Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95672Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 詹瀅潔 | zh_TW |
| dc.contributor.advisor | Ying-Chieh Chan | en |
| dc.contributor.author | 丁嘉靖 | zh_TW |
| dc.contributor.author | Chia-Ching Ting | en |
| dc.date.accessioned | 2024-09-15T16:43:45Z | - |
| dc.date.available | 2024-09-16 | - |
| dc.date.copyright | 2024-09-14 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-12 | - |
| dc.identifier.citation | Chirjiv, A. K., & Ben, A. (2017). Recent Developments, Future Challenges and New Research Directions in LCA of Buildings: A Critical Review, Renewable and Sustainable Energy Reviews, 67, 408-416.
Hischier, R., & Reichart, I. (2003). Multifunctional electronic media-traditional media: The Problem of an Adequate Functional Unit A case study of a printed newspaper, an internet newspaper and a TV broadcast. The International Journal of Life Cycle Assessment, 8, 201-208. Kim, S., & Dale, B. (2006). Ethanol fuels: E10 or E85–life cycle perspectives (5 pp). The International Journal of Life Cycle Assessment, 11, 117-121. Reap, J., Roman, F., Duncan, S., & Bras, B. (2008). A survey of unresolved problems in life cycle assessment: Part 2: impact assessment and interpretation. The International Journal of Life Cycle Assessment, 13, 374-388. Cabeza, L. F., Rincón, L., Vilariño, V., Pérez, G., & Castell, A. (2014). Life cycle assessment (LCA) and life cycle energy analysis (LCEA) of buildings and the building sector: A review. Renewable and sustainable energy reviews, 29, 394-416. Backes, J. G., & Traverso, M. (2021). Application of life cycle sustainability assessment in the construction sector: A systematic literature review. Processes, 9(7), 1248. Röck, M., Sørensen, A., Tozan, B., Steinmann, J., Horup, L. H., Le Den, X., & Birgisdottir, H. (2022). Towards embodied carbon benchmarks for buildings in Europe:# 2 Setting the baseline: A bottom-up approach. Simonen, K., Rodriguez, B. X., & De Wolf, C. (2017). Benchmarking the embodied carbon of buildings. Technology| Architecture+ Design, 1(2), 208-218. Backes, J. G., & Traverso, M. (2021). Life cycle sustainability assessment—a survey based potential future development for implementation and interpretation. Sustainability, 13(24), 13688. Gamarra, A. R., Istrate, I. R., Herrera, I., Lago, C., Lizana, J., & Lechon, Y. (2018). Energy and water consumption and carbon footprint of school buildings in hot climate conditions. Results from life cycle assessment. Journal of Cleaner Production, 195, 1326-1337. Mónus, F. (2022). Environmental education policy of schools and socioeconomic background affect environmental attitudes and pro-environmental behavior of secondary school students. Environmental Education Research, 28(2), 169-196. Almeida, R. (1985). Handbook for educational buildings planning (No. 11). Unesco/Unicef Co-operative Programme. Wijayasundara, M., Zhang, L., & Duffield, C. (2020). Relating building space to performance outcomes–A methodology to explore the relationship. Journal of Building Engineering, 32, 101662. Winterbottom, M., & Wilkins, A. (2009). Lighting and discomfort in the classroom. Journal of environmental psychology, 29(1), 63-75. Marchand, G. C., Nardi, N. M., Reynolds, D., & Pamoukov, S. (2014). The impact of the classroom built environment on student perceptions and learning. Journal of Environmental Psychology, 40, 187-197. Politi, S., Antonini, E., & Wilkinson, S. J. (2018, January). Overview of building LCA from the sustainability rating tools perspective. In Proceedings of the ZEMCH 2018 International Conference, Melbourne, Australia (pp. 237-250). Tirelli, D., & Besana, D. (2023). Moving toward net zero carbon buildings to face Global Warming: A narrative review. Buildings, 13(3), 684. Finkbeiner, M., Inaba, A., Tan, R., Christiansen, K., & Klüppel, H. J. (2006). The new international standards for life cycle assessment: ISO 14040 and ISO 14044. The international journal of life cycle assessment, 11, 80-85. Julia, M. B., Finkbeiner, M. (2018). Organizational LCA. Life Cycle Assessment: Theory and Practice: 481-498. Global, B. R. E. (2018 Jan 1)."BRE Global Methodology for the Environmental Assessment of Buildings Using EN 15978: 2011. Panesar, D. K., Seto, K. E., & Churchill, C. J. (2017). Impact of the selection of functional unit on the life cycle assessment of green concrete. The International Journal of Life Cycle Assessment, 22, 1969-1986. De Simone Souza, H. H., de Abreu Evangelista, P. P., Medeiros, D. L., Albertí, J., Fullana-i-Palmer, P., Boncz, M. Á., ... & Gonçalves, J. P. (2021). Functional unit influence on building life cycle assessment. The International Journal of Life Cycle Assessment, 26, 435-454. Cabeza, L. F., Rincón, L., Vilariño, V., Pérez, G., & Castell, A. (2014). Life cycle assessment (LCA) and life cycle energy analysis (LCEA) of buildings and the building sector: A review. Renewable and sustainable energy reviews, 29, 394-416. Politi, S., Antonini, E., & Wilkinson, S. J. (2018, January). Overview of building LCA from the sustainability rating tools perspective. In Proceedings of the ZEMCH 2018 International Conference, Melbourne, Australia (pp. 237-250). Saade, M. R. M., Guest, G., & Amor, B. (2020). Comparative whole building LCAs: How far are our expectations from the documented evidence?. Building and environment, 167, 106449. Lavagna, M., Baldassarri, C., Campioli, A., Giorgi, S., Dalla Valle, A., Castellani, V., & Sala, S. (2018). Benchmarks for environmental impact of housing in Europe: Definition of archetypes and LCA of the residential building stock. Building and Environment, 145, 260-275. De Larriva, R. A., Rodríguez, G. C., López, J. M. C., Raugei, M., & i Palmer, P. F. (2014). A decision-making LCA for energy refurbishment of buildings: Conditions of comfort. Energy and Buildings, 70, 333-342. De Souza, L. L. P., Lora, E. E. S., Palacio, J. C. E., Rocha, M. H., Renó, M. L. G., & Venturini, O. J. (2018). Comparative environmental life cycle assessment of conventional vehicles with different fuel options, plug-in hybrid and electric vehicles for a sustainable transportation system in Brazil. Journal of cleaner production, 203, 444-468. Backes, J. G., Hinkle-Johnson, R., & Traverso, M. (2023). The influence of the functional unit on the comparability of life cycle assessments in the construction sector: A systematic literature review and attempt at unification for reinforced concrete. Case Studies in Construction Materials, 18, e01966. Oblinger, D. (2006). Learning spaces (Vol. 444). Washington, DC: Educause. Wijayasundara, M., Zhang, L., & Duffield, C. (2020). Relating building space to performance outcomes–A methodology to explore the relationship. Journal of Building Engineering, 32, 101662. Weinstein, C. S. (1979). The physical environment of the school: A review of the research. Review of educational Research, 49(4), 577-610. Puteh, M., Che Ahmad, C. N., Mohamed Noh, N., Adnan, M., & Ibrahim, M. H. (2015). The classroom physical environment and its relation to teaching and learning comfort level. International Journal of Social Science and Humanity, 5(3), 237-240. Saraiva, T. S., De Almeida, M., Bragança, L., & Barbosa, M. T. (2018). Environmental comfort indicators for school buildings in sustainability assessment tools. Sustainability, 10(6), 1849. Fisher, K. (2001). Building Better Outcomes: The Impact of School Infrastructure on Student Outcomes and Behaviour. Schooling Issues Digest. Saxe, S., & Kasraian, D. (2020). Rethinking environmental LCA life stages for transport infrastructure to facilitate holistic assessment. Journal of Industrial Ecology, 24(5), 1031-1046. Bahramian, M., & Yetilmezsoy, K. (2020). Life cycle assessment of the building industry: An overview of two decades of research (1995–2018). Energy and Buildings, 219, 109917. Furberg, A., Arvidsson, R., & Molander, S. (2022). A practice‐based framework for defining functional units in comparative life cycle assessments of materials. Journal of Industrial Ecology, 26(3), 718-730. Evangelista, P. P., Kiperstok, A., Torres, E. A., & Gonçalves, J. P. (2018). Environmental performance analysis of residential buildings in Brazil using life cycle assessment (LCA). Construction and Building Materials, 169, 748-761. Hartmann, C., Özdemir, Ö., & Hafner, A. (2022, September). What is the impact of a basement on a building LCA and what role does the functional unit play?. In IOP Conference Series: Earth and Environmental Science (Vol. 1078, No. 1, p. 012094). IOP Publishing. Xing, W., Tam, V. W., Le, K. N., Butera, A., Hao, J. L., & Wang, J. (2022). Effects of mix design and functional unit on life cycle assessment of recycled aggregate concrete: Evidence from CO2 concrete. Construction and Building Materials, 348, 128712. Gao, H., Wang, X., Wu, K., Zheng, Y., Wang, Q., Shi, W., & He, M. (2023). A review of building carbon emission accounting and prediction models. Buildings, 13(7), 1617. Yona, L., Cashore, B., Jackson, R. B., Ometto, J., & Bradford, M. A. (2020). Refining national greenhouse gas inventories. Ambio, 49, 1581-1586. 林憲德,低碳(低蘊含碳)建築評估手冊 2023版,內政部建築研究所 Hongman S, (2020). "Direct and highly selective conversion of captured CO2 into methane through integrated carbon capture and utilization over dual functional materials." Journal of CO2 Utilization 38: 262-272. Zhou, S., Zhou, L., Zhang, Y., Sun, J., Wen, J., & Yuan, Y. (2019). Upgrading earth-abundant biomass into three-dimensional carbon materials for energy and environmental applications. Journal of Materials Chemistry A, 7(9), 4217-4229. Hammond, Jones (esperto LCA.), Lowrie, & Tse. (2011). Embodied Carbon: The Inventory of Carbon and Energy (ICE). BSRIA. Crawley, D., & Aho, I. (1999). Building environmental assessment methods: applications and development trends. Building Research & Information, 27(4-5), 300-308. Peng, S., Piao, S., Bousquet, P., Ciais, P., Li, B., Lin, X., ... & Zhou, F. (2016). Inventory of anthropogenic methane emissions in mainland China from 1980 to 2010. Atmospheric Chemistry and Physics, 16(22), 14545-14562. Yan, H., Shen, Q., Fan, L. C., Wang, Y., & Zhang, L. (2010). Greenhouse gas emissions in building construction: A case study of One Peking in Hong Kong. Building and Environment, 45(4), 949-955. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95672 | - |
| dc.description.abstract | 近年來由於全球暖化議題,國際標準組織 (ISO) 提出生命週期評估(Life-cycle assessment, LCA)評估產品環境因素和影響的相關依據,由於建築產業是高度複雜的且代表著重大的社會責任和資源投資,使得建築業有別於其他工業化產業,對於標準量化生命週期具有相當大的挑戰。
在 LCA 中比較兩個或多個不同的產品系統時,功能單元的定義和評估邊界的選擇困難,導致建築業內實施的功能單元( Functional unit, FU )有顯著差異。 本研究透過不同教學大樓碳排放結果分析,找出可能適用的教學型大樓功能單元,及設計相關問卷探討大眾對於教學型大樓功能單元的需求,整合探討與分析教學型大樓 LCA 中適合使用的功能單元狀態,提供教學型大樓的功能單元最佳依據,提出教學型大樓所有 LCA 的功能單元的潛力。 結果顯示用基礎功能單元比較去描述一棟教學型建築物的碳排放量,是無法描述以及看出建築物提供的服務質量,教學大樓的功能單元定義很難被量化,但要適度的量化才能確保比較的基準。 | zh_TW |
| dc.description.abstract | In recent years, due to the issue of global warming, the International Organization for Standardization (ISO) has proposed life-cycle assessment (LCA) as a basis for evaluating the environmental factors and impacts of products. The construction industry, being highly complex and representing significant social responsibility and resource investment, faces considerable challenges in standardizing lifecycle quantification compared to other industrial sectors.
In Life Cycle Assessment (LCA), comparing two or more different product systems can be challenging when defining the functional unit and selecting the assessment boundaries. This challenge often leads to significant variations in the implementation of functional units (FU) within the construction industry. The objective of this study is to identify potentially applicable functional units for educational buildings by analyzing carbon emissions from three educational buildings. Additionally, the study aims to design questionnaires to investigate user preferences for the functional units of educational buildings. By integrating and analyzing appropriate functional units in the LCA of educational buildings, this study aims to establish an optimal foundation for functional units and highlight the potential of LCAs for educational buildings. The results indicate that using basic functional units to describe the carbon emissions of an educational building does not effectively represent the quality of services provided by the building. The definition of functional units for educational buildings is challenging to quantify, but it must be appropriately quantified to ensure a basis for comparison. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-15T16:43:45Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-09-15T16:43:45Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 目次
誌謝 i 中文摘要 ii Abstract iii 目次 v 圖次 vii 表次 viii 第1章 緒論 1 1.1 研究背景 1 1.2 研究動機 1 1.3 研究目的 2 第2章 文獻回顧 4 2.1 建築業生命週期評估 4 2.2 文獻中常被使用之建築功能單元 5 2.3 建築業功能單元的狀態 6 2.4 教學型大樓功能回顧 7 2.4.1定義特殊功能單元的困難 7 2.5 碳排放計算方法 8 第3章 研究方法 12 3.1 研究架構 12 3.2資料收集與處理 14 3.2.1 評估對象 14 3.2.2 功能等效 18 3.2.3 系統邊界 18 3.2.4 建築模型 22 3.3 碳排計算 26 3.4 功能單元選擇 28 3.5 問卷設計 30 第4章 研究結果 34 4.1 案例分析 34 4.1.1 空間配置與碳排放之間的影響 36 4.1.2 空間配置與用電量之間的影響 37 4.2 問卷分析 43 4.3 整合探討與分析 45 第5章 討論 48 5.1 現代趨勢的演化 48 5.2 不同蘊含碳計算方法對於結果可能存在差異 50 第6章 結論 53 6.1 研究結論 53 6.2 研究範圍與限制 54 參考文獻 56 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 教學型大樓 | zh_TW |
| dc.subject | 功能單元 | zh_TW |
| dc.subject | 建築生命週期 | zh_TW |
| dc.subject | Educational Buildings | en |
| dc.subject | Building Lifecycle | en |
| dc.subject | Functional Unit | en |
| dc.title | 教學型大樓生命週期功能單元探討 | zh_TW |
| dc.title | Exploration of the Functional Unit of the Lifecycle of Educational Buildings | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 曾惠斌;紀乃文 | zh_TW |
| dc.contributor.oralexamcommittee | Hui-Ping Tserng;Nai-Wen Chi | en |
| dc.subject.keyword | 建築生命週期,功能單元,教學型大樓, | zh_TW |
| dc.subject.keyword | Building Lifecycle,Functional Unit,Educational Buildings, | en |
| dc.relation.page | 62 | - |
| dc.identifier.doi | 10.6342/NTU202403909 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-08-13 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 土木工程學系 | - |
| Appears in Collections: | 土木工程學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-112-2.pdf | 1.5 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
