.1126/science.1080147
Gazala, P., Duraiswamy, B., & Ansari, F. Hexane Extract of Rhizomes of Curcuma longa, Zingiber Officinale and Curcumine Life Span Extension in Caenorhabditis elegans By Reducing Fat in Intestine. Med Phoenix 2018, 3(1), 21-28. https://doi.org/10.3126/medphoenix.v3i1.20757
Griffiths, D., Hole, P., Smith, J., Malloy, A., & Carr, B. Size and Count of Nanoparticles by Scattering and Fluorescence Nanoparticle Tracking Analysis (NTA). NSTI-Nanotech 2010, 1, 4.
Guarente, L. Sirtuins, Aging, and Metabolism. Cold Spring Harbor Symposia on Quantitative Biology 2011, 76(0), 81-90. https://doi.org/10.1101/sqb.2011.76.010629
Guo, J., Huang, X., Dou, L., Yan, M., Shen, T., Tang, W., & Li, J. Aging and aging-related diseases: from molecular mechanisms to interventions and treatments. Signal Transduct Target Ther 2022, 7(1), 391. https://doi.org/10.1038/s41392-022-01251-0
Hartwig, K., Heidler, T., Moch, J., Daniel, H., & Wenzel, U. Feeding a ROS-generator to Caenorhabditis elegans leads to increased expression of small heat shock protein HSP-16.2 and hormesis. Genes Nutr 2009, 4(1), 59-67. https://doi.org/10.1007/s12263-009-0113-x
He, L., Zhu, D., Wang, J., & Wu, X. A highly efficient method for isolating urinary exosomes. Int J Mol Med 2019, 43(1), 83-90. https://doi.org/10.3892/ijmm.2018.3944
Heidler, T., Hartwig, K., Daniel, H., & Wenzel, U. Caenorhabditis elegans lifespan extension caused by treatment with an orally active ROS-generator is dependent on DAF-16 and SIR-2.1. Biogerontology 2010, 11(2), 183-195. https://doi.org/10.1007/s10522-009-9239-x
Hernandez-Cruz, E. Y., Eugenio-Perez, D., Ramirez-Magana, K. J., & Pedraza-Chaverri, J. Effects of Vegetal Extracts and Metabolites against Oxidative Stress and Associated Diseases: Studies in Caenorhabditis elegans. ACS Omega 2023, 8(10), 8936-8959. https://doi.org/10.1021/acsomega.2c07025
Hewlings, S. J., & Kalman, D. S. Curcumin: A Review of Its Effects on Human Health. Foods 2017, 6(10). https://doi.org/10.3390/foods6100092
Hipp, M. S., Kasturi, P., & Hartl, F. U. The proteostasis network and its decline in ageing. Nature Reviews Molecular Cell Biology 2019, 20(7), 421-435. https://doi.org/10.1038/s41580-019-0101-y
Hosono, R., Sato, Y., Aizawa, S.-I., & Mitsui, Y. Age-dependent changes in mobility and separation of the nematode Caenorhabditis elegans. Experimental Gerontology 1980, 15(4), 285-289. https://doi.org/https://doi.org/10.1016/0531-5565(80)90032-7
Hu, M., Ma, Y., & Chua, S. L. Bacterivorous nematodes decipher microbial iron siderophores as prey cue in predator–prey interactions. Proceedings of the National Academy of Sciences 2024, 121(3). https://doi.org/10.1073/pnas.2314077121
Huang, C., Xiong, C., & Kornfeld, K. Measurements of age-related changes of physiological processes that predict lifespan of Caenorhabditis elegans . Proceedings of the National Academy of Sciences 2004, 101(21), 8084-8089. https://doi.org/10.1073/pnas.0400848101
Huayta, J., Crapster, J. P., & San-Miguel, A. Endogenous DAF-16 spatiotemporal activity quantitatively predicts lifespan extension induced by dietary restriction. Communications Biology 2023, 6(1). https://doi.org/10.1038/s42003-023-04562-2
Izadi, M., Sadri, N., Abdi, A., Zadeh, M. M. R., Jalaei, D., Ghazimoradi, M. M., Shouri, S., & Tahmasebi, S. Longevity and anti-aging effects of curcumin supplementation. Geroscience 2024, 46(3), 2933-2950. https://doi.org/10.1007/s11357-024-01092-5
Kalarikkal, S. P., Prasad, D., Kasiappan, R., Chaudhari, S. R., & Sundaram, G. M. A cost-effective polyethylene glycol-based method for the isolation of functional edible nanoparticles from ginger rhizomes. Scientific Reports 2020, 10(1). https://doi.org/10.1038/s41598-020-61358-8
Karimi, N., Cvjetkovic, A., Jang, S. C., Crescitelli, R., Hosseinpour Feizi, M. A., Nieuwland, R., Lötvall, J., & Lässer, C. Detailed analysis of the plasma extracellular vesicle proteome after separation from lipoproteins. Cellular and Molecular Life Sciences 2018, 75(15), 2873-2886. https://doi.org/10.1007/s00018-018-2773-4
Kenyon, C. J. The genetics of ageing. Nature 2010, 464(7288), 504-512. https://doi.org/10.1038/nature08980
Kim, S.-H., Kim, B.-K., Park, S., & Park, S.-K. Phosphatidylcholine Extends Lifespan via DAF-16 and Reduces Amyloid-Beta-Induced Toxicity in Caenorhabditis elegans . Oxidative Medicine and Cellular Longevity 2019, 2019, 1-14. https://doi.org/10.1155/2019/2860642
Koch, K., Havermann, S., Buchter, C., & Watjen, W. Caenorhabditis elegans as model system in pharmacology and toxicology: effects of flavonoids on redox-sensitive signalling pathways and ageing. ScientificWorldJournal 2014, 2014, 920398. https://doi.org/10.1155/2014/920398
Kocher, A., Schiborr, C., Behnam, D., & Frank, J. The oral bioavailability of curcuminoids in healthy humans is markedly enhanced by micellar solubilisation but not further improved by simultaneous ingestion of sesamin, ferulic acid, naringenin and xanthohumol. Journal of Functional Foods 2015, 14, 183-191. https://doi.org/10.1016/j.jff.2015.01.045
Koh, Y.-C., Hsu, H.-W., Ho, P.-Y., Hsu, K.-Y., Lin, W.-S., Nagabhushanam, K., Ho, C.-T., & Pan, M.-H. Structural Variances in Curcumin Degradants: Impact on Obesity in Mice. Journal of Agricultural and Food Chemistry 2024, 72(26), 14786-14798. https://doi.org/10.1021/acs.jafc.4c03768
Kowal, J., Tkach, M., & Théry, C. Biogenesis and secretion of exosomes. Current Opinion in Cell Biology 2014, 29, 116-125. https://doi.org/10.1016/j.ceb.2014.05.004
Kramer-Drauberg, M., Liu, J. L., Desjardins, D., Wang, Y., Branicky, R., & Hekimi, S. ROS regulation of RAS and vulva development in Caenorhabditis elegans. PLoS Genet 2020, 16(6), e1008838. https://doi.org/10.1371/journal.pgen.1008838
Kunnumakkara, A. B., Hegde, M., Parama, D., Girisa, S., Kumar, A., Daimary, U. D., Garodia, P., Yenisetti, S. C., Oommen, O. V., & Aggarwal, B. B. Role of Turmeric and Curcumin in Prevention and Treatment of Chronic Diseases: Lessons Learned from Clinical Trials. ACS Pharmacology & Translational Science 2023, 6(4), 447-518. https://doi.org/10.1021/acsptsci.2c00012
Labbadia, J., & Morimoto, R. I. The Biology of Proteostasis in Aging and Disease. Annual Review of Biochemistry 2015, 84(1), 435-464. https://doi.org/10.1146/annurev-biochem-060614-033955
Lai, C.-H., Chou, C.-Y., Ch'Ang, L.-Y., Liu, C.-S., & Lin, W.-C. Identification of Novel Human Genes Evolutionarily Conserved in Caenorhabditis elegans by Comparative Proteomics. Genome Research 2000, 10(5), 703-713. https://doi.org/10.1101/gr.10.5.703
Lapitz, A., Arbelaiz, A., Olaizola, P., Aranburu, A., Bujanda, L., Perugorria, M. J., & Banales, J. M. Extracellular Vesicles in Hepatobiliary Malignancies. Frontiers in Immunology 2018, 9. https://doi.org/10.3389/fimmu.2018.02270
Lee, Y., El Andaloussi, S., & Wood, M. J. Exosomes and microvesicles: extracellular vesicles for genetic information transfer and gene therapy. Hum Mol Genet 2012, 21(R1), R125-134. https://doi.org/10.1093/hmg/dds317
Lemieux, G. A., & Ashrafi, K. Investigating Connections between Metabolism, Longevity, and Behavior in Caenorhabditis elegans. Trends Endocrinol Metab 2016, 27(8), 586-596. https://doi.org/10.1016/j.tem.2016.05.004
Levine, B., & Kroemer, G. Biological Functions of Autophagy Genes: A Disease Perspective. Cell 2019, 176(1-2), 11-42. https://doi.org/10.1016/j.cell.2018.09.048
Li, H., Liu, X., Wang, D., Su, L., Zhao, T., Li, Z., Lin, C., Zhang, Y., Huang, B., Lu, J., & Li, X. O-GlcNAcylation of SKN-1 modulates the lifespan and oxidative stress resistance in Caenorhabditis elegans. Scientific Reports 2017, 7(1), 43601. https://doi.org/10.1038/srep43601
Li, W. H., Shi, Y. C., Chang, C. H., Huang, C. W., & Hsiu-Chuan Liao, V. Selenite protects Caenorhabditis elegans from oxidative stress via DAF-16 and TRXR-1. Mol Nutr Food Res 2014, 58(4), 863-874. https://doi.org/10.1002/mnfr.201300404
Li, X., Fang, P., Mai, J., Choi, E. T., Wang, H., & Yang, X.-F. Targeting mitochondrial reactive oxygen species as novel therapy for inflammatory diseases and cancers. Journal of Hematology & Oncology 2013, 6(1), 19. https://doi.org/10.1186/1756-8722-6-19
Liangsupree, T., Multia, E., & Riekkola, M. L. Modern isolation and separation techniques for extracellular vesicles. J Chromatogr A 2021, 1636, 461773. https://doi.org/10.1016/j.chroma.2020.461773
Liao, V. H. Use of Caenorhabditis elegans To Study the Potential Bioactivity of Natural Compounds. J Agric Food Chem 2018, 66(8), 1737-1742. https://doi.org/10.1021/acs.jafc.7b05700
Lidzbarsky, G., Gutman, D., Shekhidem, H. A., Sharvit, L., & Atzmon, G. Genomic Instabilities, Cellular Senescence, and Aging: In Vitro, In Vivo and Aging-Like Human Syndromes. Frontiers in Medicine 2018, 5. https://doi.org/10.3389/fmed.2018.00104
Lim, T. 2016. Edible Medicinal and Non-Medicinal Plants. https://doi.org/10.1007/978-94-017-7276-1
Liu, C., Yan, X., Zhang, Y., Yang, M., Ma, Y., Zhang, Y., Xu, Q., Tu, K., & Zhang, M. Oral administration of turmeric-derived exosome-like nanovesicles with anti-inflammatory and pro-resolving bioactions for murine colitis therapy. Journal of Nanobiotechnology 2022, 20(1). https://doi.org/10.1186/s12951-022-01421-w
Lo, K. J., Wang, M. H., Ho, C. T., & Pan, M. H. Plant-Derived Extracellular Vesicles: A New Revolutionization of Modern Healthy Diets and Biomedical Applications. J Agric Food Chem 2024, 72(6), 2853-2878. https://doi.org/10.1021/acs.jafc.3c06867
Lu, P. S., Inbaraj, B. S., & Chen, B. H. Determination of oral bioavailability of curcuminoid dispersions and nanoemulsions prepared from Curcuma longa Linnaeus. Journal of the Science of Food and Agriculture 2018, 98(1), 51-63. https://doi.org/10.1002/jsfa.8437
Luo, C., Du, Z., Wei, X., Chen, G., & Fu, Z. Bisdemethoxycurcumin attenuates gastric adenocarcinoma growth by inducing mitochondrial dysfunction. Oncol Lett 2015, 9(1), 270-274. https://doi.org/10.3892/ol.2014.2685
Lόpez-Otin, C., Blasco, M. A., Partridge, L., Serrano, M., & Kroemer, G. Hallmarks of aging: An expanding universe. Cell 2023, 186(2), 243-278. https://doi.org/10.1016/j.cell.2022.11.001
Ma, J., Wang, Y. T., Chen, L. H., Yang, B. Y., Jiang, Y. Z., Wang, L. X., Chen, Z. Q., Ma, G. R., Fang, L. Q., & Wang, Z. B. Dauer larva-derived extracellular vesicles extend the life of Caenorhabditis elegans. Biogerontology 2023, 24(4), 581-592. https://doi.org/10.1007/s10522-023-10030-5
Marsh, M., & Van Meer, G. No ESCRTs for Exosomes. Science 2008, 319(5867), 1191-1192. https://doi.org/10.1126/science.1155750
Martel, J., Wu, C. Y., Peng, H. H., Ko, Y. F., Yang, H. C., Young, J. D., & Ojcius, D. M. Plant and fungal products that extend lifespan in Caenorhabditis elegans. Microb Cell 2020, 7(10), 255-269. https://doi.org/10.15698/mic2020.10.731
McKelvey, K. J., Powell, K. L., Ashton, A. W., Morris, J. M., & McCracken, S. A. Exosomes: Mechanisms of Uptake. Journal of Circulating Biomarkers 2015, 4, 7. https://doi.org/10.5772/61186
Meraş, İ., Chotard, L., Liontis, T., Ratemi, Z., Wiles, B., Seo, J. H., Van Raamsdonk, J. M., & Rocheleau, C. E. The Rab GTPase activating protein TBC-2 regulates endosomal localization of DAF-16 FOXO and lifespan. PLOS Genetics 2022, 18(8), e1010328. https://doi.org/10.1371/journal.pgen.1010328
Mörck, C., & Pilon, M. C. elegans feeding defective mutants have shorter body lengths and increased autophagy. BMC developmental biology 2006, 6, 39. https://doi.org/10.1186/1471-213X-6-39
Mu, J., Zhuang, X., Wang, Q., Jiang, H., Deng, Z. B., Wang, B., Zhang, L., Kakar, S., Jun, Y., Miller, D., & Zhang, H. G. Interspecies communication between plant and mouse gut host cells through edible plant derived exosome‐like nanoparticles. Molecular Nutrition & Food Research 2014, 58(7), 1561-1573. https://doi.org/10.1002/mnfr.201300729
Muralidharan-Chari, V., Clancy, J., Plou, C., Romao, M., Chavrier, P., Raposo, G., & D'Souza-Schorey, C. ARF6-Regulated Shedding of Tumor Cell-Derived Plasma Membrane Microvesicles. Current Biology 2009, 19(22), 1875-1885. https://doi.org/10.1016/j.cub.2009.09.059
Nayak, S., Goree, J., & Schedl, T. fog-2 and the evolution of self-fertile hermaphroditism in Caenorhabditis. PLoS Biol 2005, 3(1), e6. https://doi.org/10.1371/journal.pbio.0030006
Nguyen, V. Q., Um, W., An, J. Y., Joo, H., Choi, Y. C., Jung, J. M., Choi, J. S., You, D. G., Cho, Y. W., & Park, J. H. Precipitation-Mediated PEGylation of Plant-Derived Nanovesicles. Macromolecular Research 2022, 30(2), 85-89. https://doi.org/10.1007/s13233-022-0016-x
Nixon, R. A. The role of autophagy in neurodegenerative disease. Nature Medicine 2013, 19(8), 983-997. https://doi.org/10.1038/nm.3232
Oswal, N., Martin, O. M. F., Stroustrup, S., Bruckner, M. A. M., & Stroustrup, N. A hierarchical process model links behavioral aging and lifespan in C. elegans. PLoS Comput Biol 2022, 18(9), e1010415. https://doi.org/10.1371/journal.pcbi.1010415
Park, H. H., Jung, Y., & Lee, S. V. Survival assays using Caenorhabditis elegans. Mol Cells 2017, 40(2), 90-99. https://doi.org/10.14348/molcells.2017.0017
Paterna, A., Rao, E., Adamo, G., Raccosta, S., Picciotto, S., Romancino, D., Noto, R., Touzet, N., Bongiovanni, A., & Manno, M. Isolation of Extracellular Vesicles From Microalgae: A Renewable and Scalable Bioprocess [Original Research]. Frontiers in Bioengineering and Biotechnology 2022, 10. https://doi.org/10.3389/fbioe.2022.836747
Pondini, D. A., Eka Helmy, R., Ghofaro Nurul, A., Irdiyani, F., Pitaloka, L., Muhammad Reza, A., & Nia, Y. The Potential of Turmeric Rhizome Extract in the Preparation of Cosmetic Creams and Lotions: A Systematic Literature Review. Eureka Herba Indonesia 2023, 4(2), 232-236. https://doi.org/10.37275/ehi.v4i2.74
Prasanth, M. I., Prasansuklab, A., Verma, K., Brimson, J. M., Malar, D. S., & Tencomnao, T. Hylocereus undatus extends lifespan and exerts neuroprotection in Caenorhabditis elegans via DAF-16 mediated pathway. Nutrition and Healthy Aging 2023, 8(1), 79-95. https://doi.org/10.3233/nha-220196
Quiles, J. M., & Gustafsson, Å. B. Mitochondrial Quality Control and Cellular Proteostasis: Two Sides of the Same Coin. Frontiers in Physiology 2020, 11. https://doi.org/10.3389/fphys.2020.00515
Raimondo, S., Naselli, F., Fontana, S., Monteleone, F., Lo Dico, A., Saieva, L., Zito, G., Flugy, A., Manno, M., Di Bella, M. A., De Leo, G., & Alessandro, R. Citrus limon -derived nanovesicles inhibit cancer cell proliferation and suppress CML xenograft growth by inducing TRAIL-mediated cell death. Oncotarget 2015, 6(23), 19514-19527. https://doi.org/10.18632/oncotarget.4004
Rauytanapanit, M., Sukmanee, T., Wongravee, K., & Praneenararat, T. Paper-based chemical reaction arrays as an effective tool for geographical indication of turmerics. RSC Adv 2018, 8(73), 41950-41955. https://doi.org/10.1039/c8ra09248f
Riddle, D. L., Blumenthal, T., Meyer, B. J., & Priess, J. R. 1997. C. elegans II. Cold Spring Harbor Laboratory Press
Rizki, G., Iwata, T. N., Li, J., Riedel, C. G., Picard, C. L., Jan, M., Murphy, C. T., & Lee, S. S. The evolutionarily conserved longevity determinants HCF-1 and SIR-2.1/SIRT1 collaborate to regulate DAF-16/FOXO. PLoS Genet 2011, 7(9), e1002235. https://doi.org/10.1371/journal.pgen.1002235
Rutter, B. D., & Innes, R. W. Extracellular Vesicles Isolated from the Leaf Apoplast Carry Stress-Response Proteins. Plant Physiol 2017, 173(1), 728-741. https://doi.org/10.1104/pp.16.01253
Şahin, F., Koçak, P., Güneş, M. Y., Özkan, İ., Yıldırım, E., & Kala, E. Y. In Vitro Wound Healing Activity of Wheat-Derived Nanovesicles. Applied Biochemistry and Biotechnology 2019, 188(2), 381-394. https://doi.org/10.1007/s12010-018-2913-1
Sanadhya, P., Bucki, P., Liarzi, O., Ezra, D., Gamliel, A., & Braun Miyara, S. Caenorhabditis elegans susceptibility to Daldinia cf. concentrica bioactive volatiles is coupled with expression activation of the stress-response transcription factor daf-16, a part of distinct nematicidal action. PLoS One 2018, 13(5), e0196870. https://doi.org/10.1371/journal.pone.0196870
Sandur, S. K., Pandey, M. K., Sung, B., Ahn, K. S., Murakami, A., Sethi, G., Limtrakul, P., Badmaev, V., & Aggarwal, B. B. Curcumin, demethoxycurcumin, bisdemethoxycurcumin, tetrahydrocurcumin and turmerones differentially regulate anti-inflammatory and anti-proliferative responses through a ROS-independent mechanism. Carcinogenesis 2007, 28(8), 1765-1773. https://doi.org/10.1093/carcin/bgm123
Sanz, P. AMP-Activated Protein Kinase: Structure and Regulation. Current Protein & Peptide Science 2008, 9(5), 478-492. https://doi.org/10.2174/138920308785915254
Sarmah, S., De-Souza, E. A., Pinto, S., Antebi, A., & Mori, M. A. (2022). The Nuclear RNAi Pathway Regulates DAF-16/FOXO to Control C. elegans Longevity and Dauer Entry. Cold Spring Harbor Laboratory. https://dx.doi.org/10.1101/2022.10.21.513151
Sasakura, H., Moribe, H., Nakano, M., Ikemoto, K., Takeuchi, K., & Mori, I. Lifespan extension by peroxidase and dual oxidase-mediated ROS signaling through pyrroloquinoline quinone in C. elegans. J Cell Sci 2017, 130(15), 2631-2643. https://doi.org/10.1242/jcs.202119
Sen, P., Shah, P. P., Nativio, R., & Berger, S. L. Epigenetic Mechanisms of Longevity and Aging. Cell 2016, 166(4), 822-839. https://doi.org/10.1016/j.cell.2016.07.050
Shields, H. J., Traa, A., & Van Raamsdonk, J. M. Beneficial and Detrimental Effects of Reactive Oxygen Species on Lifespan: A Comprehensive Review of Comparative and Experimental Studies. Frontiers in Cell and Developmental Biology 2021, 9. https://doi.org/10.3389/fcell.2021.628157
Sohail, M., Guo, W., Yang, X., Li, Z., Li, Y., Xu, H., & Zhao, F. A Promising Anticancer Agent Dimethoxycurcumin: Aspects of Pharmacokinetics, Efficacy, Mechanism, and Nanoformulation for Drug Delivery. Front Pharmacol 2021, 12, 665387. https://doi.org/10.3389/fphar.2021.665387
Sudhaus, W., & Kiontke, K. Phylogeny of Rhabditis subgenus Caenorhabditis (Rhabditidae, Nematoda)*. Journal of Zoological Systematics and Evolutionary Research 2009, 34(4), 217-233. https://doi.org/10.1111/j.1439-0469.1996.tb00827.x
Taylor, D. D., & Shah, S. Methods of isolating extracellular vesicles impact down-stream analyses of their cargoes. Methods 2015, 87, 3-10. https://doi.org/10.1016/j.ymeth.2015.02.019
Teng, Y., Ren, Y., Sayed, M., Hu, X., Lei, C., Kumar, A., Hutchins, E., Mu, J., Deng, Z., Luo, C., Sundaram, K., Sriwastva, M. K., Zhang, L., Hsieh, M., Reiman, R., Haribabu, B., Yan, J., Jala, V. R., Miller, D. M., Zhang, H. G. Plant-Derived Exosomal MicroRNAs Shape the Gut Microbiota. Cell Host Microbe 2018, 24(5), 637-652 e638. https://doi.org/10.1016/j.chom.2018.10.001
Thamsen, M. 2011. The Role of Oxidative Stress in C. Elegans Aging. https://books.google.com.tw/books?id=Z1160AEACAAJ
Théry, C., Amigorena, S., Raposo, G., & Clayton, A. Isolation and Characterization of Exosomes from Cell Culture Supernatants and Biological Fluids. Current Protocols in Cell Biology 2006, 30(1), 3.22.21-23.22.29. https://doi.org/10.1002/0471143030.cb0322s30
Théry, C., Ostrowski, M., & Segura, E. Membrane vesicles as conveyors of immune responses. Nature Reviews Immunology 2009, 9(8), 581-593. https://doi.org/10.1038/nri2567
Threskeia, A., Sandhika, W., & Rahayu, R. P. Effect of turmeric (Curcuma longa) extract administration on tumor necrosis factor-alpha and type 1 collagen expression in UVB-light radiated BALB/c mice. Journal of Applied Pharmaceutical Science 2023. https://doi.org/10.7324/japs.2023.19358
Tiyaboonchai, W., Tungpradit, W., & Plianbangchang, P. Formulation and characterization of curcuminoids loaded solid lipid nanoparticles. Int J Pharm 2007, 337(1-2), 299-306. https://doi.org/10.1016/j.ijpharm.2006.12.043
Tripathy, S., Verma, D., Thakur, M., Patel, A., Srivastav, P., Singh, S., Gupta, A., Chávez, M. L., Aguilar, C., Chakravorty, N., Verma, H., & Utama, G. L. Curcumin Extraction, Isolation, Quantification and Its Application in Functional Foods: A Review With a Focus on Immune Enhancement Activities and COVID-19. Frontiers in Nutrition 2021, 8, 747956. https://doi.org/10.3389/fnut.2021.747956
Vecchi Brumatti, L., Marcuzzi, A., Tricarico, P. M., Zanin, V., Girardelli, M., & Bianco, A. M. Curcumin and inflammatory bowel disease: potential and limits of innovative treatments. Molecules 2014, 19(12), 21127-21153. https://doi.org/10.3390/molecules191221127
Veerman, R. E., Gucluler Akpinar, G., Eldh, M., & Gabrielsson, S. Immune Cell-Derived Extracellular Vesicles - Functions and Therapeutic Applications. Trends Mol Med 2019, 25(5), 382-394. https://doi.org/10.1016/j.molmed.2019.02.003
Voss, P., & Siems, W. Clinical oxidation parameters of aging. Free Radical Research 2006, 40(12), 1339-1349. https://doi.org/10.1080/10715760600953859
Wang, B., Zhuang, X., Deng, Z.-B., Jiang, H., Mu, J., Wang, Q., Xiang, X., Guo, H., Zhang, L., Dryden, G., Yan, J., Miller, D., & Zhang, H.-G. Targeted Drug Delivery to Intestinal Macrophages by Bioactive Nanovesicles Released from Grapefruit. Molecular Therapy 2014, 22(3), 522-534. https://doi.org/10.1038/mt.2013.190
Wang, Y., He, J., Liao, M., Hu, M., Li, W., Ouyang, H., Wang, X., Ye, T., Zhang, Y., & Ouyang, L. An overview of Sirtuins as potential therapeutic target: Structure, function and modulators. European Journal of Medicinal Chemistry 2019, 161, 48-77. https://doi.org/10.1016/j.ejmech.2018.10.028
Webb, A. E., & Brunet, A. FOXO transcription factors: key regulators of cellular quality control. Trends in Biochemical Sciences 2014, 39(4), 159-169. https://doi.org/10.1016/j.tibs.2014.02.003
Wilkinson, D. S., Taylor, R. C., & Dillin, A. Analysis of aging in Caenorhabditis elegans. Methods Cell Biol 2012, 107, 353-381. https://doi.org/10.1016/B978-0-12-394620-1.00012-6
Williams, R. L., & Urbé, S. The emerging shape of the ESCRT machinery. Nature Reviews Molecular Cell Biology 2007, 8(5), 355-368. https://doi.org/10.1038/nrm2162
Witwer, K. W., Buzás, E. I., Bemis, L. T., Bora, A., Lässer, C., Lötvall, J., Nolte‐‘T Hoen, E. N., Piper, M. G., Sivaraman, S., Skog, J., Théry, C., Wauben, M. H., & Hochberg, F. Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. Journal of Extracellular Vesicles 2013, 2(1), 20360. https://doi.org/10.3402/jev.v2i0.20360
Wongkaewkhiaw, S., Wongrakpanich, A., Krobthong, S., Saengsawang, W., Chairoungdua, A., & Boonmuen, N. Induction of apoptosis in human colorectal cancer cells by nanovesicles from fingerroot (Boesenbergia rotunda (L.) Mansf.). PLoS One 2022, 17(4), e0266044. https://doi.org/10.1371/journal.pone.0266044
Xu, J. P. (2016). Cancer Inhibitors from Chinese Natural Medicines. CRC Press. https://books.google.com.tw/books?id=K-mVDQAAQBAJ
Xue, T., & Yang, L. The Toxicity Assessment of ethyl p-hydroxybenzoate in Nematode C. elegans. International Journal of Biology 2016, 8(3). https://doi.org/10.5539/ijb.v8n3p38
Yang, Y., Wu, Y., Sun, X.-D., & Zhang, Y. 2021. Reactive Oxygen Species, Glucose Metabolism, and Lipid Metabolism. Springer Singapore. https://doi.org/10.1007/978-981-16-0522-2_9
You, J. Y., Kang, S. J., & Rhee, W. J. Isolation of cabbage exosome-like nanovesicles and investigation of their biological activities in human cells. Bioactive Materials 2021, 6(12), 4321-4332. https://doi.org/https://doi.org/10.1016/j.bioactmat.2021.04.023
Yu, M., Zhang, H., Wang, B., Zhang, Y., Zheng, X., Shao, B., Zhuge, Q., & Jin, K. Key Signaling Pathways in Aging and Potential Interventions for Healthy Aging. Cells 2021, 10, 660. https://doi.org/10.3390/cells10030660
Yuana, Y., Levels, J., Grootemaat, A., Sturk, A., & Nieuwland, R. Co‐isolation of extracellular vesicles and high‐density lipoproteins using density gradient ultracentrifugation. Journal of Extracellular Vesicles 2014, 3(1), 23262. https://doi.org/10.3402/jev.v3.23262
Yue, Y., Li, S., Shen, P., & Park, Y. Caenorhabditis elegans as a model for obesity research. Curr Res Food Sci 2021, 4, 692-697. https://doi.org/10.1016/j.crfs.2021.09.008
Zavagno, G., Raimundo, A., Kirby, A., Saunter, C., & Weinkove, D. 2023. https://doi.org/10.1101/2023.06.15.545090
Zhang, M., Viennois, E., Prasad, M., Zhang, Y., Wang, L., Zhang, Z., Han, M. K., Xiao, B., Xu, C., Srinivasan, S., & Merlin, D. Edible ginger-derived nanoparticles: A novel therapeutic approach for the prevention and treatment of inflammatory bowel disease and colitis-associated cancer. Biomaterials 2016, 101, 321-340. https://doi.org/10.1016/j.biomaterials.2016.06.018
Zhang, S. Y., Qin, Z. C., Sun, Y. Y., Chen, Y. S., Chen, W. B., Wang, H. G., An, D., Sun, D., & Liu, Y. Q. Genistein Promotes Anti-Heat Stress and Antioxidant Effects via the Coordinated Regulation of IIS, HSP, MAPK, DR, and Mitochondrial Pathways in Caenorhabditis elegans. Antioxidants (Basel) 2023, 12(1). https://doi.org/10.3390/antiox12010125
Zhuang, X., Deng, Z. B., Mu, J., Zhang, L., Yan, J., Miller, D., Feng, W., McClain, C. J., & Zhang, H. G. Ginger‐derived nanoparticles protect against alcohol‐induced liver damage. Journal of Extracellular Vesicles 2015, 4(1), 28713. https://doi.org/10.3402/jev.v4.28713
Zuo, Y. T., Hu, Y., Lu, W. W., Cao, J. J., Wang, F., Han, X., Lu, W. Q., & Liu, A. L. Toxicity of 2,6-dichloro-1,4-benzoquinone and five regulated drinking water disinfection by-products for the Caenorhabditis elegans nematode. J Hazard Mater 2017, 321, 456-463. https://doi.org/10.1016/j.jhazmat.2016.09.038
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95944-
dc.description.abstract老化是所有生物體都會經歷的過程並造成細胞損傷,使體內各種壓力不斷上升,導致疾病和死亡風險的成長。透過健康的生活方式,包括食用健康食品,例如薑黃(Curcuma longa)能夠降低老化相關疾病的發生率。薑黃是一種原產於印度和東南亞的根莖類植物,在先前的研究中已被證明能夠抵抗與老化相關的疾病,近期研究指出從薑黃中提取的奈米囊泡(nanovesicles, NVs)也可以透過調節多種基因來對抗疾病。薑黃衍生的NVs(turmeric-derived nanovesicles, TDNVs)是含有多種潛在有益成分的奈米級小體,包括脂質、蛋白質、多酚和核酸。儘管分別證明薑黃對抗老化進程有效,但分子機制尚未明確。在本研究中,從兩種薑黃中分離出TDNVs,並進行了比較分析。從紅色(RTNV)和黃色(YTNV)薑黃中提取的TDNVs顯示出相似的分佈模式、濃度和平均粒徑分別為131.8 ± 62.1 nm和136.7 ± 74.2 nm。與調控組相比,YTNV提高秀麗隱桿線蟲(Caenorhabditis elegans)在juglone和熱誘導的氧化壓力環境下之存活率分別為29.0%和17.6%,而RTNV沒有表現出任何顯著性差異。儘管與RTNV相比YTNV產生的薑黃素較少,DHE染色實驗結果顯示YTNV可以減少秀麗隱桿線蟲模型中的 ROS 39.6%、老化色素脂核素27.9%,另外,相較於控制組,YTNV具有改善老化行為之功效,包含提高身體擺動率18.6%、咽部收縮率13.4%,最終延長壽命4天。 在DAF-16入核試驗中,相較於控制組,YTNV處理的組別DAF-16入核情形顯著增加68%,而提高DAF-16下游基因hsp-16.2和sod-3表現量,分別為18.37%和21.18%。zh_TW
dc.description.abstractAging is a natural process that happens to all sorts of organisms which phenomenon also translates to the accumulation of molecular and cellular damage over time, increasing a variety of physical stresses on the body, leading to the growing risk of diseases and death. The incidence of aging-related diseases can generally be reduced by living a healthy lifestyle which includes consumption of healthy foods. One such example is turmeric (Curcuma longa), a plant rhizome native to India and Southeast Asia; which have been demonstrated to possess bioactivities against an array of diseases in prior researches, including aging-related ones. Recent studies have indicated that the nanovesicles (NVs) extracted from turmeric may possess the biocapacities to help fight diseases by regulating the expression of a variety of genes involved. Turmeric-Derived NVs (TDNVs) are nanosized bodies containing various, potentially beneficial components including lipids, proteins, polyphenols, and nucleic acids. Although the use of turmeric against aging progression were proven effective, the exact details of the molecular mechanisms are still to be uncovered. In this study, TDNVs were isolated from two variants of turmeric and were analyzed comparatively. TDNVs extracted from both red (RTNV) and yellow (YTNV) turmeric variants showed similar distribution pattern, concentration, and mean particle sizes of 131.8 ± 62.1 nm and 136.7 ± 74.2 nm, respectively. Under juglone and heat stress resistance analyses, YTNV showed a significant increase of 29.0% and 17.6% in bioactivities compared to control group while RTNV did not show any significant increase despite YTNV yielding lower curcuminoids in comparison with RTNV. YTNV was also shown to significantly reduce intracellular superoxide by 39.6%, aging-related behaviors, and aging-related pigment production by 27.9%, as well as increasing lifespan by 36.4% in comparison with control group in C. elegans model. The use of transgenic strains showed a significant increase of 68% of DAF-16 translocation in the group treated with YTNV in comparison with control and juglone-induced group, signifying the ameliorating efficacy through the DAF-16/FoxO signaling pathway, which effects were also accompanied by an upregulation of hsp-16.2 and sod-3 expressions by 18.37% and 21.18%, respectively.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-25T16:15:50Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-09-25T16:15:50Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsAcknowledgement I
摘要 III
Abstract IV
Table of Contents VI
List of Tables IX
List of Figures X
List of Abbreviations XI
I. Literature Review 1
1.1 Aging 1
1.1.1 Oxidative Stress 3
1.1.2 Aging-Related Diseases 4
1.1.3 Anti-Aging Mechanism 5
1.2 Turmeric (Curcuma longa) 10
1.2.1 Curcuminoids 11
1.2.2 Turmeric on Aging 13
1.3 Nanovesicles 14
1.3.1 Biogenesis of Nanovesicles 16
1.3.2 Release and Uptake of Nanovesicles 17
1.3.3 Isolation of Nanovesicles 18
1.3.4 Functional Roles of Plant-Derived Nanovesicles 19
1.4 Caenorhabditis elegans 21
1.4.1 Anatomy of C. elegans 22
1.4.2 Cultivation of C. elegans 23
1.4.3 Use as Model Organism 24
II. Research Objectives 26
2.1 Objectives 26
2.2 Experimental Design 27
III. Materials and Methods 28
3.1 Materials 28
3.1.1 Equipment 28
3.1.2 Reagents 30
3.1.3 Freeze-Dried Turmeric 30
3.2 Methods 31
3.2.1 TDNV Extraction 31
3.2.2 Nanoparticle Tracking Analysis (NTA) 31
3.2.3 Transmission Electron Microscopy (TEM) 32
3.2.4 LC-MS Curcuminoid Quantification 32
3.2.5 C. elegans Culture 33
3.2.6 Body Length Assay 34
3.2.7 Stress Resistance Assays 34
3.2.8 Intracellular Superoxide Assay 35
3.2.9 Lifespan Assay 36
3.2.10 Aging-Related Behavioral Assays 36
3.2.11 Lipofuscin Assay 38
3.2.12 Transgenic Assays 38
3.2.13 TDNV Uptake Assays 40
3.2.14 Statistical Analyses 42
IV. Results and Discussion 43
4.1 Physical Characterization of Turmeric-Derived Nanovesicles 43
4.2 TDNV Curcuminoid Quantification 46
4.3 C. elegans Experiments 48
4.3.1 Effects of TDNV on C. elegans Body Length 48
4.3.2 TDNV on C. elegans Stress Resistance 49
4.3.3 YTNV Reduces C. elegans Intracellular ROS Levels 53
4.3.4 YTNV Increases C. elegans Lifespan 55
4.3.5 YTNV Mitigates C. elegans Aging Behaviors 57
4.3.6 YTNV Promotes DAF-16 Localization in TJ356 C. elegans 61
4.3.7 YTNV Promotes hsp-16.2 and sod-3 Expressions in Transgenic
C. elegans 64
V. Conclusions 67
VI. Bibliography 69
VII. Supplementary 91
-
dc.language.isoen-
dc.title薑黃衍生的奈米囊泡透過DAF-16調控體內氧化壓力並延長壽命於秀麗隱桿線蟲模式中zh_TW
dc.titleTurmeric-Derived Nanovesicles Promote Stress Resistance and Prolong Lifespan via DAF-16 Modulation in C. elegansen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee黃步敏;何元順;魏嘉徵;張嘉哲zh_TW
dc.contributor.oralexamcommitteeBu-Miin Huang;Yuan-Soon Ho;Chia-Cheng Wei;Chia-Cheng Changen
dc.subject.keyword薑黃,奈米囊泡,秀麗隱桿線蟲,老化過程,DAF-16,zh_TW
dc.subject.keywordturmeric,nanovesicles,Caenorhabditis elegans,aging process,DAF-16,en
dc.relation.page93-
dc.identifier.doi10.6342/NTU202403305-
dc.rights.note未授權-
dc.date.accepted2024-08-10-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept食品科技研究所-
顯示於系所單位:食品科技研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
4.46 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved