請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95777完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 潘敏雄 | zh_TW |
| dc.contributor.advisor | Min-Hsiung Pan | en |
| dc.contributor.author | 林芝伶 | zh_TW |
| dc.contributor.author | Tzu-Ling Lin | en |
| dc.date.accessioned | 2024-09-16T16:22:57Z | - |
| dc.date.available | 2024-09-17 | - |
| dc.date.copyright | 2024-09-16 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-02 | - |
| dc.identifier.citation | Abdulhussain Kareem, R., & Razavi, S. H. (2020). Plantaricin bacteriocins: as safe alternative antimicrobial peptides in food preservation—A review. Journal of Food Safety, 40(1), e12735.
Aborehab, N. M., El Bishbishy, M. H., & Waly, N. E. (2016). Resistin mediates tomato and broccoli extract effects on glucose homeostasis in high fat diet-induced obesity in rats. BMC complementary and alternative medicine, 16, 225. Alekos, N. S., Moorer, M. C., & Riddle, R. C. (2020). Dual effects of lipid metabolism on osteoblast function. Frontiers in Endocrinology, 11, 578194. Angelico, F., Baratta, F., Coronati, M., Ferro, D., & Del Ben, M. (2023). Diet and metabolic syndrome: a narrative review. Internal and Emergency Medicine 18(4), 1007-1017. Austin, G. L., Ogden, L. G., & Hill, J. O. (2011). Trends in carbohydrate, fat, and protein intakes and association with energy intake in normal-weight, overweight, and obese individuals: 1971–2006. The American journal of clinical nutrition, 93(4), 836-843. Azzu, V., Vacca, M., Virtue, S., Allison, M., & Vidal-Puig, A. (2020). Adipose tissue-liver cross talk in the control of whole-body metabolism: implications in nonalcoholic fatty liver disease. Gastroenterology, 158(7), 1899-1912. Bantle, J. P. (2009). Dietary fructose and metabolic syndrome and diabetes. The Journal of nutrition, 139(6), 1263s-1268s. Batsis, J. A., & Villareal, D. T. (2018). Sarcopenic obesity in older adults: aetiology, epidemiology and treatment strategies. Nature Reviews Endocrinology, 14(9), 513-537. Behera, S. S., Ray, R. C., & Zdolec, N. (2018). Lactobacillus plantarum with functional properties: an approach to increase safety and shelf-life of fermented foods. BioMed research international, 2018, 9361614. Beltrán-Sánchez, H., Harhay, M. O., Harhay, M. M., & McElligott, S. (2013). Prevalence and trends of metabolic syndrome in the adult US population, 1999–2010. Journal of the american college of cardiology, 62(8), 697-703. Benthem, L., Kuipers, F., Steffens, A., & Scheurink, A. (1999). Excessive portal venous supply of long-chain free fatty acids to the liver, leading to hypothalamus-pituitary-adrenal-axis and sympathetic activation as a key to the development of syndrome X. a proposed concept for the induction of syndrome X. Annals of the new york academy of sciences, 892, 308-311. Bilski, J., Pierzchalski, P., Szczepanik, M., Bonior, J., & Zoladz, J. A. (2022). Multifactorial mechanism of sarcopenia and sarcopenic obesity. role of physical exercise, microbiota and myokines. Cells, 11(1). Bo, T.-b., Wen, J., Zhao, Y.-c., Tian, S.-j., Zhang, X.-y., & Wang, D.-h. (2020). Bifidobacterium pseudolongum reduces triglycerides by modulating gut microbiota in mice fed high-fat food. The Journal of steroid biochemistry and molecular biology, 198, 105602. Brook, M. S., Stokes, T., Gorissen, S. H., Bass, J. J., McGlory, C., Cegielski, J., Wilkinson, D. J., Phillips, B. E., Smith, K., & Phillips, S. M. (2022). Declines in muscle protein synthesis account for short‐term muscle disuse atrophy in humans in the absence of increased muscle protein breakdown. Journal of cachexia, sarcopenia and muscle, 13(4), 2005-2016. Brown, L. A., Perry Jr, R. A., Haynie, W. S., Lee, D. E., Rosa-Caldwell, M. E., Brown, J. L., Greene, N. P., Wolchok, J. C., & Washington, T. A. (2021). Moderators of skeletal muscle maintenance are compromised in sarcopenic obese mice. Mechanisms of ageing and development, 194, 111404. Cai, Y. X., Wang, J. H., McAuley, C., Augustin, M. A., & Terefe, N. S. (2019). Fermentation for enhancing the bioconversion of glucoraphanin into sulforaphane and improve the functional attributes of broccoli puree. Journal of functional foods, 61, 103461. Calder, P. C. (2020). Nutrition, immunity and COVID-19. BMJ nutrition, prevention & health, 3(1), 74. Cardozo, L., Alvarenga, L. A., Ribeiro, M., Dai, L., Shiels, P. G., Stenvinkel, P., Lindholm, B., & Mafra, D. (2021). Cruciferous vegetables: rationale for exploring potential salutary effects of sulforaphane-rich foods in patients with chronic kidney disease. Nutrition reviews,, 79(11), 1204-1224. Casado, M. E., Collado-Pérez, R., Frago, L. M., & Barrios, V. (2023). Recent advances in the knowledge of the mechanisms of leptin physiology and actions in neurological and metabolic pathologies. International journal of molecular sciences, 24(2), 1422. Chen, Y., Zhang, J., Li, P., Liu, C., & Li, L. (2021). N1‑methylnicotinamide ameliorates insulin resistance in skeletal muscle of type 2 diabetic mice by activating the SIRT1/PGC‑1α signaling pathway. Molecular medicine reports, 23(4), 1-1. Chen, Y. J., Wallig, M. A., & Jeffery, E. H. (2016). Dietary broccoli lessens development of fatty liver and liver cancer in mice given diethylnitrosamine and fed a western or control diet. The Journal of nutrition, 146(3), 542-550. Choi, K. J., Yoon, M. Y., Kim, J.-E., & Yoon, S. S. (2023). Gut commensal Kineothrix alysoides mitigates liver dysfunction by restoring lipid metabolism and gut microbial balance. Scientific reports, 13(1), 14668. Clemente-Suárez, V. J., Beltrán-Velasco, A. I., Redondo-Flórez, L., Martín-Rodríguez, A., & Tornero-Aguilera, J. F. (2023). Global impacts of western diet and its effects on metabolism and health: a narrative review. Nutrients, 15(12). Daily, J. W., & Park, S. (2022). Sarcopenia is a cause and consequence of metabolic dysregulation in aging humans: effects of gut dysbiosis, glucose dysregulation, diet and lifestyle. Cells, 11(3), 338. Donini, L. M., Busetto, L., Bischoff, S. C., Cederholm, T., Ballesteros-Pomar, M. D., Batsis, J. A., Bauer, J. M., Boirie, Y., Cruz-Jentoft, A. J., Dicker, D., Frara, S., Frühbeck, G., Genton, L., Gepner, Y., Giustina, A., Gonzalez, M. C., Han, H. S., Heymsfield, S. B., Higashiguchi, T., Laviano, A., Lenzi, A., Nyulasi, I., Parrinello, E., Poggiogalle, E., Prado, C. M., Salvador, J., Rolland, Y., Santini, F., Serlie, M. J., Shi, H., Sieber, C. C., Siervo, M., Vettor, R., Villareal, D. T., Volkert, D., Yu, J., Zamboni, M., & Barazzoni, R. (2022). Definition and diagnostic criteria for sarcopenic obesity: ESPEN and EASO consensus statement. Obesity facts, 15(3), 321-335. Đorđević, T. M., Šiler-Marinković, S. S., & Dimitrijević-Branković, S. I. (2010). Effect of fermentation on antioxidant properties of some cereals and pseudo cereals. Food chemistry, 119(3), 957-963. Dualib, P. M., Ogassavara, J., Mattar, R., da Silva, E. M. K., Dib, S. A., & de Almeida Pititto, B. (2021). Gut microbiota and gestational diabetes mellitus: a systematic review. Diabetes research and clinical practice, 180, 109078. Febbraio, M. A., & Karin, M. (2021). “Sweet death”: fructose as a metabolic toxin that targets the gut-liver axis. Cell metabolism, 33(12), 2316-2328. Feng, L., Huang, F., Ma, Y., & Tang, J. (2021). The effect of high-fat diet and exercise intervention on the TNF-α level in rat spleen. Frontiers in immunology, 12, 671167. Feng, S.-Y., Wu, S.-J., Chang, Y.-C., Ng, L.-T., & Chang, S.-J. (2022). Stimulation of GLUT4 glucose uptake by anthocyanin-rich extract from black rice (Oryza sativa L.) via PI3K/Akt and AMPK/p38 MAPK signaling in C2C12 cells. Metabolites, 12(9), 856. Furman, B. L. (2021). Streptozotocin‐induced diabetic models in mice and rats. Current protocols, 1(4), e78. Gellhaus, B., Böker, K. O., Schilling, A. F., & Saul, D. (2023). Therapeutic consequences of targeting the IGF-1/PI3K/AKT/FOXO3 axis in sarcopenia: a narrative review. Cells, 12(24), 2787. Ghaben, A. L., & Scherer, P. E. (2019). Adipogenesis and metabolic health. Nature reviews molecular cell biology, 20(4), 242-258. Ghadge, A. A., & Khaire, A. A. (2019). Leptin as a predictive marker for metabolic syndrome. Cytokine, 121, 154735. Giron, M., Thomas, M., Dardevet, D., Chassard, C., & Savary-Auzeloux, I. (2022). Gut microbes and muscle function: can probiotics make our muscles stronger? J cachexia sarcopenia muscle, 13(3), 1460-1476. Giugliano, D., Ceriello, A., & Esposito, K. (2008). Glucose metabolism and hyperglycemia. The American journal of clinical nutrition, 87(1), 217S-222S. Glushakova, O., Kosugi, T., Roncal, C., Mu, W., Heinig, M., Cirillo, P., Sa, L. G., Johnson, R. J., & Nakagawa, T. (2008). Fructose induces the inflammatory molecule ICAM-1 in endothelial cells. Journal of the american society of nephrology, 19(9), 1712-1720. Goossens, G. H. (2017). The metabolic phenotype in obesity: fat mass, body fat distribution, and adipose tissue function. Obesity facts, 10(3), 207-215. Gowda, S., Desai, P. B., Hull, V. V., Math, A. A., Vernekar, S. N., & Kulkarni, S. S. (2009). A review on laboratory liver function tests. The Pan african medical journal, 3, 17. Grosicki, G. J., Fielding, R. A., & Lustgarten, M. S. (2018). Gut microbiota contribute to age-related changes in skeletal muscle size, composition, and function: biological basis for a gut-muscle axis. Calcified tissue international, 102, 433-442. Guo, A., Li, K., Tian, H. C., Fan, Z., Chen, Q. N., Yang, Y. F., Yu, J., Wu, Y. X., & Xiao, Q. (2021). FGF19 protects skeletal muscle against obesity-induced muscle atrophy, metabolic derangement and abnormal irisin levels via the AMPK/SIRT-1/PGC-α pathway. Journal of cellular and molecular medicine, 25(7), 3585-3600. Haag, M., & Dippenaar, N. G. (2005). Dietary fats, fatty acids and insulin resistance: short review of a multifacetedconnection. Medical science monitor, 11(12), RA359-RA367. Hall, A., Elcombe, C., Foster, J., Harada, T., Kaufmann, W., Knippel, A., Küttler, K., Malarkey, D., Maronpot, R., & Nishikawa, A. (2012). Liver hypertrophy: a review of adaptive (adverse and non-adverse) changes—conclusions from the 3rd international ESTP expert workshop. Toxicologic pathology, 40(7), 971-994. Han, M. J., & Choung, S.-Y. (2022). Codonopsis lanceolata ameliorates sarcopenic obesity via recovering PI3K/Akt pathway and lipid metabolism in skeletal muscle. Phytomedicine, 96, 153877. Hang, S., Zeng, L., Han, J., Zhang, Z., Zhou, Q., Meng, X., Gu, Q., & Li, P. (2022). Lactobacillus plantarum ZJ316 improves the quality of Stachys sieboldii Miq. pickle by inhibiting harmful bacteria growth, degrading nitrite and promoting the gut microbiota health in vitro. Food & function, 13(3), 1551-1562. Haseman, J. K., Ney, E., Nyska, A., & Rao, G. N. (2003). Effect of diet and animal care/housing protocols on body weight, survival, tumor incidences, and nephropathy severity of F344 rats in chronic studies. Toxicologic pathology, 31(6), 674-681. Helsley, R. N., Moreau, F., Gupta, M. K., Radulescu, A., DeBosch, B., & Softic, S. (2020). Tissue-specific fructose metabolism in obesity and diabetes. Current diabetes reports, 20(11), 64. Herp, S., Durai Raj, A. C., Salvado Silva, M., Woelfel, S., & Stecher, B. (2021). The human symbiont Mucispirillum schaedleri: causality in health and disease. Medical microbiology and immunology, 210(4), 173-179. Jeong, C.-H., Sohn, H., Hwang, H., Lee, H.-J., Kim, T.-W., Kim, D.-S., Kim, C.-S., Han, S.-G., & Hong, S.-W. (2021). Comparison of the probiotic potential between Lactiplantibacillus plantarum isolated from kimchi and standard probiotic strains isolated from different sources. Foods, 10(9), 2125. Kalyani, R. R., Corriere, M., & Ferrucci, L. (2014). Age-related and disease-related muscle loss: the effect of diabetes, obesity, and other diseases. The lancet diabetes & endocrinology, 2(10), 819-829. Karam, I. (2017). Hyperlipidemia background and progress. SM journal of cardiology and cardiovascular diseases. 1, 1-8. Khalafani, Z., Zamani-Garmsiri, F., Panahi, G., & Meshkani, R. (2023). Metformin-chlorogenic acid combination reduces skeletal muscle inflammation in c57BL/6 mice on high-fat diets. Molecular biology reports, 50(3), 2581-2589. Kiczorowski, P., Kiczorowska, B., Samolińska, W., Szmigielski, M., & Winiarska-Mieczan, A. (2022). Effect of fermentation of chosen vegetables on the nutrient, mineral, and biocomponent profile in human and animal nutrition. Scientific reports, 12(1), 13422. Kieu, H. T., Garrigou, N., Fadlane, A., Brechard, L., Armstrong, N., Decloquement, P., Yasir, M., Azhar, E. I., Al-Masaudi, S. B., & Lagier, J.-C. (2021). Clostridium culturomicium sp. nov. and Clostridium jeddahitimonense sp. nov., novel members of the Clostridium genus isolated from the stool of an obese Saudi Arabian. Current microbiology, 78, 3586-3595. Kim, C., & Hwang, J.-K. (2020). Flavonoids: nutraceutical potential for counteracting muscle atrophy. Food science and biotechnology, 29, 1619-1640. Kim, C., & Hwang, J. K. (2020). Flavonoids: nutraceutical potential for counteracting muscle atrophy. Food science and biotechnology, 29(12), 1619-1640. Kim, C. C., Lunken, G. R., Kelly, W. J., Patchett, M. L., Jordens, Z., Tannock, G. W., Sims, I. M., Bell, T. J., Hedderley, D., Henrissat, B., & Rosendale, D. I. (2019). Genomic insights from Monoglobus pectinilyticus: a pectin-degrading specialist bacterium in the human colon. The ISME Journal, 13(6), 1437-1456. Kim, H. J., Hong, S. H., Chang, S. H., Kim, S., Lee, A. Y., Jang, Y., ... & Cho, M. H. (2016). Effects of feeding a diet containing Gymnema sylvestre extract: Attenuating progression of obesity in C57BL/6J mice. Asian Pacific journal of tropical medicine, 9(5), 437-444. Kim, J. W., Shin, S. K., & Kwon, E. Y. (2023). Luteolin protects against obese sarcopenia in mice with high‐fat diet‐induced obesity by ameliorating inflammation and protein degradation in muscles. Molecular nutrition & food research, 67(6), 2200729. Koh, Y.-C., Lin, Y.-C., Lee, P.-S., Lu, T.-J., Lin, K.-Y., & Pan, M.-H. (2020). A multi-targeting strategy to ameliorate high-fat-diet-and fructose-induced (western diet-induced) non-alcoholic fatty liver disease (NAFLD) with supplementation of a mixture of legume ethanol extracts. Food & Function, 11(9), 7545-7560. Kojta, I., Chacińska, M., & Błachnio-Zabielska, A. (2020). Obesity, bioactive lipids, and adipose tissue inflammation in insulin resistance. Nutrients, 12(5), 1305. Kusminski, C. M., Shetty, S., Orci, L., Unger, R. H., & Scherer, P. E. (2009). Diabetes and apoptosis: lipotoxicity. Apoptosis, 14, 1484-1495. Lamichhane, G., Liu, J., Lee, S. J., Lee, D. Y., Zhang, G., & Kim, Y. (2024). Curcumin mitigates the high-fat high-sugar diet-induced impairment of spatial memory, hepatic metabolism, and the alteration of the gut microbiome in alzheimer's disease-induced (3xTg-AD) Mice. Nutrients, 16(2). Le, T. N., Luong, H. Q., Li, H.-P., Chiu, C.-H., & Hsieh, P.-C. (2019). Broccoli (Brassica oleracea L. var. italica) sprouts as the potential food source for bioactive properties: a comprehensive study on in vitro disease models. Foods, 8(11), 532. Lee, M., Yun, Y. R., Choi, E. J., Song, J. H., Kang, J. Y., Kim, D., Lee, K. W., & Chang, J. Y. (2023). Anti-obesity effect of vegetable juice fermented with lactic acid bacteria isolated from kimchi in C57BL/6J mice and human mesenchymal stem cells. Food & function,, 14(3), 1349-1356. Lei, P., Zhao, W., Pang, B., Yang, X., Li, B. L., Ren, M., & Shan, Y. J. (2018). Broccoli sprout extract alleviates alcohol-induced oxidative stress and endoplasmic reticulum stress in C57BL/6 mice. Journal of agricultural and food chemistry, 66(22), 5574-5580. Li, H.-Y., Zhou, D.-D., Gan, R.-Y., Huang, S.-Y., Zhao, C.-N., Shang, A., Xu, X.-Y., & Li, H.-B. (2021). Effects and mechanisms of probiotics, prebiotics, synbiotics, and postbiotics on metabolic diseases targeting gut microbiota: a narrative review. Nutrients, 13(9), 3211. Li, K., Zhang, L., Xue, J., Yang, X., Dong, X., Sha, L., Lei, H., Zhang, X., Zhu, L., & Wang, Z. (2019). Dietary inulin alleviates diverse stages of type 2 diabetes mellitus via anti-inflammation and modulating gut microbiota in db/db mice. Food & function, 10(4), 1915-1927. Li, S. N., Zhang, D. L., Wang, Z. H., Song, W. T., Chen, W. B., Hu, G. L., Han, L. Y., & Zhou, J. C. (2023). Anti-obesity effects exerted by dioscorea opposita thunb. polysaccharides in diet-induced obese mice. Food science & nutrition, 11(10), 6459-6469. Li, X., Cai, Z., Yang, F., Wang, Y., Pang, X., Sun, J., Li, X., & Lu, Y. (2024). Broccoli improves lipid metabolism and intestinal flora in mice with type 2 diabetes induced by HFD and STZ Diet. Foods, 13(2). Lian, C.-Y., Zhai, Z.-Z., Li, Z.-F., & Wang, L. (2020). High fat diet-triggered non-alcoholic fatty liver disease: a review of proposed mechanisms. Chemico-biological interactions, 330, 109199. Lopes, M., Brejchova, K., Riecan, M., Novakova, M., Rossmeisl, M., Cajka, T., & Kuda, O. (2021). Metabolomics atlas of oral 13C-glucose tolerance test in mice. Cell reports, 37(2). Lu, Z., Li, Y., & Song, J. (2020). Characterization and treatment of inflammation and insulin resistance in obese adipose tissue. Diabetes, metabolic syndrome and obesity, 3449-3460. Lynch, G., Murphy, C., de Marco Castro, E., & Roche, H. (2020). Inflammation and metabolism: the role of adiposity in sarcopenic obesity. Proceedings of the nutrition society, 79(4), 435-447. Ma, S., Tian, S., Sun, J., Pang, X., Hu, Q., Li, X., & Lu, Y. (2022). Broccoli microgreens have hypoglycemic effect by improving blood lipid and inflammatory factors while modulating gut microbiota in mice with type 2 diabetes. Journal of Food Biochemistry, 46(7), e14145. Ma, S., Tian, S., Sun, J., Pang, X., Hu, Q., Li, X., & Lu, Y. (2022). Broccoli microgreens have hypoglycemic effect by improving blood lipid and inflammatory factors while modulating gut microbiota in mice with type 2 diabetes. Journal of food biochemistry, 46(7), e14145. Mao, B., Ren, B., Wu, J., Tang, X., Zhang, Q., Zhao, J., Zhang, L., Chen, W., & Cui, S. (2023). The protective effect of broccoli seed extract against lipopolysaccharide-induced acute liver injury via gut microbiota modulation and sulforaphane production in mice. Foods, 12(14). Marabita, M., Baraldo, M., Solagna, F., Ceelen, J. J. M., Sartori, R., Nolte, H., Nemazanyy, I., Pyronnet, S., Kruger, M., & Pende, M. (2016). S6K1 is required for increasing skeletal muscle force during hypertrophy. Cell Reports, 17(2), 501-513. Martins, T., Leite, R., Matos, A. F., Soares, J., Pires, M. J., M, D. E. L. P., Neuparth, M. J., Sequeira, A. R., Félix, L., Venâncio, C., Monteiro, S. M., Colaço, B., Gouvinhas, I., Barros, A. I., Rosa, E., Oliveira, P. A., & Antunes, L. M. (2022). Beneficial effects of broccoli (Brassica oleracea var italica) by-products in diet-induced obese mice. In vivo, 36(5), 2173-2185. Maryati, Y., Susilowati, A., Melanie, H., & Lotulung, P. D. (2017, January). Characteristic of phenolic compound and antioxidant activity of fermented broccoli (Brassica oleracea L. ssp.) beverage by lactic acid bacteria (LAB). In AIP conference proceedings (Vol. 1803, No. 1). AIP publishing. Meex, R. C., Blaak, E. E., & van Loon, L. J. (2019). Lipotoxicity plays a key role in the development of both insulin resistance and muscle atrophy in patients with type 2 diabetes. Obesity reviews, 20(9), 1205-1217. Men, X., Han, X., Lee, S.-J., Oh, G., Park, K.-T., Han, J.-K., Choi, S.-I., & Lee, O.-H. (2022). Anti-obesogenic effects of sulforaphane-rich broccoli (Brassica oleracea var. italica) sprouts and myrosinase-rich mustard (Sinapis alba L.) seeds in vitro and in vivo. Nutrients, 14(18), 3814. Merino, B., Fernández-Díaz, C. M., Cózar-Castellano, I., & Perdomo, G. (2019). Intestinal fructose and glucose metabolism in health and disease. Nutrients, 12(1), 94. Messina, C., Albano, D., Gitto, S., Tofanelli, L., Bazzocchi, A., Ulivieri, F. M., Guglielmi, G., & Sconfienza, L. M. (2020). Body composition with dual energy X-ray absorptiometry: from basics to new tools. Quantitative imaging in medicine and surgery, 10(8), 1687. Meyer, L. K., Ciaraldi, T. P., Henry, R. R., Wittgrove, A. C., & Phillips, S. A. (2013). Adipose tissue depot and cell size dependency of adiponectin synthesis and secretion in human obesity. Adipocyte, 2(4), 217-226. Miljkovic, N., Lim, J. Y., Miljkovic, I., & Frontera, W. R. (2015). Aging of skeletal muscle fibers. Annals of rehabilitation medicine, 39(2), 155-162. Min, L., Ablitip, A., Wang, R., Luciana, T., Wei, M., & Ma, X. (2024). Effects of exercise on gut microbiota of adults: a systematic review and meta-analysis. Nutrients, 16(7), 1070. Morales, P. E., Bucarey, J. L., & Espinosa, A. (2017). Muscle lipid metabolism: role of lipid droplets and perilipins. Journal of diabetes research, 2017(1), 1789395. Muñoz, R., de Las Rivas, B., Rodríguez, H., Esteban-Torres, M., Reverón, I., Santamaría, L., Landete, J. M., Plaza-Vinuesa, L., Sánchez-Arroyo, A., & Jiménez, N. (2024). Food phenolics and Lactiplantibacillus plantarum. international journal of food microbiology, 412, 110555. Mukund, K., & Subramaniam, S. (2020). Skeletal muscle: a review of molecular structure and function, in health and disease. Wiley interdisciplinary reviews: systems biology and medicine,, 12(1), e1462. Nikawa, T., Ulla, A., & Sakakibara, I. (2021). Polyphenols and their effects on muscle atrophy and muscle health. Molecules, 26(16), 4887. Nishikawa, H., Asai, A., Fukunishi, S., Nishiguchi, S., & Higuchi, K. (2021). Metabolic syndrome and sarcopenia. Nutrients, 13(10), 3519. Norton, L., Shannon, C., Gastaldelli, A., & DeFronzo, R. A. (2022). Insulin: the master regulator of glucose metabolism. Metabolism, 129, 155142. Okamura, T., Hamaguchi, M., Bamba, R., Nakajima, H., Yoshimura, Y., Kimura, T., Hashimoto, Y., Majima, S., Senmaru, T., & Ushigome, E. (2022). Brazilian green propolis improves gut microbiota dysbiosis and protects against sarcopenic obesity. Journal of cachexia, sarcopenia and muscle, 13(6), 3028-3047. Orliaguet, L., Ejlalmanesh, T., & Alzaid, F. (2020). Metabolic and molecular mechanisms of macrophage polarisation and adipose tissue insulin resistance. International journal of molecular sciences, 21(16), 5731. Packard, C. J., Boren, J., & Taskinen, M. R. (2020). Causes and consequences of hypertriglyceridemia. Frontiers in endocrinology, 11, 252. Park, C. H., Lee, E. J., Kim, H. L., Lee, Y. T., Yoon, K. J., & Kim, H. N. (2022). Sex-specific associations between gut microbiota and skeletal muscle mass in a population-based study. J cachexia sarcopenia muscle, 13(6), 2908-2919. Periasamy, M., Herrera, J. L., & Reis, F. C. G. (2017). Skeletal muscle thermogenesis and its role in whole body energy metabolism. Diabetes & metabolism journal, 41(5), 327-336. Pesoa, S. A., Portela, N., Fernández, E., Elbarcha, O., Gotteland, M., & Magne, F. (2021). Comparison of argentinean microbiota with other geographical populations reveals different taxonomic and functional signatures associated with obesity. Scientific reports, 11(1), 7762. Popkin, B. M. (2015). Nutrition transition and the global diabetes epidemic. Current diabetes reports, 15, 1-8. Portincasa, P., Bonfrate, L., Vacca, M., De Angelis, M., Farella, I., Lanza, E., Khalil, M., Wang, D. Q.-H., Sperandio, M., & Di Ciaula, A. (2022). Gut microbiota and short chain fatty acids: implications in glucose homeostasis. International journal of molecular sciences, 23(3), 1105. Quispe, R., Elshazly, M. B., Zhao, D., Toth, P. P., Puri, R., Virani, S. S., Blumenthal, R. S., Martin, S. S., Jones, S. R., & Michos, E. D. (2020). Total cholesterol/HDL-cholesterol ratio discordance with LDL-cholesterol and non-HDL-cholesterol and incidence of atherosclerotic cardiovascular disease in primary prevention: The ARIC study. European journal of preventive cardiology, 27(15), 1597-1605. Rajoka, M. S. R., Wu, Y., Mehwish, H. M., Bansal, M., & Zhao, L. (2020). Lactobacillus exopolysaccharides: new perspectives on engineering strategies, physiochemical functions, and immunomodulatory effects on host health. Trends in food science & technology, 103, 36-48. Remelli, F., Vitali, A., Zurlo, A., & Volpato, S. (2019). Vitamin D deficiency and sarcopenia in older persons. Nutrients, 11(12), 2861. Roh, E., & Choi, K. M. (2020). Health consequences of sarcopenic obesity: a narrative review. Frontiers in endocrinology, 11, 332. Rosolová, H. (2022). Prediabetes. Vnitr Lek, 68(2), 82-84. (Prediabetes.) Rubio-Ruiz, M. E., Guarner-Lans, V., Pérez-Torres, I., & Soto, M. E. (2019). Mechanisms underlying metabolic syndrome-related sarcopenia and possible therapeutic measures. International journal of molecular sciences, 20(3), 647. Ruhee, R. T., & Suzuki, K. (2020). The integrative role of sulforaphane in preventing inflammation, oxidative stress and fatigue: a review of a potential protective phytochemical. Antioxidants (basel), 9(6). Sa, B.-K., Kim, C., Kim, M.-B., & Hwang, J.-K. (2017). Panduratin a prevents tumor necrosis factor-alpha-induced muscle atrophy in L6 rat skeletal muscle cells. Journal of Medicinal Food, 20(11), 1047-1054. Sellers, R. S., Mortan, D., Michael, B., Roome, N., Johnson, J. K., Yano, B. L., Perry, R., & Schafer, K. (2007). Society of toxicologic pathology position paper: organ weight recommendations for toxicology studies. Toxicologic pathology, 35(5), 751-755. Shih, Y. L., Wu, L. Y., Lee, C. H., Chen, Y. L., Hsueh, S. C., Lu, H. F., Liao, N. C., & Chung, J. G. (2016). Sulforaphane promotes immune responses in a WEHI‑3‑induced leukemia mouse model through enhanced phagocytosis of macrophages and natural killer cell activities in vivo. Molecular medicine reports, 13(5), 4023-4029. Shikano, A., Kuda, T., Shibayama, J., Toyama, A., Ishida, Y., Takahashi, H., & Kimura, B. (2019). Effects of Lactobacillus plantarum Uruma-SU4 fermented green loofah on plasma lipid levels and gut microbiome of high-fat diet fed mice. Food research international, 121, 817-824. Shin, J.-E., Jeon, S.-H., Lee, S.-J., & Choung, S.-Y. (2022). The administration of Panax Ginseng Berry extract attenuates high-fat-diet-induced sarcopenic obesity in C57BL/6 Mice. Nutrients, 14(9), 1747. Skenderian, S., Park, G., & Jang, C. (2020). Organismal fructose metabolism in health and non-alcoholic fatty liver disease. Biology, 9(11), 405. Softic, S., Cohen, D. E., & Kahn, C. R. (2016). Role of Dietary Fructose and Hepatic De Novo Lipogenesis in Fatty Liver Disease. Digestive diseases and sciences, 61(5), 1282-1293. Softic, S., Stanhope, K. L., Boucher, J., Divanovic, S., Lanaspa, M. A., Johnson, R. J., & Kahn, C. R. (2020). Fructose and hepatic insulin resistance. Critical reviews in clinical laboratory sciences, 57(5), 308-322. Sun, T., Chen, M., Shen, H., PingYin, Fan, L., Chen, X., Wu, J., Xu, Z., & Zhang, J. (2022). Predictive value of LDL/HDL ratio in coronary atherosclerotic heart disease. BMC cardiovascular disorders, 22(1), 273. Sun, Y., Tang, Z., Hao, T., Qiu, Z., & Zhang, B. (2022). Simulated digestion and fermentation in vitro by obese human gut microbiota of sulforaphane from broccoli seeds. Foods, 11(24). Sylow, L., Tokarz, V. L., Richter, E. A., & Klip, A. (2021). The many actions of insulin in skeletal muscle, the paramount tissue determining glycemia. Cell metabolism, 33(4), 758-780. Taube, A., Eckardt, K., & Eckel, J. (2009). Role of lipid-derived mediators in skeletal muscle insulin resistance. American journal of physiology-endocrinology and metabolism, 297(5), E1004-1012. Tian, S., Wang, Y., Li, X., Liu, J., Wang, J., & Lu, Y. (2021). Sulforaphane regulates glucose and lipid metabolisms in obese mice by restraining JNK and activating insulin and FGF21 signal pathways. Journal of agricultural and food chemistry, 69(44), 13066-13079. Tomofuji, T., Ekuni, D., Azuma, T., Irie, K., Endo, Y., Yamamoto, T., Ishikado, A., Sato, T., Harada, K., & Suido, H. (2012). Supplementation of broccoli or Bifidobacterium longum–fermented broccoli suppresses serum lipid peroxidation and osteoclast differentiation on alveolar bone surface in rats fed a high-cholesterol diet. Nutrition Research, 32(4), 301-307. Tomofuji, T., Ekuni, D., Azuma, T., Irie, K., Endo, Y., Yamamoto, T., Ishikado, A., Sato, T., Harada, K., Suido, H., & Morita, M. (2012). Supplementation of broccoli or Bifidobacterium longum-fermented broccoli suppresses serum lipid peroxidation and osteoclast differentiation on alveolar bone surface in rats fed a high-cholesterol diet. Nutrition Research, 32(4), 301-307. Tsai, C.-C., Chen, Y.-J., Yu, H.-R., Huang, L.-T., Tain, Y.-L., Lin, I.-C., Sheen, J.-M., Wang, P.-W., & Tiao, M.-M. (2020). Long term N-acetylcysteine administration rescues liver steatosis via endoplasmic reticulum stress with unfolded protein response in mice. Lipids in Health and Disease, 19, 1-11. Villareal, D. T., Aguirre, L., Gurney, A. B., Waters, D. L., Sinacore, D. R., Colombo, E., Armamento-Villareal, R., & Qualls, C. (2017). Aerobic or resistance exercise, or both, in dieting obese older adults. New england journal of medicine, 376(20), 1943-1955. Wang, B., Kong, Q., Li, X., Zhao, J., Zhang, H., Chen, W., & Wang, G. (2020). A high-fat diet increases gut microbiota biodiversity and energy expenditure due to nutrient difference. Nutrients, 12(10), 3197. Wang, H.-W., Tang, J., Sun, L., Li, Z., Deng, M., & Dai, Z. (2023). Mechanism of immune attack in the progression of obesity-related type 2 diabetes. World journal of diabetes, 14(5), 494. Wang, Y., Fouret, G., Bonafos, B., Blachnio-Zabielska, A., Leroy, T., Crouzier, D., Barea, B., Gaillet, S., Moro, C., Lecomte, J., Coudray, C., & Feillet-Coudray, C. (2019). Long-term follow-up of muscle lipid accumulation, mitochondrial activity and oxidative stress and their relationship with impaired glucose homeostasis in high fat high fructose diet-fed rats. The Journal of Nutritional Biochemistry, 64, 182-197. Wang, Y., Jeffery, E. H., Miller, M. J., Wallig, M. A., & Wu, Y. (2018). Lightly Cooked Broccoli is as effective as raw broccoli in mitigating dextran sulfate sodium-induced colitis in mice. Nutrients, 10(6). Wang, Z. X., Wang, M. Y., Yang, R. X., Zhao, Z. H., Xin, F. Z., Li, Y., Ren, T. Y., & Fan, J. G. (2022). Ammonia scavenger restores liver and muscle injury in a mouse model of non-alcoholic steatohepatitis with sarcopenic obesity. Frontiers in nutrition,, 9, 808497. Wei, S., Nguyen, T. T., Zhang, Y., Ryu, D., & Gariani, K. (2023). Sarcopenic obesity: epidemiology, pathophysiology, cardiovascular disease, mortality, and management. Frontiers in endocrinology, 14, 1185221. Wilcox, G. (2005). Insulin and insulin resistance. Clinical biochemist reviews, 26(2), 19. Wu, Y.-k., Ren, Z.-n., Zhu, S.-l., Wu, Y.-z., Wang, G., Zhang, H., Chen, W., He, Z., Ye, X.-l., & Zhai, Q.-x. (2022). Sulforaphane ameliorates non-alcoholic fatty liver disease in mice by promoting FGF21/FGFR1 signaling pathway. Acta Pharmacologica sinica, 43(6), 1473-1483. Xiang, J., Qin, L., Zhong, J., Xia, N., & Liang, Y. (2023). GLP-1RA Liraglutide and Semaglutide improves obesity-induced muscle atrophy via SIRT1 pathway. Diabetes, metabolic syndrome and obesity, 16, 2433-2446. Xu, P. T., Song, Z., Zhang, W. C., Jiao, B., & Yu, Z. B. (2015). Impaired translocation of GLUT4 results in insulin resistance of atrophic soleus muscle. BioMed research international, 2015, 291987. Yang, L., Dai, Y., He, H., Liu, Z., Liao, S., Zhang, Y., Liao, G., & An, Z. (2022). Integrative analysis of gut microbiota and fecal metabolites in metabolic associated fatty liver disease patients. Frontiers in microbiology, 13, 969757. Yang, X., Wang, Q., Pang, Z.-r., Pan, M.-r., & Zhang, W. (2017). Flavonoid-enriched extract from Hippophae rhamnoides seed reduces high fat diet induced obesity, hypertriglyceridemia, and hepatic triglyceride accumulation in C57BL/6 mice. Pharmaceutical biology, 55(1), 1207-1214. Ye, J.-H., Huang, L.-Y., Terefe, N. S., & Augustin, M. A. (2019). Fermentation-based biotransformation of glucosinolates, phenolics and sugars in retorted broccoli puree by lactic acid bacteria. Food chemistry, 286, 616-623. Yilmaz, B., Bangar, S. P., Echegaray, N., Suri, S., Tomasevic, I., Manuel Lorenzo, J., Melekoglu, E., Rocha, J. M., & Ozogul, F. (2022). The impacts of Lactiplantibacillus plantarum on the functional properties of fermented foods: a review of current knowledge. Microorganisms, 10(4), 826. Zdziobek, P., Jodłowski, G. S., & Strzelec, E. A. (2023). Biopreservation and bioactivation juice from waste broccoli with Lactiplantibacillus plantarum. molecules, 28(12). Zhang, X., Jiang, H., Ma, X., & Wu, H. (2020). Increased serum level and impaired response to glucose fluctuation of asprosin is associated with type 2 diabetes mellitus. Journal of diabetes investigation, 11(2), 349-355. Zhang, Y., Makaza, N., Jiang, C., Wu, Y., Nishanbaev, S. Z., Zou, L., Sun, J., Song, X., & Wu, Y. (2022). Supplementation of cooked broccoli with exogenous moringa myrosinase enhanced isothiocyanate formation. Food chemistry, 395, 133651. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95777 | - |
| dc.description.abstract | 許多研究表明代謝症候群與肌少症密切相關,可能成因包括發炎、脂肪堆積和胰島素阻抗等代謝失調因子。肥胖型肌少症的定義是肌肉質量和功能下降,伴隨著脂肪增加。近年來,發酵食品越來越受歡迎,植物乳桿菌 (Lactiplantibacillus plantarum) 是發酵食品中常用的菌株,也是能夠預防肥胖的益生菌。青花菜 (Brassica oleracea var. italica) 是一種十字花科蔬菜,被證實具有抗肥胖和抗發炎等作用,這些作用可能來自其富含的活性化合物,包括硫代葡萄糖苷、異硫氰酸鹽、酚類化合物、礦物質、維生素和膳食纖維等成分。先前的研究指出,以植物乳桿菌發酵青花菜後能增加其活性化合物濃度,但在動物體是否具有生理功能的研究還不是很完整。因此,本研究的目的在探討以植物乳桿菌發酵青花菜是否能透過減緩胰島素阻抗、發炎和調節腸道微生物群,進而改善肥胖型肌少症,並探討其潛在分子機制,以開發促進國人健康的保健食品。本研究使用 45% 高脂飲食結合 20% 果糖飲用水誘導小鼠代謝紊亂,以評估發酵青花菜對肥胖型肌少症的影響。動物實驗共分為五組,正常飲食組 (Normal diet, ND)、高脂高果糖組 (High fat and high fructose diet, HFFD)、5% (w/w) 未發酵高劑量青花菜組 (Unfermented high dose broccoli, UHB)、1% (w/w) 發酵低劑量青花菜組 (Fermented low dose broccoli, FLB) 和5% (w/w) 發酵高劑量青花菜組 (Fermented high dose broccoli, FHB),實驗為期 16 週犧牲。實驗結果顯示,未發酵和發酵青花菜皆能顯著降低體重、減緩脂肪細胞肥大、減少肝中三酸甘油酯累積及脂肪和肌肉組織中促發炎細胞因子的分泌,說明未發酵和發酵青花菜皆能改善高脂高果糖誘導的肥胖及發炎反應。其中,FHB 還能顯著降低體脂肪率和血中總膽固醇含量。在血糖和胰島素阻抗指標顯示,發酵青花菜能夠顯著降低空腹血糖、禁食與未禁食血清胰島素含量及血清瘦素含量,表示發酵青花菜能有效改善高脂高果糖誘導的高血糖及胰島素阻抗。此外,未發酵和發酵青花菜能增強肌肉強度,並降低肌肉組織中三酸甘油酯含量與油滴累積。FHB 還能增加瘦體組織質量,並透過活化 IRS1/PI3K/Akt 路徑,增加 GLUT4 的蛋白質表現量,促進肌肉葡萄糖的代謝。FHB還能活化 mTOR 下游路徑,促進蛋白質的合成,進一步透過抑制 FOXO3a 轉錄因子磷酸化,減少與肌肉萎縮相關分子蛋白的產生,恢復高脂高果糖誘導的骨骼肌質量損失。在腸道菌相分析結果顯示,FHB 的腸道菌相組成趨近於 ND 組,且 FHB 能增加 Roseburia 和 Acetivibrio ethanolgignens的豐富度,這兩株菌被研究在肌少症患者的腸道菌相中豐富度降低。還觀察到 FHB 的優勢菌種 Monoglobus pectinilyticus,能夠增加腸道微生物群的豐富度,以及增加 Anaerostipes hominis 等產丁酸菌的豐富度,並顯著增加盲腸中丁酸菌的含量。綜上所述,未發酵和發酵青花菜可以減緩小鼠高脂高果糖飲食誘導代謝失調與發炎反應之情形,而發酵青花菜能透過改善胰島素阻抗與調節腸道菌相,增加骨骼肌葡萄糖代謝和肌肉蛋白質合成與抑制肌肉蛋白質降解,恢復骨骼肌質量損傷,以減緩肥胖型肌少症的症狀,期望此研究能作用於未來開發發酵青花菜功能性食品的基礎,以促進國人的健康。 | zh_TW |
| dc.description.abstract | Numerous studies have indicated a strong association between metabolic syndrome and sarcopenia, with factors such as inflammation, fat accumulation, and insulin resistance. Sarcopenic obesity is characterized by a decline in muscle mass and function, accompanied by increased adipose tissue. In recent years, fermented foods have gained popularity, and Lactiplantibacillus plantarum is a commonly used strain in these foods, known for its potential to prevent obesity. Broccoli (Brassica oleracea var. italica) is a cruciferous vegetable that has been shown to have anti-obesity and anti-inflammatory effects. These effects may be attributed to its rich content of active compounds, including glucosinolates, isothiocyanates, phenolic compounds, minerals, vitamins, and dietary fiber. In a previous study, fermented broccoli by Lactiplantibacillus plantarum had shown an increase in its bioactive compounds. However, the physiological impact of fermented broccoli on animals has not been investigated. Therefore, this study aims to investigate whether fermented broccoli can mitigate the occurrence of metabolic disorders induced by a high-fat and fructose diet (HFFD), thereby improving sarcopenic obesity, and to explore its potential molecular mechanisms for developing functional foods promoting health in humans. We examined the effects of a 45% high-fat diet combined with 20% fructose drinking water (HFFD)-induced metabolic disorders in mice and evaluated the impact of fermented broccoli on sarcopenic obesity. Animals were divided into five groups: normal diet (ND), high-fat high-fructose diet (HFFD), 5% (w/w) unfermented high-dose broccoli (UHB), 1% (w/w) fermented low-dose broccoli (FLB), and 5% (w/w) fermented high-dose broccoli (FHB), for a 16-week period. The current results demonstrated that both unfermented and fermented broccoli significantly reduced body weight, alleviated adipocyte hypertrophy, decreased hepatic triglyceride accumulation, and reduced pro-inflammatory cytokine secretion in adipocyte and muscle tissues, indicating that both broccoli group could improve obesity and inflammatory responses induced by HFFD. Among these, FHB notably reduced fat mass and total cholesterol levels. Regarding blood glucose and insulin resistance indicators, fermented broccoli significantly decreased fasting blood glucose, fasting and feeding serum insulin levels, and serum leptin levels, indicating that fermented broccoli can improve hyperglycemia and insulin resistance induced by HFFD. Additionally, both broccoli group enhanced muscle strength and reduced triglyceride content and oil droplet accumulation in muscle tissue. FHB was found to have the potential to improve glucose metabolism via the IRS1/PI3K/Akt/GLUT4 pathways, and activated downstream mTOR pathways for protein synthesis, while inhibiting FOXO3a-related pathways involved in muscle protein degradation, thereby restoring skeletal muscle mass loss induced by HFFD. Regarding gut microbiota, the gut microbiota composition of FHB approached ND group. FHB increased the abundance of Roseburia and Acetivibrio ethanolgignens, which are reduced in the gut microbiota of sarcopenia patients. Additionally, FHB increased the abundance of Monoglobus pectinilyticus, a predominant strain specific to FHB , and increased the abundance of butyrate-producing bacteria such as Anaerostipes hominis, significantly increasing butyrate levels in the cecum. In summary, both unfermented and fermented broccoli can mitigate metabolic disorders and inflammatory responses induced by a high-fat, high-fructose diet in mice. Fermented broccoli improves insulin resistance and regulates gut microbiota, enhances skeletal muscle glucose metabolism and protein synthesis, and inhibits muscle protein degradation, thereby alleviating symptoms of sarcopenic obesity. This suggests fermented broccoli could serve as a basis for functional foods aimed at promoting health among the Taiwanese population. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-16T16:22:57Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-09-16T16:22:57Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 I
謝誌 I 中文摘要 III Abstract V Graphic abstract VII 目次 VIII 附圖目錄 XIII 附表目錄 XIV 圖目錄 XV 表目錄 XVII 縮寫表 XVIII 第一章、文獻回顧 1 第一節 高脂高果糖飲食 1 (一)、 高脂高果糖簡介 1 (二)、 脂肪的代謝路徑 1 (三)、 果糖的代謝路徑 2 (四)、 高脂高果糖引起之代謝紊亂 3 (五)、 高脂高果糖引起之胰島素阻抗 4 第二節 骨骼肌 6 (一)、 骨骼肌基本介紹與代謝 6 (二)、 高脂高果糖引起之骨骼肌脂肪堆積 6 (三)、 骨骼肌發炎對胰島素抗性的影響 8 (四)、 胰島素阻抗對骨骼肌代謝的影響 9 (五)、 骨骼肌中蛋白質合成與分解代謝機制 10 (六)、 腸道-肌肉軸的關係 11 第三節 肥胖型肌少症 (Sarcopenic obesity, SO) 13 (一)、 肥胖型肌少症簡介及定義 13 (二)、 肥胖型肌少症成因 13 (三)、 肥胖型肌少症的治療 15 (四)、 肥胖型肌少症的動物實驗誘導模型 16 第四節 發酵青花菜 17 (一)、 植物乳桿菌介紹 17 (二)、 青花菜介紹 17 (三)、 發酵青花菜 18 第二章、研究目的與實驗架構 20 第一節 研究目的 20 第二節 實驗架構 21 第三章、材料與方法 22 第一節 實驗材料 22 (一)、 樣品來源 22 (二)、 樣品製備 22 (三)、 儀器設備 23 (四)、 藥品試劑及耗材 24 (五)、 抗體 25 第二節 樣品分析方法 26 (一)、 營養組成分分析 26 (二)、生物活性成分分析 27 第三節 動物實驗 (in vivo) 方法 29 (一)、 動物品系及飼養環境 29 (二)、 動物實驗組別設計 29 (三)、 飼料及果糖溶液配製 30 (四)、 動物犧牲 31 (五)、 腰圍 31 (六)、 體脂肪 31 (七)、 血液生化數值分析 32 (八)、 組織切片-H&E染色 32 (九)、 組織切片-油紅染色 33 (十)、 空腹血糖測定 34 (十一)、 胰島素含量測定 34 (十二)、 胰島素阻抗測定 35 (十三)、 口服葡萄糖耐受性試驗 35 (十四)、 血漿瘦素含量測定 36 (十五)、 組織均質及蛋白質萃取 37 (十六)、 細胞激素測定 37 (十七)、 握力 38 (十八)、 三酸甘油酯含量測定 38 (十九)、 蛋白質定量 39 (二十)、 西方墨點法 (Western blotting) 39 (二十一)、 糞便 DNA 萃取 43 (二十二)、 16S rDNA 基因定序分析 43 (二十三)、 短鏈脂肪酸含量測定 44 (二十四)、 統計分析 45 第四章、結果與討論 46 第一節、青花菜成分分析 (in vitro) 46 (一)、 發酵青花菜的營養成分分析 46 (二)、 發酵青花菜的生物活性成分分析變化 47 第二節、發酵青花菜對高脂高果糖引起代謝紊亂參數與表型 (Parameter and phenotype) 之影響 49 (一)、 發酵青花菜減輕高脂高果糖模式 C57BL/6J 小鼠之體重 49 (二)、 發酵青花菜對高脂高果糖模式 C57BL/6J 小鼠攝食量、飲水量和熱量之影響 50 (三)、 發酵青花菜降低高脂高果糖模式 C57BL/6J 小鼠之體脂率並增加去脂體重 51 (四)、 發酵青花菜改善高脂高果糖模式 C57BL/6J 小鼠之血清生化數值 51 (五)、 發酵青花菜對高脂高果糖模式 C57BL/6J 小鼠臟器之影響 52 (六)、 發酵青花菜改善高脂高果糖模式 C57BL/6J 小鼠之肝臟脂質蓄積 53 第三節、發酵青花菜對高脂高果糖引起脂肪及骨骼肌發炎之影響 54 (一)、 發酵青花菜減少高脂高果糖模式 C57BL/6J 小鼠之脂肪組織重量和細胞大小 54 (二)、 發酵青花菜減緩高脂高果糖模式 C57BL/6J 小鼠之脂肪組織細胞激素 …… ……56 (三)、 發酵青花菜減緩高脂高果糖模式 C57BL/6J 小鼠之肌肉組織細胞激素 56 第四節 發酵青花菜對高脂高果糖引起胰島素阻抗之影響 58 (一)、 發酵青花菜降低高脂高果糖模式 C57BL/6J 小鼠之空腹血糖 58 (二)、 發酵青花菜改善高脂高果糖模式 C57BL/6J 小鼠之胰島素阻抗 58 (三)、 發酵青花菜改善高脂高果糖模式 C57BL/6J 小鼠血糖調節能力 59 (四)、 發酵青花菜減少高脂高果糖模式 C57BL/6J 小鼠之血清瘦素 60 第五節 發酵青花菜對高脂高果糖誘導肥胖型肌少症之影響 61 (一)、 發酵青花菜改善高脂高果糖模式 C57BL/6J 小鼠之握力 61 (二)、 發酵青花菜對高脂高果糖模式 C57BL/6J 小鼠肌肉外觀和重量之影響 61 (三)、 發酵青花菜改善高脂高果糖模式 C57BL/6J 小鼠之肌肉脂質蓄積及萎縮 62 (四)、 發酵青花菜活化高脂高果糖模式 C57BL/6J 小鼠之肌肉中 IRS-1/PI3K/Akt/GLUT4 路徑 63 (五)、 發酵青花菜活化高脂高果糖模式 C57BL/6J 小鼠之肌肉蛋白質合成相關路徑 64 (六)、 發酵青花菜抑制高脂高果糖模式 C57BL/6J 小鼠之肌肉蛋白質降解相關路徑 65 第六節 發酵青花菜對高脂高果糖引起腸道菌相混亂與短鏈脂肪酸之影響 66 (一)、 發酵青花菜對高脂高果糖模式 C57BL/6J 小鼠 Alpha 與 Beta多樣性之影響 66 (二)、 發酵青花菜改變高脂高果糖模式 C57BL/6J 小鼠腸道菌相組成 67 (三)、 發酵青花菜對高脂高果糖模式 C57BL/6J 小鼠之腸道菌組間差異物種分析 68 (四)、 發酵青花菜增加高脂高果糖模式 C57BL/6J 小鼠之SCFA 70 第五章、 結論 71 第六章、 圖表 73 第七章、 參考文獻 103 第八章、 附錄 113 | - |
| dc.language.iso | zh_TW | - |
| dc.title | 探討發酵青花菜預防高脂高果糖誘導代謝紊亂進而減緩小鼠肥胖型肌少症的影響 | zh_TW |
| dc.title | The protective effect of fermented broccoli on sarcopenic obesity in mice with high-fat and fructose diet-induced metabolic disorders | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 何元順;黃步敏;王應然;王朝鐘 | zh_TW |
| dc.contributor.oralexamcommittee | Yuan-Soon Ho;Bu-Miin Huang;Ying-Jan Wang;Chau-Jong Wang | en |
| dc.subject.keyword | 肥胖型肌少症,發酵青花菜,代謝失調,高脂高果糖,植物乳桿菌, | zh_TW |
| dc.subject.keyword | sarcopenic obesity,fermented broccoli,metabolic disorders,high-fat and high-fructose,Lactiplantibacillus plantarum, | en |
| dc.relation.page | 113 | - |
| dc.identifier.doi | 10.6342/NTU202402909 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-08-06 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 食品科技研究所 | - |
| dc.date.embargo-lift | 2029-07-31 | - |
| 顯示於系所單位: | 食品科技研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 此日期後於網路公開 2029-07-31 | 5.86 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
